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A B S T R A C T   

Background: Hemolytic uremic syndrome (HUS) is a life-threatening complication of Shiga toxin-producing 
Escherichia coli (STEC) infection. The relationship between STEC exposure and severity of clinical outcomes is 
not well documented. We examined whether direct contact with farm animals increased the likelihood of HUS 
among Indiana residents diagnosed with STEC. 
Methods: Exposure data for laboratory-confirmed STEC cases among Indiana residents during 2012–2018 were 
retrieved. Logistic regression and mediation analysis were performed to determine the extent to which a history 
of direct contact with farm animals was associated with post-diarrheal HUS independent of age and mediated by 
stx2 gene presence. 
Results: A total of 784 STEC cases were retrieved. Of these, 46 (6%) developed HUS. Complete exposure data 
were available for 600 (77%) cases. A total of 24 (52%) HUS patients reported direct contact with farm animals, 
while 114 (21%) STEC patients who did not develop HUS reported this exposure. Among all STEC cases, HUS 
was associated with direct farm animal contact after adjusting for age (OR = 3.40, 95% CI: 1.81, 6.40). 
Detection of stx2 genes mediated 12% of the association between farm animal contact and HUS. 
Conclusions: Direct farm animal contact was a risk factor for development of HUS among laboratory-confirmed 
STEC cases, independent of stx2 presence. Direct farm animal contact should be considered a potential predictor 
of progression to HUS when patients present for care and the mechanism for its effect on virulence investigated.   

1. Introduction 

Hemolytic uremic syndrome (HUS) is a serious condition char-
acterized by hemolytic anemia, thrombocytopenia, and acute renal 
dysfunction. [1] HUS can be precipitated by infection with several 
different bacterial enteric pathogens; the leading cause of post-diar-
rheal HUS in young children is Shiga toxin-producing Escherichia coli 
(STEC). [2] E. coli O157:H7 is the STEC serotype most commonly as-
sociated with HUS. Approximately 15% of children younger than five 
years of age and 6% of people in all age groups who are diagnosed with 
E. coli O157:H7 progress to HUS. Dialysis is required in over 50% of 
children diagnosed with HUS and 3–5% of cases result in death. [3] 
Although infection with most non-O157 serotypes of STEC is less likely 
to result in severe clinical consequences, HUS has been observed in 

these cases. [2] 
STEC bacteria are transmitted fecal-orally. [4] Healthy ruminant 

animals, including cattle, goats, sheep, and deer, are natural reservoirs 
for STEC. Because ruminants do not have specific cell receptors that 
allow Stx to enter endothelial cells, they carry STEC without experi-
encing illness. [5] STEC can be transmitted to humans in water, food, 
soil, or surfaces that have been contaminated with animal feces. [6] 
Incidence of both O157 and non-O157 STEC have seasonal variability, 
with disease incidence peaking in the summer months. [7] 

Shiga toxin (Stx) is the principal virulence factor associated with the 
severe sequelae of STEC infections and is encoded by stx1 and stx2 
genes. [8] Both Stx types have the same mode of action but are anti-
genically distinct. [9] Presence of stx2 variants has been more com-
monly associated with HUS onset. [10,11] The high risk of HUS 
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associated with Stx2 production is likely due to the toxin's greater 
ability to pass through epithelial cells of the intestine and enter the 
bloodstream, where it has toxic effects on the renal endothelium and 
blood cells. [12] 

The severity of clinical outcomes as a result of STEC infections has 
not previously been attributed to specific sources of exposure. An as-
sociation between exposure source and virulence may allow clinicians 
to better predict the likelihood of progression to HUS. This information 
would also enable public health efforts to target exposure sources with 
the greatest impact on severe disease. This may be particularly relevant 
in states with greater animal agriculture operations. As of 2017, the 
state of Indiana was home to 56,649 farming operations. There were 
17,014 farms with 844,187 cattle and calves. There were 11,753 farms 
with beef cows and 2049 farms with dairy cows. Approximately 90% of 
farms with cattle had less than 100 animals per farm and 0.4% had 
1000 or more animals per farm. [13] STEC prevalence has been ob-
served to be higher in beef cows than in dairy cows, and smaller farms 
have been associated with fecal shedding of Shiga toxin-encoding 
bacteria when compared to larger herds, likely due to variation in 
biosecurity practices. [14,15] 

We conducted a population-based study in Indiana to examine the 
effects of direct contact with farm animals and livestock on HUS onset, 
overall and independent of potential mediating effects by stx2 detec-
tion. 

2. Methods 

Laboratory-confirmed STEC cases reported to the Indiana State 
Health Department (ISDH) from 2012 to 2018 were retrieved for ana-
lysis. Indiana laboratories are required to forward positive STEC iso-
lates to the ISDH laboratory for serotyping immediately upon identifi-
cation, and hospitals are required to report confirmed cases of HUS to 
the ISDH immediately upon diagnosis. [16] Confirmed STEC cases were 
determined based on the national surveillance case definition applic-
able to the year of disease notification. Confirmatory laboratory evi-
dence included either isolation of E. coli O157:H7 or isolation of other 
non-O157 strains supplemented by stx detection or evidence of Stx 
production. [17–19] Among the STEC cases, HUS cases were classified 
according to the national surveillance case definition, which requires 
acute illness diagnosed as HUS or thrombotic thrombocytopenic pur-
pura (TTP) accompanied by anemia and renal injury. [1] Medical re-
cords were reviewed to verify clinical diagnoses of HUS for all HUS 
cases reported to ISDH. 

All STEC patients were interviewed at the time of case reporting to 
determine potential sources of exposure. Patients were asked if they 
had direct contact with farm animals and livestock in the two weeks 
prior to illness onset, and if so, what type of animal. 

We summarized cases by serotype and stx2 detection and compared 
the seasonality of farm animal contact between patients who did and 
did not develop HUS. Using logistic regression, we estimated the effect 
of direct contact with farm animals and livestock on HUS onset, ad-
justed for age as a continuous variable. Regression coefficients were 
exponentiated to obtain odds ratios (ORs), and exact 95% confidence 
intervals (CIs) were calculated. 

We used mediation analysis to measure the average direct effect of 
farm animal contact on HUS independent of potential mediation by stx2 
(Fig. 1). [20] The direct effect was calculated as the difference in the 
potential HUS outcome between those with and without animal ex-
posure for a given stx2 status, assuming no interaction between the 
exposure and mediator. The indirect, or mediated, effect was calculated 
as the difference in the potential HUS outcome between those with and 
without stx2 for a given animal exposure status. The average direct and 
indirect effects were calculated by averaging across the direct and in-
direct effects for both levels of stx2 and animal exposure status, re-
spectively. We also calculated the average causal mediated effect and 
percent of the total effect mediated. CIs were estimated using 10,000 

bootstrap replicates. Data were analyzed using the STATA/IC™ Soft-
ware Suite version 16.0. 

3. Results 

A total of 784 confirmed STEC cases were reported during the study 
period. Of these, 46 (6%) developed HUS. There were 176 STEC pa-
tients aged ≤5 years. Of these, 26 (15%) developed HUS (Table 1). 

The most commonly reported serotype was E. coli O157 (Table 2). 
Among all patients with confirmed E. coli O157 only, 41 (10%) devel-
oped HUS; among E. coli O157 patients who were children ≤5 years, 26 
(23%) developed HUS. All HUS cases in patients ≤5 years were attri-
butable to E. coli O157. By contrast, 1% of E. coli non-O157 patients 
developed HUS, and none were ≤ 5 years old. Of E. coli O157 strains, 
92.6% expressed stx2 (Table 2).  

Among all STEC cases, information regarding exposure to farm 
animals or livestock was available for 600 (77%). The distributions of 

Fig. 1. Directed acyclic graph of hypothesized relationship between farm 
animal contact, age, stx2 genes, and HUS. The variable in yellow with the 
“►” symbol inside the oval is the exposure variable. The variable in blue with 
the letter “I” inside the oval is the outcome variable. Variables in blue are 
antecedents of the outcome variable. Abbreviations: HUS, Hemolytic Uremic 
Syndrome; stx2, Shiga toxin 2. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Demographic Distribution of Shiga Toxin-Producing Escherichia coli (STEC) 
cases, by Post-diarrheal Hemolytic Uremic Syndrome (HUS) Status — Indiana, 
2012–2018.        

STEC Patients 

Characteristic NO HUS HUS   

n (%) n (%) 
Age group     
≤5 years 150 (20.3) 26 (56.5) 
6–10 years 71 (9.6) 10 (21.7) 
11–18 years 112 (15.2) 6 (13.0) 
19–59 years 315 (42.7) 2 (4.3) 
≥60 years 90 (12.2) 2 (4.3) 
Female sex 422 (57.2) 25 (54.3) 
Race     
White 477 (64.6) 39 (84.8) 
Black or African-American 28 (3.8) –  
Asian 15 (2.0) 1 (2.2) 
Native American or Alaska Native 1 (0.14) –  
Other 9 (1.2) –  
Unknown 208 (28.2) 6 (13.0) 

Abbreviations: STEC, Shiga toxin-producing E. coli; HUS, Hemolytic Uremic 
Syndrome.  
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age, sex, race, serotype, and stx2 detection were approximately equal in 
subjects with and without available animal exposure information (See 
Supplementary Table 1). Of those with available exposure information, 
138 (23%) reported animal exposure, of whom 24 (17%) progressed to 
HUS. Of the 462 cases without direct animal contact, 22 (5%) devel-
oped HUS. Among children under the age of 5, 40% of those with re-
ported farm animal contact developed HUS. Among children aged 6–10, 
28% of those with reported farm animal contact developed HUS 
(Fig. 2). 

Incidence of STEC increased in summer months with a peak in July. 
STEC cases with reported farm animal contact also peaked in July. 
However, HUS was proportionally most common among STEC cases 
with farm animal contact in the fall months; at its maximum in 
September, 30% of STEC cases with farm animal contact progressed to 
HUS (Fig. 3). The only months when the incidence of HUS among STEC 
cases without farm animal contact exceeded that among cases with 
farm animal contact were January-March, when very few cases re-
ported animal contact. 

Overall, farm animal contact was significantly associated with HUS 
onset after adjusting for age (OR 3.40; 95% CI 1.81, 6.40) (See Table 3). 
Both direct (independent of stx2) and indirect (mediated by stx2) effects 
were  >  0 (See Supplementary Table 2). For the direct effect, we es-
timated the odds of HUS were 3.13 (95% CI 1.64, 5.98) times higher for 

cases with farm animal contact. In that model, the odds of HUS were 
5.00 (95% CI 1.91, 13.11) times higher for cases in whom stx2 was 
detected. The proportion of the total effect mediated by stx2 was 12.2% 
(95% CI 7.03%, 24.2%) (See Supplementary Table 2). 

4. Discussion 

The odds of HUS were over three times higher among STEC cases 
with farm animal contact than those without (OR 3.40; 95% CI 1.81, 
6.40). We found that only 12% of this association was mediated by stx2, 
yielding a direct effect of OR 3.13 among Indiana residents diagnosed 
with STEC. A greater proportion of younger children with farm animal 
contact developed HUS. HUS was proportionally most common among 
STEC cases with animal contact in the fall, but absolute numbers were 
highest in the summer months. 

Farm animal contact is a well-known risk factor for STEC infection. 
[6,21,22] Ours is the first study of which we are aware that demon-
strates a higher risk for developing HUS after direct exposure to farm 
animals and livestock. Clinical measures such as hemoglobin, leukocyte 
count and creatinine have been used to predict HUS development and 
subsequent outcomes. [23,24] Given the results of our study, measures 
of exposure such as farm animal contact and seasonality may also be 
considered when determining the prognosis for STEC cases. 

Additionally, this information could be provided to public health 
agencies when healthcare providers report HUS, expediting the process 
of identifying potential sources of exposure. Rapid notification of en-
teric disease outbreaks is essential for effective response, identification 
of the source of contamination, and prevention of further morbidities. 
[25] Between 2009 and 2017, there were 57 animal-associated out-
breaks of STEC reported to the National Outbreak Reporting System, 
resulting in 563 illnesses, 113 hospitalizations, and 3 deaths, demon-
strating the need for providers to promptly recognize and report cases 
of STEC and HUS suspected to be associated with animal contact. [26] 
Additional research is needed to compare clinical outcomes of animal- 

Table 2 
STEC Serotype and Detection of stx2 genes among STEC cases, by HUS status — 
Indiana, 2012–2018.            

STEC Patients  

No HUS 
(n = 738) 

HUS 
(n = 46)   

Serotype 
n (%) 

stx2 detected 
n (%) 

Serotype 
n (%) 

stx2 detected 
n (%) 

O157 363 (49.2) 336 (92.6) 41 (89.1) 38 (92.7) 
O103 112 (15.2) 11 (9.8) 0 (−-) – – 
O26 92 (12.5) 8 (8.7) 1 (2.2) – – 
O111 80 (10.8) 15 (18.8) 1 (2.2) 0 (0.0) 
O45 32 (4.3) 5 (15.6) 0 (−-) – – 
O145 25 (3.4) 16 (64.0) 1 (2.2) 0 (0.0) 
O121 18 (2.4) 15 (83.3) 2 (4.3) 2 (100) 
O113 1 (0.1) 1 (100.0) 0 (0.0) – – 
O28 1 (0.1) 1 (100.0) 0 (0.0) – – 
O50 1 (0.1) 0 (0.0) 0 (0.0) – – 
O69 1 (0.1) 0 (0.0) 0 (0.0) – – 
O76 1 (0.1) 0 (0.0) 0 (0.0) – – 
O8 1 (0.1) 1 (100.0) 0 (0.0) – – 
O5 1 (0.1) 0 (0.0) 0 (0.0) – – 
O103 & O111 2 (0.3) 1 (50.0) 0 (0.0) – – 
O103 & O26 2 (0.3) 0 (0.0) 0 (0.0) – – 
O103 & O121 1 (0.1) 0 (0.0) 0 (0.0) – – 
O103 & O45 1 (0.1) 0 (0.0) 0 (0.0) – – 
O45 & O26 1 (0.1) 1 (100.0) 0 (0.0) – – 
O91 & O39 1 (0.1) 0 (0.0) 0 (0.0) – – 
O118 & O111 1 (0.1) 1 (100.0) 0 (0.0) – – 

Abbreviations: STEC, Shiga Toxin-Producing Escherichia coli; HUS, Hemolytic 
Uremic Syndrome; stx2, Shiga toxin 2 genes.  

Table 3 
Association Between Farm Animal Contact and HUS adjusted for age (Total 
Effect) and independent of the mediating effects of stx2 (Direct Effect)— 
Indiana, 2012–2018.       

HUS Total Effect Direct Effect  

OR 95% CI OR 95% CI  

Farm Animal Contact 3.40 (1.81, 6.40) 3.13 (1.64, 5.98) 
stx2 –  5.00 (1.91, 13.11) 
Age 0.94 (0.92, 0.97) 0.94 (0.92, 0.97) 

Abbreviations: OR, Odds Ratio; CI, confidence interval; stx2, Shiga toxin 2.  

Fig. 2. Age Distribution of STEC and HUS by Known Farm Animal Contact 
and Percent HUS by Exposure Status. Patients with known farm animal ex-
posure information were used to calculate the percent of patients who devel-
oped HUS by age by exposure status (n = 600). The labeled percentages re-
present the percent of patients that developed HUS corresponding with the bar 
underneath. The majority of patients aged 5 years under and aged 6–10 years 
who developed HUS reported direct farm animal contact. Abbreviations: HUS, 
Hemolytic Uremic Syndrome; STEC, Shiga toxin-producing E. coli; F, Farm 
Animal Contact; NF, No Farm Animal Contact. 
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associated STEC outbreaks in the United States to outbreaks of STEC 
associated with other sources. 

Our mediation analysis demonstrated that only a small portion of 
the association between animal contact and HUS is due to stx2, im-
plying the importance of other mechanisms. One potential mechanism 
is the dose received via direct animal contact. The pathogenicity of 
STEC is determined by both host and virulence factors, and STEC has a 
relatively low infectious dose of 10–100 CFU. [27,28] In cattle, E. coli 
O157 typically adhere to and colonize the recto-anal junction of the 
gastrointestinal tract, which leads to pathogen shedding and sub-
sequent contamination of the surrounding environment. [29] The term 
“super-shedder” is defined as shedding ≥104 CFU/g of feces; cattle that 
are super-shedders are capable of spreading significantly more patho-
gens when compared to other similar hosts. [30,31] Moreover, in-
creased stress on animals exhibited in public settings, which may in-
clude transportation, confinement to limited physical space, 
overcrowding, over-handling, or comingling, can increase shedding and 
increase the risk of spreading harmful pathogens to people. [32] The 
association between animal contact in these settings and HUS should be 
studied. Several studies have been conducted to categorize STEC ser-
otypes and virulence factors in ruminant animals, although few have 
compared the distribution of virulence factors in animals in public 
contact settings with free-range animals. [33–35] Analysis of feces 
collected from ruminant animals at agricultural events such as fairs, 
festivals, and petting zoos could help characterize both the pathogen 
load being shed into the surrounding environment and the distribution 
of known virulence factors in these settings, such as detection of stx2c 

variants and activation of eae genes, that may inform pathogenicity of 
STEC strains. [36–38] 

The proportion of HUS patients in our Indiana dataset diagnosed 
with E. coli O157 (10%) was on the higher limit of estimates reported in 
the literature (5–10%). [39] We also observed a higher proportion of 
HUS cases among patients ≤5 years with confirmed E. coli O157 (23%) 
when compared with previous studies (14–15%). [3,40] This may be 
explained by our use of the CSTE case definition, which has been shown 
to overestimate the burden of post-diarrheal HUS. [41] 

In this study, animal exposure may have been misclassified. “Direct 
contact” may have been interpreted literally by respondents, even 
though contact with animal feces can occur without coming into phy-
sical contact with an animal. From a review of the comments sections in 

the surveillance data, some case investigators noted that patients who 
did not report direct animal contact did report consuming home-raised 
and home-butchered ground beef, visiting petting zoos, farms, or an-
imal barns at state or local fairs, and residing near farms. This indicates 
that animal exposure may be underreported and/or underrecognized. 
Additionally, location of animal exposure was not documented in all 
case investigations during the study period precluding analysis of this 
characteristic. Location information would allow us to compare clinical 
outcomes among patients with exposures at agritourism events to pa-
tients who had contact with free range animals. Future studies may 
examine this. 

5. Conclusions 

Our results suggest that, among STEC cases, direct exposure to farm 
animals and livestock was a risk factor for HUS. Only a small portion of 
this association is mediated by stx2, suggesting the existence of other 
important mechanisms. This relationship between exposure source and 
severity of clinical outcomes has not been previously documented. 
Exposure variables, such as farm animal contact and seasonality, should 
be considered by clinicians when establishing the prognosis for STEC 
patients. Operators of venues allowing direct contact between farm 
animals and members of the public should take precautions to prevent 
transmission of STEC. 
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