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Abstract: Ginsenoside Ro (Ro), a major saponin derived and isolated from Panax ginseng C.A. Meyer,
exerts multiple biological activities. However, the anti-tumour efficacy of Ro remains unclear because
of its poor in vitro effects. In this study, we confirmed that Ro has no anti-tumour activity in vitro. We
explored the anti-tumour activity of Ro in vivo in B16F10 tumour-bearing mice. The results revealed
that Ro considerably suppressed tumour growth with no significant side effects on immune organs
and body weight. Zingibroside R1, chikusetsusaponin IVa, and calenduloside E, three metabolites of
Ro, were detected in the plasma of Ro-treated tumour-bearing mice and showed excellent anti-tumour
effects as well as anti-angiogenic activity. The results suggest that the metabolites play important
roles in the anti-tumour efficacy of Ro in vivo. Additionally, the haemolysis test demonstrated that Ro
has good biocompatibility. Taken together, the findings of this study demonstrate that Ro markedly
suppresses the tumour growth of B16F10-transplanted tumours in vivo, and its anti-tumour effects
are based on the biological activity of its metabolites. The anti-tumour efficacy of these metabolites is
due, at least in part, to its anti-angiogenic activity.
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1. Introduction

Skin cancer is a common type of cancer with an increasing incidence rate and public health
burden [1]. As the most aggressive form of skin cancer, melanoma is a devastating disease as it is
highly metastatic and has a poor prognosis once metastasis has occurred; there is no therapy that
has consistently improved overall survival in patients with metastatic melanoma [2,3]. Melanoma
originates from melanocytes, specialised pigmented cells found in the epidermis [4]. Patients with
this disease have an increased risk of developing subsequent primary melanoma [5]. Its incidence
has increased faster than that of any other cancer type during recent decades. In 2018, 287,723 new
cases were diagnosed, with 60,712 associated deaths around the world [6]. National Cancer Institute’s
Surveillance, Epidemiology, and End Results (SEER) is an authoritative source for cancer statistics in
the United States. According to the SEER database, malignant melanoma is the fifth most common
cancer for both men and women, with a rising incidence and an estimated 96,480 new cases in 2019
in the United States alone [7]. Therefore, development of potential treatments for melanoma is an
important clinical problem.

Chemotherapy is one of the most effective approaches to cure malignant melanoma, but its toxicity
and the development of drug resistance represents important limits in determining its efficacy [8].
Enucleation can significantly worsen a melanoma patient’s quality of life, considering their poor
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prognosis and high fees [9]. In addition, indications of radiotherapy are currently reduced, since
melanoma is traditionally considered to be a radioresistant tumour [10]. Therefore, the development
of novel agents and strategies for malignant melanoma has become a priority and an important global
medical issue. Accordingly, there is a need to identify alternative approaches that can improve survival
and quality of life.

Natural compounds derived from potential herbs were able to effectively interfere with tumour
progression, inhibit angiogenesis, and block metastasis [11]. Due to its affordability and good
therapeutic efficacy, natural products have garnered increasing attention as cancer treatments [12,13].
Natural products could be used as adjuvants to existing treatments to improve efficacy and/or reduce
drug-induced toxicity [14]. These compounds can be clinically used on their own or in combination with
other natural products or drugs [15]. The therapeutic potential in melanoma growth and metastasis
has been demonstrated for several species of natural compounds including alkaloids, polyphenols,
vitamin-related compounds, terpenoids, peptides, and herbal extracts [16].

Ginseng (Panax ginseng C.A. Meyer) is traditionally used as an herbal medicine in Far Eastern
countries and has gained popularity in Western countries in recent decades [17]. It is also frequently used
as tonics and dietary supplements [18]. Ginsenosides are the main bioactive ingredients responsible
for various pharmacological effects [19,20] and can be divided into three types: protopanaxadiol
(PPD), protopanaxatriol (PPT), and oleanolic acid (OA) [21]. During the past 30 years, great
efforts have been made to identify ginsenosides with anti-cancer activity, especially PPD- and
PPT-type ginsenosides. These compounds possess anti-cancer activity in multiple cell types including
hepatic [22,23], pulmonary [24,25], prostate [26,27], colonic [28], ovarian [29,30], gastric [31,32],
glioma [33,34], leukaemia [35,36], and breast [37,38] cancer cells. In particular, PPD-type ginsenosides
have higher anti-cancer activity than PPT-type [39–41]. Although the anti-tumour activities of PPD-
and PPT-type ginsenosides have been relatively well documented, OA-type ginsenosides have been
less studied.

Ginsenoside Ro (Ro) is a highly abundant OA-type ginsenoside in ginseng [42], which sensitises
esophageal cancer cells to 5-fluorouracil-induced cell death by inhibiting autophagosome–lysosome
fusion [43]. It also possesses a potential skin anti-photoaging property against ultraviolet B
radiation in fibroblasts [44]. Moreover, Ro has anti-complementary [45], anti-inflammatory [46,47],
anti-hepatitic [48], anti-diabetogenic [49], and hair re-growth promoting [50] activities. OA is an
aglycone of Ro, in fact, OA and its derivatives have proven effective for inducing apoptosis and
inhibiting the proliferation of cancer cells [51–56]. The cytotoxicity of OA has been established in
several cell lines, including the A549, SK-OV-3, SK-MEL-3, HCT15, HONE-1, KB, and HT29 cell
lines, with IC50s ranging from 12.1 to 18.5 µg/mL [57,58]. Furthermore, OA is also effective in
inhibiting the invasion and metastasis of tumour cells; OA decreased the expression of angiogenic
vascular endothelial growth factor (VEGF) and decreased the development of melanoma-induced lung
metastasis [59,60]. The anti-tumour effect of OA is evident, so how about Ro? Due to the fact that Ro
has not shown significant cytotoxicity in tumour cells in vitro [61], there have been few attempts to
evaluate the anti-tumour activity in vivo.

Here, we determined if Ro has efficacy against tumours in mice. To this end, B16F10 melanoma
cells were subcutaneously injected into experimental mice, after which Ro was intraperitoneally
administered to the tumour-bearing mice for 15 days. The metabolites of Ro were analysed using
high-performance liquid chromatography-mass spectrometry (HPLC-MS). Subsequently, the efficacy
of Ro and its metabolites was investigated in vivo and in vitro. The results showed that Ro has
anti-tumour activity, and its efficacy is through its metabolites. The anti-tumour efficacy of these
metabolites is due, at least in part, to its anti-angiogenic activity. The findings in the present study
provide a theoretical basis for Ro to be used in the clinic for melanoma treatment and indicate that Ro
has the potential to be an efficient anticancer drug in the treatment of melanoma in the future.
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2. Results

2.1. Anti-Tumour Effects of Ro In Vivo

The anti-tumour effects of Ro were evaluated in a xenograft mouse model. Intraperitoneal injection
of Ro (25 mg/kg) for 15 days resulted in a significant decrease in tumour weight compared to the
model group (Figure 1). This finding revealed that 25 mg/kg Ro injection significantly reduced the
tumour weight with a tumour inhibition rate of 75.7%. These results suggest that Ro considerably
inhibits tumour growth in the xenograft mouse model. To determine if Ro administration resulted
in any side effects on the immune system, we determined the thymus and spleen indices of the host
animals at the end of the study. The results showed great weight loss of the thymus and spleen after
cyclophosphamide (CTX, 20 mg/kg) treatment, which accounted for the immunosuppressive side
effects caused by CTX during therapy (Table 1). However, the thymus and spleen indices in the Ro
group were comparable to those in the normal group. Additionally, no significant loss of body weight
was observed among the animals after treatment with Ro. These data suggested that Ro has no side
effects on the immune organs and body weight in B16F10 tumour-bearing mice.
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Figure 1. Effects of Ro on tumour growth in B16F10 tumour-bearing mice. (A) Image of tumour masses.
(B) Weight of tumour masses. (C) Tumour volume changes in B16F10 tumour xenograft mice. ** p < 0.01
vs. model group. CTX: cyclophosphamide.

Table 1. Effects of Ro on body weight and organ indices in B16F10 tumour-bearing mice.

Groups Dosage (mg/kg) Weight (g) Organ Indices (×100, mg/g)

Before After Thymus Spleen

Normal - 23.11 ± 0.67 24.27 ± 0.99 1.97 ± 0.14 3.46 ± 0.33
Model - 22.27 ± 0.71 24.89 ± 1.26 1.23 ± 0.27 ## 4.74 ± 1.21 #

CTX 20 22.29 ± 0.85 22.27 ± 1.02 0.56 ± 0.09 ** 2.98 ± 0.86 *
Ro 25 22.91 ± 1.12 24.73 ± 1.43 1.67 ± 0.25 * 3.54 ± 1.03

# p < 0.05, ## p < 0.01 vs. normal group; * p < 0.05, ** p < 0.01 vs. model group.
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2.2. Effects of Ro on the Viability of B16F10 Melanoma Cells In Vitro

The effects of Ro on B16F10 cell viability were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,
5-diphenyltetrazolium bromide (MTT) assay. B16F10 cells were exposed to various concentrations of
Ro (0, 1, 3, 10, 30, and 100 µg/mL) for 24 h. The results are shown in Figure 2, and the MTT cell viability
assay shows that Ro has little effect on B16F10 cell growth in vitro.
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2.3. Determination and Identification of Metabolites in the Plasma of Tumour-Bearing Mice Treated with Ro

After 15 consecutive days of Ro treatment, all mice were sacrificed, and the blood was collected.
The plasma samples were prepared by centrifugation for 10 min at 3800 rpm and stored at −80 ◦C.
Figure 3 shows the detection results of the plasma in tumour-bearing mice treated with Ro. The
identification of the metabolites was based on retention times and MS/MS data. In the negative
mode, the daughter ions of oleanolic glycosides were all observed from the cleavage of its glycosidic
bond. A high abundance of fragments originated from cleavage of the glycolipid glycoside bond
at position C-28. Conversely, a lower abundance of fragments originated from dissociation of the
glucosyl ether bond. This result indicates that the glucosyl ester bond is more liable to be dissociated
than the glucosyl ether. Therefore, fragments of deglycosylated can serve as a basis for determining
the position of glycosylation [62]. The negative collision-induced dissociation (CID) spectrum of
compounds 1–4 is shown in Figure 4. The retention time of compound 1 was 27.0 min (Figure 3A).
It showed a deprotonated molecular ion at m/z 955 [M − H]− in the negative all-scan MS spectrum,
suggesting that its molecular weight was 956. The observation of deglycosylated fragments in the
negative CID spectrum (shown in Figure 4-1) at m/z 793 [M − H − 162]−, m/z 613 [M − H − 342]−, and
m/z 455 [M − H − 500]− indicates that there are two hexoses and one hexuronic acid located on the
aglycone. A high abundance of fragments was found at 793 [M − H − 162]−. Therefore, one molecule
of hexose should be located at C-28. The fragment ion at m/z 455 [M −H − 500]− was a characteristic
fragment of OA. This observation suggests that the structure of compound 1 was Ro. Compounds 2
and 3 both showed a deprotonated molecular ion at m/z 793 [M − H]−, with retention times of 29.2 and
31.1 min, respectively. Thus, we inferred that they were isomers. The high abundance of a fragment
in compound 2 was at 631 [M − H − 162]−, suggesting that it may be related to the location of the
glycoside. The glucosyl ester bond was more liable dissociated than the glucosyl ether. Therefore, it
was judged that one molecule of hexose was located at C-28 for compound 2, and one molecule of
hexanoic acid was attached to C-3. In contrast, the high abundance of the fragment in compound 3 was
at 613 [M − H – 162 − 18]−, due to the glycosidic bond dissociating with a drop of water. Therefore, it
was determined that the hexose and hexanoic acid contained in compound 3 were both located at the
C-3 position. Both of them contained characteristic fragment ions m/z 455 [M −H − 338]− of OA, which
were identified as chikusetsusaponin IVa (IVa) and zingibroside R1 (R1) by the literature. Compound 4
showed a deprotonated molecular ion at m/z 631 [M −H]− in the negative all-scan MS spectrum and
also contained an OA characteristic fragment ion m/z at 455 [M − H − 176]−. Simultaneously, fragment
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ions m/z 613 [M − H − 18]−, m/z 555 [M − H − 76]−, and m/z 509 [M − H − 122]− were produced by
cleavage of the glycosidic ring, proving that the glycosidic bond was stable. The results indicate that
the hexanoic acid is located at the C-3 position and is identified as calenduloside E (E) by the literature.
The MS results show that the fragment ions of the abovementioned compounds are similar; thus, IVa,
R1, and E are determined to be metabolites of Ro. R1 was found to be the most abundant metabolite in
the plasma. The signal intensity of R1 was approximately two-fold that of Ro, 10-fold that of IVa, and
100-fold that of E. Glycosyl oleanolate and OA were not detected in the plasma (Figure 3), possibly due
to interference from the high background signals. The structures of Ro and its metabolites are shown
in Figure 5.
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Figure 3. Representative chromatograms of Ro and its metabolites in the plasma. The tumour-bearing
mice were administered Ro for 15 successive days, after which they were sacrificed, and the plasma
was collected and evaluated. (A) Extracted ion chromatogram (EIC) at m/z 955.5; (B) EIC at m/z 794.5;
(C) EIC at m/z 631.5; (D) EIC at m/z 455.5; (E) chromatogram of standard oleanolic acid (OA) (45.2 ng/inj,
EIC at m/z 455.5). (1) Ro: ginsenoside Ro; (2) IVa: chikusetsusaponin IVa; (3) R1: zingibroside R1; (4) E:
calenduloside E.
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2.4. Effects of R1, IVa, and E on the Viability of B16F10 Melanoma Cells In Vitro

The cytotoxic activities of metabolites of Ro are shown in Figure 6. The MTT assay showed
that R1 and E induced dose-dependent cytotoxicity in B16F10 cells. The half maximal inhibitory
concentration (IC50) of R1 and E were 24.52 and 2.58 µg/mL, respectively. IVa showed no cytotoxic
effects at 1–30 µg/mL, and the viability was slightly decreased at a high concentration (100 µg/mL).
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2.5. Anti-Tumour Effects of R1, IVa, and E In Vivo

The in vivo anti-tumour activities of R1, IVa, and E were evaluated in the same way as Ro. The
anti-tumour effects of R1, IVa, and E on B16F10 tumour-bearing mice are summarised in Figure 7. At
the end of the experiment, the average tumour weight in the model group was 1.50 g. Compared to
the model group, the mean tumour weights in the R1 (25 mg/kg), IVa (25 mg/kg), and E (5 mg/kg)
groups were significantly decreased to 0.80, 0.53, and 0.22 g, respectively. Accordingly, the tumour
inhibitory rates of R1-, IVa-, and E-treated groups were 46.6%, 64.7%, and 85.4%, respectively. Figure 6
shows the tumour volume growth curves. The results indicate that the tumour volumes of mice in the
model group rapidly increased during the 15 days of treatment, with the mean volumes reaching more
than 1.04 × 103 mm3 at the end of the experiment. In contrast, treatment with R1, IVa, E, and CTX
significantly suppressed tumour growth (p < 0.05). From day 11, the average tumour volume in R1-,
IVa-, E-, and CTX-treated mice increased relatively slowly.
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Figure 7. Effects of Ro metabolites on changes in tumour weight and tumour volume in B16F10 tumour
xenograft mice. R1 (25 mg/kg), IVa (25 mg/kg), and E (5 mg/kg) were intraperitoneally injected into
mice for 15 consecutive days. Values are expressed as the mean ± standard deviation (SD) of six mice.

2.6. Effects of R1, IVa, and E on Tube Formation of Human Umbilical Vein Endothelial Cells

To examine the effects of Ro and its metabolites on crucial functions in blood vessel formation,
we investigated whether the compounds decreased the formation of tubes by human umbilical vein
endothelial cells (HUVECs) in vitro. Our results showed that IVa, R1, and E markedly inhibited
HUVEC tube formation. Tube formation was imaged, and the tube length was determined (Figure 8).
Low concentrations of Ro (1–30 µg/mL) had no effects on the tube formation of HUVECs. However, Ro
stimulated tube formation at 100 µg/mL.
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Figure 8. Results of tube formation. (A) The human umbilical vein endothelial cells (HUVECs) tubular
structures were imaged under a microscope at 100×magnification. (B) Tube networks were quantified
using Image-Pro Plus 6.0 software (Media Cybernetics, Silver Spring, MD, USA). The tube length was
calculated (* p < 0.05, ** p < 0.01).

2.7. Effects of Ro in the Haemolysis Test

Haemolysis rate is an important parameter for evaluating blood compatibility, and less than 5%
haemolysis is regarded as a nontoxic effect level [63]. Nearly no haemolysis was observed for the
negative control (−), and complete haemolysis was observed for the positive control (+). The solution
colour of Ro at different concentrations did not significantly change compared with the negative control
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group (Figure 9). It can be seen that the haemolysis ratio (HR%) was much lower than 5% (shown
in Table 2), so we concluded that Ro exhibited good biocompatibility even at a high concentration of
100 µg/mL.
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Table 2. Haemolysis rate of Ro at different concentrations.

Ro (µg/mL) Haemolysis Rate (%)

1 0.15 ± 0.13
3 0.31 ± 0.13

10 0.23 ± 0.23
30 0.15 ± 0.13
100 0.31 ± 0.35

3. Discussion

Ginseng is a popular herbal medicine worldwide, and its anti-cancer activity has been proven
by numerous studies. Asian ginseng (Panax ginseng) and American ginseng (Panax quinquefolius)
are two species in ginseng genus [64]. Although most ginseng species contain both PPD- and
PPT-type ginsenosides, their content vary greatly, leading to potentially different and unpredictable
therapeutic effects [65]. In general, American ginseng contains higher level of PPD-type ginsenosides
while Asian ginseng is more abundant in PPT-type ginsenosides. Thus, given the predominant
PPD-type ginsenosides have higher anti-cancer activity than PPT-type, American ginseng may be more
pharmacologically effective than Asian ginseng in terms of anticancer [66]. According to different
processing methods, ginseng can be divided into fresh ginseng (FG), white ginseng (WG), red ginseng
(RG), and black ginseng (BG) [67]. RG is obtained by steaming FG for a reasonable time, while WG is
obtained by drying FG. BG is developed from WG by repetitive steaming nine times. Differences in
pharmacological effects of the ginseng processed products can also be attributed to the heat-induced
chemical degradation and conversion during the steaming treatment [67,68]. Steamed ginseng produces
new constituents, not present in WG, such as (20(S)-, 20(R)-Rg3, Rk3, Rh4, Rk1, Rg5, etc.) [8,67]. After
nine cycles of steaming, BG exhibits more powerful biological activities than WG or RG [69]; red
ginseng has more potent anticancer effects than white ginseng [70].

It is worth mentioning that many bulky ginsenoside molecules are chemically transformed in the
gut upon consumption and are absorbed as smaller metabolites [21]. These metabolites have more
pharmacological activity than their parent compounds [71] and have high bioavailability. Taking
PPD-type ginsenoside as an example, PPD-type ginsenoside is metabolized primarily to compound K
(CK) by intestinal bacteria via the stepwise cleavage of sugar moieties [72]. Ginsenoside Rb1 (Rb1), one
of the main components of ginseng, is a PPD-type ginsenoside consisting of a non-sugar component
(aglycone) with a dammarane skeleton and a sugar component comprising of four sugar moieties [73].
When compared with Rb1, CK has significantly stronger anti-cancer effects [74]. However, previous
studies have mainly investigated PPD- or PPT-type ginsenosides, OA-type ginsenosides have been
less studied (the structures of Rb1, CK, Ro and its metabolites are summarized in Figure S1 and



Molecules 2019, 24, 2985 11 of 18

Table S1). Ro is a highly abundant ingredient in ginseng that acts as an OA-type ginsenoside. Due
to its weak anti-tumour activity in vitro, Ro has received little attention by researchers. In this study,
Ro had little effect on B16F10 cell viability. The result partially agreed with previous studies on the
effects of ginsenosides on cell growth [61]. However, to our surprise, Ro showed high anti-tumour
activity in vivo. The tumour volume and tumour weight of tumour-bearing mice were reduced after
intraperitoneal injection of Ro.

In a previous study, Wang et al. [62] identified 14 metabolites of Ro in both the faeces and urine
of rats after oral administration. Therefore, HPLC detection was done to identify the metabolites.
Although OA was not detected in the plasma of the mice, it was detected in the urine of the rats after
oral administration of Ro, which indicated that this metabolite had been recruited into the circulation
from where it was produced. OA and glycosyl oleanolate might also have been produced after the
intraperitoneal administration of Ro, but the noise in the chromatogram prevented their detection.
These results demonstrate that R1, IVa, and E are the metabolites and deglycosylation products of Ro,
formed by the cleavage of glucose and glycolic acid at C-3 and/or C-28. It has been reported that these
metabolites can be produced by intestinal microflora. R1 is degraded by intestinal microbiota and then
converted into E [75]. In this study, IVa, R1, and E all reduced tumour weight in vivo. Therefore, E was
thought to be the main factor leading to the anti-tumour activity after intraperitoneal administration of
Ro. Based on the abovementioned results, we deem that the anti-tumour effects of Ro are based on
its metabolites. Since studies of parent ginsenoside activities in vitro may not accurately depict their
pharmacological effects in vivo conferred by metabolite effects, the metabolism of ginseng compound
should be further investigated. In fact, Ro can also convert to IVa, R1, and E in vitro. After ginseng is
steamed at 120 ◦C for 6 h, Ro levels sharply decrease, and the contents of IVa, R1, and E increase [76].
The improvement of biological activity after ginseng is steamed is possibly attributed to this form of
composition transformation.

Angiogenesis is an essential component of tumour growth and metastasis and is a key point in
the control of cancer progression. Its inhibition represents a significant new approach for improving
anti-angiogenic and anti-cancer activities. Several anti-cancer drugs are specifically designed to
interfere with the biochemical stimuli regulating angiogenesis. The present data proved that the three
metabolites of Ro exhibit anti-angiogenic activity and inhibit the tube formation of HUVECs. Therefore,
our findings suggest that R1-, IVa-, and E-mediated inhibition of B16F10 melanoma is associated
with their anti-angiogenic activity. Haemolysis of the blood is an important problem associated with
the bioincompatibility of materials. The haemolysis results in this experiment showed that Ro will
not cause haemolysis. Thus, Ro displays excellent hemocompatibility and may serve as a promising
platform for cancer treatment.

4. Materials and Methods

4.1. Reagents, Cell Lines, and Animals

Fetal bovine serum (FBS) and Dulbecco’s Modified Eagle’s Medium (DMEM) were purchased
from Gibco (BRL Co. Ltd., Gaithersburg, MD, USA). MTT was purchased from Sigma (St. Louis, MO,
USA). Ro, R1, IVa, and E were purchased from Chemfaces (Wuhan, China). The purities of all of the
compounds were higher than 98%. B16F10 melanoma cell lines and HUVECs were purchased from
the Type Culture Collection of the Chinese Academy of Sciences (Shanghai, China). The cells were
cultured in DMEM containing 10% FBS (v/v) routinely supplemented with penicillin and streptomycin.
Both B16F10 cells and HUVECs were cultured at 37 ◦C in a humidified atmosphere containing 5%
carbon dioxide (CO2). Male C57BL/6J mice (6–8 weeks old) and male Sprague Dawley rats (10 weeks
old) were purchased from Vital River Laboratories (License No. SCXK (Jing) 2012-0001; Beijing, China).
The animals were maintained in plastic cages with a 12 h light/dark cycle and given free access to
food and water. All animals were handled in strict accordance with good animal practice according to
the Animal Ethics Procedures and Guidelines of the People’s Republic of China, and the study was



Molecules 2019, 24, 2985 12 of 18

approved by The Animal Administration and Ethics Committee of the Institute of Special Animal and
Plant Sciences, Chinese Academy of Agricultural Sciences (Permit No. ISAPSAEC-2018-001).

4.2. Tumour Xenograft Experiment

An anti-tumour assay was conducted in a mouse xenograft model [23]. B16F10 cells were cultured
in DMEM containing 10% FBS. After the collection of cells, the cells were re-suspended in normal
saline to the appropriate concentrations. Next, 0.1 mL of the B16F10 cell suspension (1 × 106 cells) was
subcutaneously injected via the right axillary region of the C57BL/6J mice. The tumour-bearing mice
were randomly divided into three groups (n = 6/group): model control group, positive control group,
and Ro (25 mg/kg) administration group. In addition, a group of mice that did not receive tumour
inoculation was used as the normal control. Normal and model mice were administered normal
saline. The mice in the positive control group received CTX (20 mg/kg). The successive intraperitoneal
injection of drugs into the mice from the day after tumour inoculation and the body weights were
monitored every 2 days. After 15 days, all mice were sacrificed, and tumours were taken out and
measured as previously described [77]. The thymus and spleen were also removed and weighed to
calculate the thymus and spleen indices. The tumour inhibition rate was calculated. The blood samples
were collected from the retrobulbar vessels and added into tubes containing heparin. Subsequently,
plasma samples were prepared by centrifugation for 10 min at 3800 rpm and stored at −80 ◦C for
HPLC-MS analysis.

4.3. Effects of Ro on B16F10 Cell Viability

In this study, Ro was dissolved in dimethyl sulfoxide (DMSO) and diluted in DMEM and then
filtered using a 0.22 µm membrane. The final concentration of DMSO in cell culture medium was 0.1%,
and 0.1% DMSO-treated cells were used as controls. The effect of Ro on B16F10 cell growth in vitro was
performed using the MTT assay [78]. Briefly, exponentially growing B16F10 (1 × 104 cells/well) cells
were seeded onto 96-well plates and incubated for 24 h in complete medium. After 24 h incubation, the
cells were treated with various concentrations of Ro (0, 1, 3, 10, 30, 100 µg/mL) for 24 h, and MTT (0.5%,
20 µL) was then added to each well and incubated for an additional 4 h at 37 ◦C. The formazan crystals
were dissolved in DMSO (150 µL), and the absorbance at 490 nm was measured using a microplate
reader (BioTek Epoch; BioTek, Winooski, VT, USA)

4.4. Determination of Ro Metabolites by HPLC-MS

Identification of the metabolites of Ro was done using the same HPLC Trap MS system as
previously described [62]. Briefly, an aliquot of 60 µL plasma samples was removed from the −80 ◦C
storage and thawed under ambient temperature and mixed vigorously with 300 µL cold methanol.
The supernatant was placed in a centrifuge tube (1500 µL) after 10 min of centrifugation at 10,000 rpm.
The precipitate was washed three times using 100 µL cold methanol. All of the supernatants were
combined and dried under nitrogen flow at ambient temperature. The residue was dissolved using
80 µL methanol (3 min of vortexing), and the solution was diluted in 240 µL pure water. The mixture
was centrifuged at 10,000 rpm for 10 min. All of the supernatant was loaded onto a flash column
(25 × 2 mm id, Chromolith; Merck, Darmstadt, Germany). This flash column was connected to
an analytical column (50 × 2 mm id, Chromolith; Merck) for HPLC-MS analysis. The separation
was conducted using a gradient mobile phase consisting of water (A, containing 0.01% ammonium
hydroxide) and acetonitrile (B). The program of the mobile phase was as follows: 10% B for the first
5 min; then a linear gradient of 10–15% B for 5–7 min, 15–40% B for 7–40 min, and 40–70% B for
40–45 min; this composition was maintained for 45–60 min and then returned to the initial condition
for 5 min. The flow rate was 0.2 mL/min. The method for the Trap MS detection was the same as
previously described [62].
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4.5. Cell Viability Assay for the Ro Metabolites

The metabolites (standard substance) of Ro were dissolved in the same manner as Ro. Briefly,
IVa, R1, and E were dissolved in dimethyl sulfoxide (DMSO), diluted in DMEM, and then filtered
using a 0.22 µm membrane. The final concentration of DMSO in cell culture medium was 0.1%, and
0.1% DMSO-treated cells were used as controls. The effects of IVa, R1, and E on B16F10 cell growth
were evaluated using the MTT assay as previously described. The cells were treated with various
concentrations of IVa (0, 1, 3, 10, 30, 100 µg/mL), R1 (0, 5, 10, 20, 30, 40 µg/mL), and E (0, 2, 4, 6 µg/mL)
for 24 h. After incubation, MTT (0.5%, 20 µL) was added and incubated for 4 h at 37 ◦C. Then the
supernatants were carefully removed, and 150 µL DMSO was added to each well. After 10 min of
incubation and vibration, the absorbance was read at a wavelength of 490 nm. IC50 values were
calculated using Probit Analysis with SPSS 22.0 (SPSS Inc., Chicago, IL, USA).

4.6. Anti-Tumour Assay for the Metabolites of Ro In Vivo

A xenograft experiment was performed using the same method as described in Section 2.2.
Briefly, after the mice were inoculated with tumour cells, they were randomly divided into six groups
(n = 6/group): model control group, positive control group (CTX, 20 mg/kg), R1 (25 mg/kg), IVa
(25 mg/kg), and E (5 mg/kg) administration groups. In addition, a normal control group of mice did
not receive tumour inoculation. Normal and model mice were administered normal saline. Drugs
were intraperitoneally injected into the mice for 15 consecutive days. Tumour volumes were measured
every 2 days, and tumour growth curves were plotted. At the end of the experiment, the mice were
sacrificed, and the tumour weight and tumour growth inhibition rates were calculated.

4.7. Tube Formation Assay

The tube formation assay was performed as previously described with some modifications [79].
Matrigel (BD Biosciences, San Jose, CA, USA) was thawed overnight at 4 ◦C. Next, 50 µL Matrigel was
coated on each well of the pre-chilled 96-well plates and then incubated at 37 ◦C for 1 h. HUVECs
(5 × 104 cells/well) were seeded on the Matrigel and treated with various concentrations of Ro (0, 1, 3,
10, 30, 100 µg/mL), R1 (0, 5, 10, 20, 30, 40 µg/mL), IVa (0, 1, 3, 10, 30, 100 µg/mL), and E (0, 2, 4, 6, 8,
10 µg/mL). After incubation for 5 h, the formation of HUVEC tubular structures was captured using a
microscope (Nikon eclipse Ti; Nikon, Tokyo, Japan). The tube length was quantified using Image-Pro
Plus 6.0 software.

4.8. Haemolysis Test

To evaluate the haemocompatibility of Ro, the haemolysis test was performed as previously
described [80]. Arterial blood was obtained from healthy Sprague Dawley rats. Then erythrocytes
were separated from the plasma and lymphocytes by centrifugation (3000 rpm, 5 min) at 4 ◦C, washed
three times with normal saline, and suspended in normal physiological saline at a haematocrit of 2%.
Erythrocytes were used immediately after isolation. Next, 2.5 mL erythrocyte suspension and 2.5 mL
medicated saline solution were added to a 10 mL centrifuge tube. The final concentrations of Ro were
1, 3, 10, 30, and 100 µg/mL. The negative and positive controls were normal physiological saline and
0.2% Triton X-100, respectively. The samples were incubated for a specific time period at 37 ◦C for
60 min. Next, the tube was centrifuged at 3000 rpm for 5 min. Finally, the optical density (OD) was
obtained at a wavelength of 545 nm. Three parallel samples were laid in each group. The mean value
of the three samples was obtained as the group OD value. The HR was expressed as the percentage
and calculated according to the equation:

HR = (ODt − ODn)/(ODp − ODn) × 100%, (1)
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where ODt indicates the OD value of the tested group, and ODn and ODp are the OD values of the
negative and positive control groups, respectively. A haemolysis rate less than 5% is regarded as a
nontoxic effect level.

4.9. Statistical Analyses

Statistical analyses were performed with SPSS 22.0 and GraphPad Prism 6.0 (GraphPad Software,
La Jolla, CA, USA). All data were expressed as the mean ± standard deviation (SD). Data were analysed
by ANOVA with Tukey’s multiple comparison test and Dunnet’s multiple comparison test. Differences
were considered significant if p < 0.05 and extremely significant if p < 0.01.

5. Conclusions

The results of this study clearly demonstrate that Ro inhibits tumour growth in B16F10
tumour-bearing mice but has no effects on B16F10 cell growth in vitro. IVa, R1, and E, metabolites of
Ro, had anti-tumour effects both in vitro and in vivo and also inhibited angiogenesis to some extent.
Our findings provide substantial evidence that Ro might be beneficial for the therapeutic management
of melanoma. These findings indicate that the metabolites of Ro may underlie its pharmacological
anti-cancer mechanisms.

Supplementary Materials: The following are available online, Figure S1: The skeleton structures of ginsenosides.
(A) PPD-type; (B) OA-type. R1, R2, and R3 are the sites of sugar attachment on the skeleton of ginsenosides. Sugar
moieties are listed in Table S1. Table S1: Summary of ginsenoside structures.
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