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a b s t r a c t   

In the treatment of Non-Hodgkin lymphoma (NHL), multiple therapeutic options are available. Improving 
outcome predictions are essential to optimize treatment. The metabolic active tumor volume (MATV) has 
shown to be a prognostic factor in NHL. It is usually retrieved using semi-automated thresholding methods 
based on standardized uptake values (SUV), calculated from 18F-Fluorodeoxyglucose Positron Emission 
Tomography (18F-FDG PET) images. However, there is currently no consensus method for NHL. The aim of 
this study was to review literature on different segmentation methods used, and to evaluate selected 
methods by using an in house created software tool. 

A software tool, MUltiple SUV Threshold (MUST)-segmenter was developed where tumor locations are 
identified by placing seed-points on the PET images, followed by subsequent region growing. Based on a 
literature review, 9 SUV thresholding methods were selected and MATVs were extracted. The MUST-seg
menter was utilized in a cohort of 68 patients with NHL. Differences in MATVs were assessed with paired t- 
tests, and correlations and distributions figures. 

High variability and significant differences between the MATVs based on different segmentation 
methods (p  <  0.05) were observed in the NHL patients. Median MATVs ranged from 35 to 211 cc. 

No consensus for determining MATV is available based on the literature. Using the MUST-segmenter with 
9 selected SUV thresholding methods, we demonstrated a large and significant variation in MATVs. 
Identifying the most optimal segmentation method for patients with NHL is essential to further improve 
predictions of toxicity, response, and treatment outcomes, which can be facilitated by the MUST-segmenter. 

© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).   
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1. Introduction 

18F-Fluorodeoxyglucose Positron Emission Tomography/ 
Computerized Tomography (18F-FDG PET/CT) scans are widely used 
in clinical practice for disease staging and evaluation of response to 
treatment in patients with Non-Hodgkin lymphoma (NHL). 
Performing baseline, interim and end of treatment 18F-FDG PET/CT 
imaging has led to risk-adapted treatment approaches to improve 
treatment response and limit toxicities and adverse events, hence 
accurate interpretation of 18F-FDG PET/CT is of great importance  
[1,2]. Response assessment is nowadays performed using the 
Deauville score, a 5-point grading scale that compares the FDG up
take of diseased areas to uptake in the mediastinum and liver [3]. 
However, this is a coarse assessment showing a poor inter-reader 
reliability [4]. In addition, visual assessment of FDG uptake can be 
biased due to differences in background levels (contrast illusion) [5]. 

Alternative methods to assess a patient’s disease stage using 18FDG- 
PET image biomarkers have been proposed. Most common is the use of 
metabolic active tumor volume (MATV), which already showed to be a 
good prognostic biomarker for treatment outcome predictions [6–13]. 
MATV is a metric that represents the volume of the tumor tissue 
segmentations with high FDG uptake (FDG-tumor). Defining this FDG- 
tumor can be performed manually, but (semi-)automatic segmentation 
by thresholding on a specific PET image intensity value (i.e., standar
dized uptake value (SUV)), is a more objective and normalized method. 
In this procedure, volumes above a certain SUV threshold are classified 
as tumor. This is either based on fixed (e.g., SUV 2.5) [14] or relative 
(e.g., 41% of the maximum SUV value in the tumor region) [15] 
thresholds, and are generally initialized by placing seed points in, or 
bounding boxes around the identified tumors [16]. 

NHL is a disease that is often widespread through the body with 
nodal and extranodal involvement, and with a wide range in tumor 
volumes. (Fig. 1). Compared to solid tumors, it is therefore more 
challenging to investigate the prognostic value of different FDG-tumor 
definitions as this is in the current state very time-consuming [17]. 

Besides, there is currently no consensus SUV thresholding method [18], 
resulting in a variety of methods used in clinical studies [19–24]. 

Thresholding methods incorporated in currently available seg
mentation software are variable and can only be utilized per single 
thresholding method at a time; evaluating multi-threshold PET 
segmentation methods for NHL patients is therefore challenging. 
There is an unmet need of an easy-to-use PET segmentation tool that 
can extract MATV of various tumor lesions, using multiple seg
mentation methods simultaneously. This is needed to facilitate re
search on the optimal segmentation method for the prediction of 
treatment outcomes in patients with NHL. 

The aim of this study was to review the literature on the different 
segmentation methods used and to evaluate the methods by using 
an in-house created software tool that semi-automatically segments 
NHL lesions on FDG PET scans. This was pursued with the following 
objectives: 

A. To identify promising semi-automated FDG PET NHL segmenta
tion methods by reviewing related segmentation evaluation 
publications.  

B. To develop a segmentation tool that generates FDG-tumor and 
MATV for different SUV thresholds simultaneously.  

C. To evaluate variance in MATVs based on different FDG-tumor 
threshold in an exemplar patient cohort. 

2. Materials and methods 

2.1. Literature review 

A literature search was performed in PubMed to retrieve pub
lications that evaluated different semi-automated segmentation 
methods for NHL. The following search query was created: (lym
phoma[tiab] OR NHL[tiab] OR DLBCL[tiab] OR MCL[tiab]) AND (po
sitron emission tomography[tiab] OR FDG[tiab] OR PET[tiab] OR SUV 
[tiab] OR standardised uptake value[tiab] OR standardized uptake 

Fig. 1. Maximum Intensity Projections (MIP) of two patients with NHL showing A, a large dissemination of tumors and B, less dissemination of tumors.  
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value[tiab]) AND (segment*[tiab] OR deline*[tiab] OR contour*[tiab] 
OR measurement method[tiab] OR methodolog*[tiab] OR volume 
measur*[tiab] OR volume calculat*[tiab]) AND (feature*[tiab] OR 
characteristic*[tiab] OR tumor volume[tiab] OR tumour volume[tiab] 
OR tumor burden[tiab] OR tumour burden[tiab] OR MTV[tiab] OR 
MATV[tiab]). The search was completed on August 1st, 2022. Only 
studies from 2010 till 2022 that had a full-text version available, 
were considered. 

All studies had to fulfill the following inclusion criteria: a) clinical 
studies b) including patients with NHL c) disease evaluation re
ported with FDG PET scans d) segmentation performed with mul
tiple semi-automated SUV thresholding methods e) evaluation/ 
comparisons made between the selected segmentation methods. 

The selection of studies was performed based on title and ab
stract, and full text was evaluated in the case of any doubt. Resulting 
studies were analyzed on methodology, important conclusions, uti
lized segmentation methods, best segmentation method(s), number 
of patients and patient disease. 

Based on the literature overview, a final set of semi-automated 
segmentation methods was selected for implementation in our 
software. 

2.2. MUST-segmenter development 

The software tool MUST (MUltiple SUV Threshold)-segmenter 
was developed to extract segmentations of multiple tumor lesions 
with multiple SUV thresholding methods simultaneously, i.e., 
without having to re-segment for every threshold method. This will 
allow to perform efficient research on the optimal SUV thresholding 
method for the prediction of treatment outcomes in NHL patients. 
The MUST-segmenter is readily available within 3D Slicer [25] as a 
Python-based [26] plugin and can be used without coding experi
ence. The source code of the tool is open-access and available at 
https://github.com/kyliekeijzer/Slicer-PET-MUST-segmenter. 

The development workflow of the MUST-segmenter was de
signed as follows: 1) opening and displaying PET imaging data to
gether with avoidance regions; 2) user-detection of NHL lesions with 
seed points and/or bounding boxes; 3) semi-automatic segmenta
tion using seed points and/or bounding boxes; 4) displaying and 
exporting segmentation results; 5) calculation of FDG-tumor MATV. 
A schematic overview of the process is displayed in Fig. 2. 

2.2.1. Opening PET/CT imaging and avoidance regions 
The input required for the MUST-segmenter are PET (which are 

then converted to SUV maps) and CT images (in Digital Imaging and 
Communications in Medicine (DICOM) format). Users can navigate 
between slices in sagittal, transversal, and coronal views (function
ality of 3D Slicer). Optionally, pre-defined high FDG uptake avoid
ance volumes of interests (VOIs), e.g., in the brain, bladder or 
kidneys, can be loaded. These VOIs can be excluded from the PET 
images, to prevent healthy tissue to be included into the tumor 
segmentation. 

2.2.2. Lymphoma lesions identification with seed points 
The user is required to identify the NHL lesions on the PET/CT by 

clicking on a lesion (preferably in the center). Since NHL is typically a 
disseminated disease, NHL lesion detection needs to commonly be 
performed for multiple tumor locations. Seed points were defined 
with the users’ mouse clicks at high uptake areas of all individual 
tumors. Rectangle shaped bounding boxes are generated around the 
individual tumors, which can be adjusted by the user. 

2.2.3. Semi-automatic lesion segmentation with different PET intensity 
thresholds 

The next step is the segmentation process that is performed with 
a region-growing algorithm using a 6-connected voxel neighbor
hood. Specifically, the algorithm starts from the placed seeds and 
spatially keeps adding neighboring tumor voxels that meet the SUV 
criterium, until no adjacent parts meet the criterium anymore. 

Based on the literature review, the following SUV thresholding 
methods were established for the MUST-segmenter: 

Type 1 - fixed SUV threshold 
For method type 1, the fixed SUV thresholds, the VOI is defined 

from the seed point to all connected voxels which meet the absolute 
threshold of:  

1.1 SUV ≥ 2.5 (SUV2.5)  
1.2 SUV ≥ 3.0 (SUV3.0)  
1.3 SUV ≥ 4.0 (SUV4.0) 

Type 2 - relative threshold 
For the relative threshold methods, the VOI is defined from the 

seed point to all connected voxels which meet the relative 
threshold of: 

Fig. 2. Development workflow of the MUST-segmenter. A loading PET/CT imaging data into 3D Slicer. B lymphoma tumor identification by placing seed points, and C performing 
segmentation, displaying the segmentation results, and calculating the metabolic active tumor volume (MATV) of the FDG-tumor. 
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2.1 SUV ≥ 41% of the maximum SUV of bounding boxes (41suvMax); 
Bounding boxes are areas around the lesions based on the seed 
points, 41% of the maximum SUV value determined in all boxes 
defines the threshold.  

2.2 SUV ≥ the maximum SUV value in a user-defined liver area 
(liverSuvMax); 
The maximum SUV value in a 1.2 cm diameter sphere segment in 
the right lobe of the liver. The sphere is created directly from a 
user-defined seed.  

2.3 SUV ≥ PERCIST SUV [27] (PERSIST); 
Based on the same SUV vales in the sphere area described at 2.2., 
the PERCIST SUV is defined as: 1.5 x average liver SUV + 2 x 
Standard Deviation.  

2.4 SUV ≥ 41% of the average brain SUV + Age Correction (SUVbrain); 

Where, 

= ×AgeCorrection PatientAge( 20)
0.125

70 20

Brain SUV values are calculated from uploaded high uptake re
gions as described before. This threshold was added as it is known 
from literature that the brain activity is consistent among in
dividuals; however, the activity decreases with age [28–31]. 

Five additional thresholds based on brain SUV values can be 
generated, which are described in Supplementary file A. 

Type 3 - majority voting 
Majority voting is based on uniformity between the SUV2.5, 

SUV4.0, 41suvMax, liverSuvMax and PERCIST methods:  

3.1 two or more methods (MV2)  
3.2 three or more methods (MV3) 

2.2.4. Visualizing segmentations and exporting MATV 
The final step in the MUST-segmenter software is the visualiza

tion of FDG-tumor defined by the different SUV thresholding 
methods. These contours are converted to visual representations on 
the PET images and are paired with 3D representations. Users can 
make final edits to the FDG-tumor segmentation if necessary, fol
lowed by saving them in the desired format using 3D Slicer func
tionality. The MATV can be extracted and is determined as the 
number of voxels in the FDG-tumor segmentation, times the voxel 
resolution. In addition, yet outside the scope of this paper, other 
image biomarkers can be extracted, including radiomics fea
tures [32]. 

2.3. MATV assessment 

2.3.1. Patient cohort 
To evaluate the MUST-segmenter and the variance in MATV 

output, a use-case cohort of 68 patients with Large B-cell lymphoma 
(LBCL), the most common NHL subtype, treated at the University 
Medical Center Groningen (UMCG), The Netherlands, was collected. 
This LBCL cohort was chosen since this is a very diverse disease with 
commonly multiple tumor sites, and thus appropriate for evaluation 
of the MUST-segmenter. Patients received CD19-directed chimeric 
antigen receptor (CAR) T-cell therapy as a third line therapy. PET/CT 
scans were acquired at two time points: approximately twenty-eight 
days and six days before CAR T-cell infusion. 18F-FDG PET scans were 
performed according to The European Association of Nuclear 
Medicine (EANM) on either a Siemens Biograph mCT (40 or 64), a 
Siemens Biograph Vision 600 or a Siemens Biograph Vision Quadra, 
with EARL1 accreditation [15,33]. 

2.3.2. MUST-segmenter application on patient data 
PET/CT scans were loaded into 3D Slicer, together with avoidance 

regions, which include the heart, spleen, kidneys, and liver and brain 
contours, that were obtained with Mirada’s Embrace Atlas 
Contouring modality [34]. The MUST-segmenter was utilized to 
segment PET scans and retrieve the MATV with all SUV methods as 
described before. 

2.3.3. Statistics 
Distributions of MATV were visualized by creating boxplots 

(5–95 percentile whiskers). Significant differences between MATV 
results were assessed with paired t-tests, adjusted for multiple 
testing (Benjamini-Hochberg). Correlations and distributions figures 
of log transformed MATVs among the different segmentation 
methods were created. Low- and high-MATV patient groups were 
identified using cut-offs found in literature, and were evaluated 
using Cochran’s Q test and McNemar’s tests. Statistical analysis was 
performed using R v4.2.1. 

3. Results 

3.1. Literature review 

The literature search retrieved 123 results and after the selection 
procedure, 12 studies were included for the review. The flowchart of 
the selection process is shown in Fig. 3. An overview of the included 
12 studies is given in Table 1. 

3.1.1. Patient and PET/CT image characteristics 
Of the 12 included studies, patient cohorts ranged from 12 to 239 

(mean = 91, median = 95). All studies included patients with NHL 
(n = 12; [35–46]) but some studies additionally included patients 
with Hodgkin lymphoma (HL) (n = 3; [35,40,46]). Six studies  
[35,36,38,39,45,46] stated whether they included EANM Research 
Ltd. (EARL) accredited PET images, whereof 2 studies included both 
EARL accredited and non-accredited images [36,38]. 

3.1.2. Segmentation software and approach 
Studies relied on different segmentation software and ap

proaches. Two studies used seed-based segmentation (n = 2)  
[38,42,44], while the majority deployed user-defined bounding 
boxes (n = 6) [35,39–41,45,46]. Moreover, different bounding box 
shapes were implemented: cubic shapes [35,45,46], spherical shapes  
[41,46] and irregular shapes [39,40]. Four studies used auto-seg
mentation of all high uptake regions without deploying bounding 
boxes, yet by manually removing all non-tumor regions  
[35,36,38,43]. Manual removal of non-tumor regions was also per
formed in 1 other study [44] that applied a semi-automatic ap
proach. 

3.1.3. SUV segmentation thresholds 
Nearly all studies included fixed SUV thresholds of SUV2.5 (n = 9)  

[35–39,41–44] and SUV4.0 (n = 5) [35–38,42] in their segmentation 
method evaluation. The most common relative SUV threshold 
method was the 41suvMax method (n = 10) [35–39,42–46]; this 
threshold has been recommended by the EANM for solid tumors  
[15]. Thresholds based on liver SUV values were less investigated 
(n = 1 for liverSuvMax [39], n = 3 for PERCIST [39,41,44]). Methods 
based on majority voting were included in 5 studies [35–38,42]. 
Several studies included more complex thresholds based on adaptive 
threshold (AT) algorithms (n = 8) [35–40,42,45], such as thresholds 
based on tumor background intensities. One study [40] also com
pared SUV thresholding methods to deep learning algorithms. 
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3.1.4. Segmentation methods evaluation and conclusions 
Different analyses were used to identify the preferred PET seg

mentation approach, these were based on 1) predictive performance, 
2) robustness, and 3) clinician-based evaluation. 

The performance of Overall Survival (OS) and/or Progression Free 
Survival (PFS) prediction was assessed for MATVs defined with dif
ferent SUV threshold methods in 5 studies [39,41,43–45]. Significant 
association of MATV with OS using all segmentation methods (i.e., 
SUV2.5, 41suvMax, liverSuvMax, PERCIST) was found in 2 studies  
[39,44], whereas 1 study [43] showed no significance association 
with the 2 methods investigated (i.e., SUV2.5, 41suvMax). MATV was 
significantly associated with PFS using all methods in 3 studies  
[39,44,45], although no significant relation with PFS was found in 1 
study [43]. 

For the prediction of OS and PFS, 3 studies [41,43,44] found that 
the best predictive performance measures of MATV were achieved 
with SUV2.5. In contrast, 1 study found the best predictive perfor
mance for PFS with 41suvMax [39]. 

The optimal cut-off points to differentiate low- and high-MATV 
patient groups were analyzed in 4 studies [39,43–45], and de
termined for 4 segmentation methods (Table 2). The cut-offs varied 
between studies, e.g., 396 – 552 cc for PFS using SUV2.5, and be
tween segmentation methods, e.g., 295 – 552 cc for PFS found by 
Eude et al. [39]. 

Prediction of disease progression (PROG) was performed by 2 
studies [36,38]. One of these studies [36] evaluated prediction 
models that included multiple PET variables and found SUV4.0 the 
best preforming method. The other study [38] found MV2 to perform 
the best. 

Although these studies found differences in predictive perfor
mance, only 1 study [41] based their preferred method re
commendations on the differences in outcome prediction 
performance. 

Robustness across different observers (OBS) was evaluated in 4 
studies [39,42–44], whereof 2 studies [39,44] recommended SUV2.5, 
1 study [42] the SUV4.0 method, and one study [39] liverSuvMax 
and PERCIST. 

Robustness of the threshold approaches was evaluated for dif
ferent PET image reconstruction methods (IMG) (n = 2; [35,38]). One 
study [35] compared tumor volume ratios of two types of EARL- and 
high-resolution-reconstructed images, and evaluated the effect of 
these reconstruction methods on different SUV thresholding 
methods. SUV4.0 showed the best alignment between the image 

reconstruction techniques and results of MV2 were comparable, 
indicating these two methods were the most robust to image re
construction. Another study [38] did not find a significant difference 
in quality scores determined on EARL and non-EARL reconstructed 
images. 

Additionally, 1 study [44] evaluated robustness between software 
(SOFT) and recommended SUV2.5. 

For clinician-based evaluation, segmentation quality scores (QS) 
have been proposed in 3 studies [37,38,42] as a technique to de
termine the most optimal method where the quality score is as
signed to the segmentation result by a clinician, yet quality scoring 
criteria differed somewhat between studies. Based on the QS, all 3 
studies recommend SUV4.0, 1 study [38] also recommends MV2, and 
1 study [37] MV3. 

Other clinician-based analyses were performed by comparing 
manual segmentations (MAN) with different threshold approaches. 
Where 1 study [46] recommended the 41suvMax over other SUVmax 
thresholding methods, while 2 other studies [40,43] did not provide 
a recommendation. 

As an additional analysis, 3 studies [37,38,44] investigated the 
correlation between the segmentation thresholds approaches, and 
overall found the thresholding methods linearly correlated. 

3.2. MUST-segmenter implementation 

The MUST-segmenter loaded as a plugin tool into 3D Slicer is 
shown in Fig. 4. A patient’s PET/CT image is displayed in axial, cor
onal and sagittal representations. The MUST-segmenter functional
ities are available on the left side, including options to perform 
segmentation with fixed, relative, and majority voting-based 
methods, followed by calculation of MATVs. An example segmen
tation result retrieved with SUV4.0 is displayed over the PET/CT 
images (green) and in 3D view (upper right), with the corresponding 
seed points. 

A complete instruction on how to use the MUST-segmenter is 
available at the repository. 

To get an indication of the time to perform segmentation, 1 pa
tient with 12 lesions was segmented with 2 fixed thresholds and 1 
relative threshold, using the MUST-segmenter and using ACCURATE  
[47], a tool utilized in the most recent studies [35–38]. The total 
segmentation time using MUST-segmenter was 5 minutes and 
56 seconds, compared to 28 minutes and 56 seconds using ACCURATE. 

Fig. 3. Flowchart of literature search, resulting in a final selection of 12 studies that were included in the review.  

K. Keijzer, A.G.H. Niezink, J.W. de Boer et al. Computational and Structural Biotechnology Journal 21 (2023) 1102–1114 

1106 



Ta
bl

e 
1 

O
ve

rv
ie

w
 o

f 
st

ud
ie

s 
in

cl
ud

ed
 f

or
 l

it
er

at
ur

e 
re

vi
ew

.  
   

   
   

A
u

th
or

, Y
ea

r 
Ly

m
ph

om
a 

Ty
pe

 
N

o.
 P

at
ie

n
ts

 
So

ft
w

ar
e 

U
se

d 
EA

N
M

 
A

cc
re

di
te

d 
SU

V
 S

eg
m

en
ta

ti
on

 T
h

re
sh

ol
ds

 
N

o.
 O

bs
er

ve
rs

 
Ev

al
u

at
io

n
 

Cr
it

er
ia

 
R

ec
om

m
en

de
d 

Se
gm

en
ta

ti
on

 
M

et
h

od
  

Fe
rr

án
de

z,
 2

02
2 

[3
5]

 
D

LB
CL

, H
L,

 
TC

L,
 P

TL
D

 
19

 
A

CC
U

RA
TE

 
Ye

s 
SU

V
2.

5,
 S

U
V

4.
0,

 4
1s

uv
M

ax
, A

T,
 M

V
2,

 M
V

3 
1 

IM
G

* 
SU

V
4.

0 
an

d 
M

V
2 

Ee
rt

in
k,

 2
02

2 
[3

6]
 

D
LB

CL
 

10
0 

A
CC

U
RA

TE
 

Ye
s 

SU
V

2.
5,

 S
U

V
4.

0,
 4

1s
uv

M
ax

, A
T,

 M
V

2,
 M

V
3 

1 
PR

O
G

 
- 

Zw
ez

er
ijn

en
, 

20
21

 [
37

] 
D

LB
CL

 
45

 
A

CC
U

RA
TE

 
N

o 
SU

V
2.

5,
 S

U
V

4.
0,

 4
1s

uv
M

ax
, A

T,
 M

V
2,

 M
V

3 
3 

Q
S*

 
M

V
3 

an
d 

SU
V

4.
0 

Ba
rr

in
gt

on
, 

20
21

 [
38

] 
D

LB
CL

 
13

8 
A

CC
U

RA
TE

 
Ye

s 
SU

V
2.

5,
 S

U
V

4.
0,

 4
1s

uv
M

ax
, A

T,
 M

V
2,

 M
V

3 
2 

PR
O

G
, Q

S*
 

SU
V

4.
0 

an
d 

M
V

2 

Eu
de

, 2
02

1 
[3

9]
 

D
LB

CL
 

23
9 

PL
A

N
ET

 O
nc

o 
Ye

s 
SU

V
2.

5,
 4

1s
uv

M
ax

, l
iv

er
Su

vM
ax

, P
ER

CI
ST

, A
T 

2 
O

S,
 P

FS
, O

BS
* 

SU
V

2.
5,

 l
iv

er
Su

vM
ax

, P
ER

CI
ST

 
W

ei
sm

an
, 2

02
0 

[4
0]

 
D

LB
CL

, H
L 

90
 

M
IM

 s
of

tw
ar

e,
 

M
A

TL
A

B 
N

o 
40

su
vM

ax
, 5

0s
uv

M
ax

, A
T,

 a
ct

iv
e 

co
nt

ou
ri

ng
, c

lu
st

er
in

g,
 

de
ep

 l
ea

rn
in

g 
2 

M
A

N
 

- 

G
uz

m
án

 O
rt

iz
, 

20
20

 [
41

] 
D

LB
CL

 
34

 
Sy

ng
o.

V
ia

 
N

o 
SU

V
2.

5,
 4

0s
uv

M
ax

, P
ER

CI
ST

 
2 

O
S*

 , 
PF

S*
 

SU
V

2.
5 

Bu
rg

gr
aa

ff
, 

20
20

 [
42

] 
D

LB
CL

 
12

 
A

CC
U

RA
TE

 
N

o 
SU

V
2.

5,
 S

U
V

4.
0,

 4
1s

uv
M

ax
, A

T,
 M

V
2,

 M
V

3,
 S

U
V

4.
0 

an
d 

vo
lu

m
e 

≥ 
3c

c 
(f

ul
ly

 a
ut

om
at

ed
), 

SU
V

4.
0 

+ 
vo

lu
m

e 
≥ 

3c
c 

 
+ 

m
an

ua
l 

tu
m

or
 a

dd
it

io
ns

 

3 
Q

S*
 , 

O
BS

* 
Fu

lly
 a

ut
om

at
ed

 s
eg

m
en

ta
ti

on
 w

it
h 

SU
V

4.
0 

an
d 

tu
m

or
 v

ol
um

e 
≥ 

3c
c 

G
or

m
se

n,
 2

01
9 

[4
3]

 
D

LB
CL

 
11

8 
H

er
m

es
 

N
o 

SU
V

2.
5,

 4
1s

uv
M

ax
, v

is
ua

l 
as

se
ss

m
en

t 
3 

O
S,

 P
FS

, 
O

BS
, M

A
N

 
- 

Ily
as

, 2
01

8 
[4

4]
 

D
LB

CL
 

14
7 

H
er

m
es

, P
ET

TR
A

 
N

o 
SU

V
2.

5,
 4

1s
uv

M
ax

, P
ER

CI
ST

 
2 

O
S,

 P
FS

, 
O

BS
* 

, S
O

FT
* 

SU
V

2.
5 

Co
tt

er
ea

u,
 2

01
7 

[4
5]

 
PT

CL
 

10
6 

PL
A

N
ET

 O
nc

o 
Ye

s 
41

su
vM

ax
, A

T 
1 

O
S,

 P
FS

, R
EF

 
- 

M
ei

gn
an

, 2
01

4 
[4

6]
 

D
LB

CL
, H

L 
40

 
PE

TV
CA

R,
 

Im
ag

ys
 

Ye
s 

25
su

vM
ax

, 3
5s

uv
M

ax
, 4

0s
uv

M
ax

, 4
1s

uv
M

ax
, 

42
su

vM
ax

, 4
5s

uv
M

ax
, 5

0s
uv

M
ax

, 6
0s

uv
M

ax
 

2 
M

A
N

* 
41

su
vM

ax
 

A
T 

= 
A

da
pt

iv
e 

th
re

sh
ol

di
ng

 m
et

ho
ds

, D
LB

CL
 =

 D
if

fu
se

 l
ar

ge
 B

-c
el

l 
ly

m
ph

om
a,

 H
L 

= 
H

od
gk

in
 l

ym
ph

om
a,

 I
M

G
 =

 R
ob

us
tn

es
s 

ac
ro

ss
 i

m
ag

e 
re

co
ns

tr
uc

ti
on

 
m

et
ho

ds
, M

A
N

 =
 C

lin
ic

ia
n 

ba
se

d 
ev

al
ua

ti
on

 u
si

ng
 m

an
ua

l 
se

gm
en

ta
ti

on
s,

 O
BS

 =
 R

ob
us

tn
es

s 
ac

ro
ss

 o
bs

er
ve

rs
, O

S 
= 

O
ve

ra
ll 

su
rv

iv
al

, P
FS

 =
 P

ro
gr

es
si

on
 f

re
e 

su
rv

iv
al

, P
RO

G
 =

 P
ro

gr
es

si
on

 v
s 

no
n-

pr
og

re
ss

io
n,

 P
TC

L 
= 

Pe
ri

ph
er

al
 T

-c
el

l 
ly

m
ph

om
a,

 P
TL

D
 =

 P
os

t-
tr

an
sp

la
nt

 l
ym

ph
op

ro
lif

er
at

iv
e 

di
so

rd
er

, 
Q

S 
= 

Q
ua

lit
y 

sc
or

es
, S

O
FT

 =
 R

ob
us

tn
es

s 
ac

ro
ss

 s
of

tw
ar

e,
 T

CL
 =

 T
-c

el
l 

ly
m

ph
om

a 
* 

Re
co

m
m

en
de

d 
se

gm
en

ta
ti

on
 m

et
ho

d 
is

 b
as

ed
 o

n 
th

is
 c

ri
te

ri
on

  

K. Keijzer, A.G.H. Niezink, J.W. de Boer et al. Computational and Structural Biotechnology Journal 21 (2023) 1102–1114 

1107 



3.3. MATV assessment 

3.3.1. Patient cohort 
In the use-case cohort 68 DLBCL patients were included (Table 3). 

Pre-CAR T-cell therapy scans from two timepoints were selected, 
resulting in a total of 110 PET scans available for MATV analysis. 

3.3.2. MATV for the different threshold methods 
In Fig. 5, the MATVs are plotted per segmentation method. The 

median MATV ranged between 35 and 211 cc (Supplementary file 
B). Largest variability was observed for SUVbrain (IQR [64.56 − 
501.55 cc]) and smallest variability was retrieved with 41suvMax 
(IQR [10.62 − 86.72 cc]). MATVs of fixed thresholds decrease with 
increase of SUV threshold value (i.e., from SUV2.5 to SUV4.0), which 
translates to the majority voting methods. There is a large amount of 
variability between all relative methods, which was also observed 
for the fixed, relative, and majority voting methods. 

3.3.3. MATV correlations and differences 
MATVs were log-transformed to establish a normal distribution 

(Fig. 6). The vast majority of MATVs were significant different be
tween segmentation methods (paired t-test p  <  0.05). Only, the 
MATVs obtained with SUV4.0 and PERCIST methods were not sig
nificantly different from each other, as were those with liverSuvMax 
and MV2. Evaluation of the correlation plots reveals that the 
41suvMax differed the most compared to the other methods. The 
fixed methods were highly correlated, while the data points were 
placed further under the diagonal when the threshold increases, 
which was also observed in Fig. 5. Some MATV points were zero for 

the SUV3.0 and SUV4.0 methods, as no lesions had SUVs above the 
fixed threshold. 

3.3.4. Low- and high-MATV groups identification 
Two main MATV cut-off trends were found in the literature 

(Table 2), which were 200 and 500 cc. Percentages of patients 
classified as low- or high-MATV using these two cut-offs (n = 110) are 
displayed in Table 4. The least high-MATV patients are found with 
41suvMax, only 5% and 1%, whereas the other high-MATV patients 
percentages range from 33 − 51 (cut-off 1) and 11 − 25 (cut-off 2). 

For both cut-offs, there was a significant difference in low- and 
high-MATV patient proportions between all segmentation methods 
(Cochran's Q p-value < 0.0001). Pairwise comparisons showed sig
nificant differences between nearly all methods (Fig. 7). The 

Table 2 
MATV (cc) cut-offs per segmentation method to determine low- and high-MATV groups for progression free survival (PFS) and overall survival (OS) predictions, found in the 
literature.          

Study SUV2.5 41suvMax LiverSUVmax PERCIST  

PFS OS PFS OS PFS PFS OS  

Eude [39] 552  295  487 486  
Gormsen [43] 542 585 147 105    
Ilyas [44] 396, 401 458, 401 166 189  327 670 
Cottereau [45]  230 260    

Fig. 4. MUST-segmenter loaded into 3D Slicer. One patient's PET/CT images are shown with an example segmentation result using SUV4.0 (green). On the left side MUST- 
segmenter functionalities are shown, including the option to perform segmentation with different methods and extracting the corresponding MATVs. 

Table 3 
Patient Characteristics.     

Total (n = 68)  

Age, median (range) 61 (20 − 79) 
Sex, n (%)  

Male 47 (69.1) 
Female 21 (30.9) 

Ann Arbor stage, n (%)  
I 4 (5.9) 
II 8 (11.8) 
III 16 (23.5) 
IV 40 (58.8) 

Extranodal localizations, n (%)  
Yes 49 (72.1) 
No 19 (27.9) 
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41suvMax differs the most from all other methods, which is in 
concordance with the findings in Figs. 5 and 6. 

3.3.5. Segmentation results evaluation 
Example segmentation results created with the MUST-segmenter 

are shown in Fig. 8. Four tumors represented as maximum intensity 
projected SUV images (scale 0–10) with the corresponding FDG- 
tumor per SUV segmentation threshold. Tumor A shows consistent 
FDG uptake, tumor B shows high and low uptake, tumor C shows 
necrosis, thus having a central part with almost no uptake. Tumor D 
shows fluctuations in uptake. 

4. Discussion 

During the treatment of NHL patients, a wide range of options are 
available, especially in case of refractory or relapsed disease. 
Improving response and outcome predictions is therefore essential 
to further optimize and individualize treatment. The MATV metric 
has shown to be a prognostic factor in NHL [6–12,48]. However, 
there is currently no optimal method to determine MATV by seg
mentation of 18F-FDG PET images [18], resulting in utilization of a 
large variety of methods in clinical studies [19–24]. As NHL is often 
widespread, MATV extraction and research on semi-automated 
segmentation methods are labor-intensive processes. 

Several of the reviewed studies advised various thresholding 
methods to utilize in future research [35,37–39,41,42,44,46], basing 
their recommendations on different evaluation criteria. Studies that 
recommended SUV2.5 over relative thresholding methods [39,41,44] 
did not include SUV4.0 in their evaluation, which if included, was 
often preferred [35,37,38,42]. Interestingly, the 41suvMax method 
recommended by the EANM for solid tumors [15] was included in all 
studies, but only the preferred method in a single study, and was in 
that study based on comparisons to manual segmentations by a 
clinician [46]. Other potentially promising relative thresholding 
methods, such as the liver-based threshold methods (liverSuvMax, 
PRECIST), were limitedly investigated, yet recommended by one 
study [39]. 

The predictive performance of survival or disease progression 
was evaluated in relatively small patient cohorts for modelling 
(median = 118) [36,38,39,41,43–45], which might make the perfor
mance outcomes nongeneralizable. Hence, evaluation of segmenta
tion methods for the predictive performance needs to be 
investigated in larger NHL patient cohorts in the future. 

Optimal cut-offs to determine high-MATV patient groups dif
fered between segmentation methods in 4 studies [39,43–45]. 
These cut-offs were only applied to their corresponding methods, 
resulting in no inherent value since there is a need for a generic 
cut-off independent of the method. This indicates that determi
nation of high-MATV groups is still dependent on the segmentation 
methodology and suggests the need for a standardized method to 
measure MATV. 

Ferrández et al. [35] recommended SUV4.0 based on robustness 
among image reconstruction methods, yet they included patients 
with four different lymphoma types, which may influence the con
clusion. Barrington et al. [38] observed no differences based on 
image reconstruction. Ilyas et al. [44] evaluated robustness across 
software platforms, which resulted in the expected conclusion that 
segmentation algorithms are similar among software. 

Recommendations based on quality scores [37,38,42], subjective 
observations from clinicians, suggested that the SUV4.0 was visually 
the best performing method. Nevertheless, the studies also showed 
that these measurements are sensitive to inter-observer variability; 
moreover, the visual best method may not always have the best 
predictive performance, as indicated by Eertink et al. [36]. 

In conclusion, there is no consistent recommended thresholding 
method based on the literature of PET-based segmentation method 
comparisons in predictive performance, robustness, or clinician- 
based evaluation. The best method may also depend on the specific 
purpose of the segmentation utilization (e.g., whether this is for 
prediction or segmentation for radiation). Thus, the need for a 
standardized FDG-PET segmentation method remains. Although 
there are several segmentation software available, they do not 
contain all the threshold methods discovered in the literature re
view. The MUST-segmenter presented in the current study includes 

Fig. 5. Boxplots displaying the median and lower- and upper-quartiles for metabolic active tumor volumes (MATVs) retrieved with every segmentation method (n = 110 per 
boxplot). 
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these methods with the ability to apply them at once, hence research 
to find an optimal segmentation method can be facilitated. 

The MUST-segmenter is implemented as an open-source exten
sion for 3D Slicer, where users can extract MATV (and other image 
biomarkers) based on multiple SUV thresholding methods by a one- 
click approach. Avoidance regions can be excluded from the seg
mentation results, without the need to manually remove physiolo
gical uptake areas, which was frequently required in our reviewed 

studies [35,36,38,43,44]. The first user-experience of the MUST- 
segmenter indicated that it is an efficient and user-friendly seg
mentation tool, as no manual alterations were needed, and multi- 
threshold segmentation can be applied to larger patient cohorts with 
multiple tumor localizations. 

Although the MUST-segmenter is a free, accessible application, 
some limitations considering time-efficiency come with it. Most 
important is that the MUST-segmenter is implemented in 3D Slicer, 

Fig. 6. Distributions, correlations, and paired t-test results (p-values) of log-transformed metabolic active tumor volumes (MATVs) retrieved with MUST-segmenter using different 
segmentation thresholds. 
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requiring a learning curve before the ability to use the actual tool. 
The segmentation process itself can be cumbersome in the case of 
widespread disease, as it is necessary to place seeds on all the 
identified tumors; however, this is a general drawback in seed-based 
segmentation. As found by our indication of segmentation process 
time, for a patient with 12 lesions it takes approximately 6 minutes 
to create segmentations and extract MATV using 3 SUV thresholds, 
compared to 29 minutes using ACCURATE. 

No inter-observer variability was included in the current study, 
which is a well-known problem in manual delineations due to the 
bias in visual assessment of FDG uptake compared to differences in 
background levels, also referred to as contrast illusion [5]. However, 
this less of an issue for objective segmentation methods. 

The MATVs determined in the cohort of NHL patients sig
nificantly differed among almost all methods, demonstrating the 
differences in SUV thresholding methods. The 41suvMax method 
showed the largest difference compared to other methods and 
produced the smallest MATVs (median 35 cc), which was also stated 
by Barrington et al. [38] in a DLBCL patient cohort. The comparisons 

of proportions of low- and high-MATV patient groups determined 
with two cut-offs, 200 and 500 cc, showed similar results. Nearly all 
proportions differed from each other meaning that the different 
approaches of determining MATV have a clinical impact. Herewith, 
the 41suvMax differed the most from the other methods; due to this 
method creating the lowest MATVs, patients included in the high- 
MATV group were minimal. A study by Driessen et al. [49] found a 
largest MATV retrieved with 41suvMax compared to other thresh
olding methods, explained by lower SUV values in their HL patient 
cohort resulting into a lower threshold. Due to common tumor 
heterogeneity in NHL, the 41suvMax method may not be very ap
plicable in NHL. 

Boxplots of MATVs (Fig. 5) demonstrated that distributions of 
liverSuvMax and MV2 are very similar, which also holds for SUV4.0, 
PERCIST and MV3. Similarity between SUV4.0 and MV3 can be ex
plained by the fact that the majority voting methods, that are based 
on both SUV2.5 and SUV4.0, will always include all voxels identified 
by SUV4.0 as they are always included in SUV2.5 tumor segmenta
tion [35–38,42]. Furthermore, the MATVs showed visually high 
correlation among the different threshold methods (Fig. 6), as was 
found in 3 of the reviewed studies [37,38,44]. Both fixed thresh
olding methods and majority voting methods were strongly corre
lated, as expected. 

The MUST-segmenter architecture allows for additions and ad
justment, making it adaptable to future unforeseen needs. For ex
ample, the MUST-segmenter could be further optimized by including 
CT images in tumor segmentation. SUV thresholding segmentation 
causes inclusion of only high-uptake tumor parts, while it may miss 
tumor regions with low FDG-PET uptake, such as necrotic regions 
(Fig. 8). Depending on the application of the segmentation, this can 
be important to include. More research is needed to determine 
whether exclusion of low FDG-avid tumor regions matter for NHL 
outcome predictions [50]. To incorporate CT information in the 
segmentation, deep learning approaches are considered promising  
[51]. Additionally, depending on the outcome, different segmenta
tion methods could be optimal [40], but also alternatives to the 

Table 4 
Percentages of patients classified as low- and high- metabolic active tumor volume 
(MATV) (total n = 110) identified with two MATV cut-offs (200 and 500 cc).        

n = 110  

Cut-off 1 
200 cc 

Cut-off 2 
500 cc  

Low-MATV High-MATV Low-MATV High-MATV  

SUV2.5 49 51 77 23 
SUV3.0 54 46 84 16 
SUV4.0 65 35 89 11 
41suvMax 95 5 99 1 
liverSuvMax 55 45 81 19 
PERCIST 77 33 89 11 
SUVbrain 52 48 75 25 
MV2 54 46 82 18 
MV3 64 36 88 12 

Fig. 7. Significance (McNemar’s test) heatmap of differences between low- and high-MATV patient proportions determined with all segmentation methods, using two cut-offs 
(200 and 500 cc). 
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Fig. 8. Example tumor segmentation results for multiple SUV thresholds, retrieved with the MUST-segmenter. Four tumors represented as maximum intensity projected SUV 
images (scale 0–10) with corresponding segmentation results as a contour. 
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MATV could be of interest. Other 18F-FDG PET features for lymphoma 
are reported for outcome predictions and the segmentation method 
may also have an impact on these outcomes [52,53]. As already in
dicated by the MATV cut-off analysis, the segmentation method 
influences the proportions of patients classified in the low- and 
high-MATV groups. More features can be extracted via the MUST- 
segmenter and it has the functionality to add more. 

5. Conclusions 

Based on the systematic literature review, there is no preferred 
segmentation method for patients with NHL available. The MUST- 
segmenter makes it possible to extract MATVs using different 
thresholding methods. Significant differences in MATVs between the 
segmentation methods were observed, suggesting differences in 
outcome prediction of target delineation results. To further optimize 
treatment in NHL patients, research on finding an optimal seg
mentation method to predict response and treatment outcomes 
needs to be continued, and can be more readily researched with the 
resulting MUST-segmenter. 
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