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Abstract

Avian influenza virus (AIV) persists in North American wild waterfowl, exhibiting major outbreaks every 2–4 years. Attempts
to explain the patterns of periodicity and persistence using simple direct transmission models are unsuccessful. Motivated
by empirical evidence, we examine the contribution of an overlooked AIV transmission mode: environmental transmission.
It is known that infectious birds shed large concentrations of virions in the environment, where virions may persist for a long
time. We thus propose that, in addition to direct fecal/oral transmission, birds may become infected by ingesting virions
that have long persisted in the environment. We design a new host–pathogen model that combines within-season
transmission dynamics, between-season migration and reproduction, and environmental variation. Analysis of the model
yields three major results. First, environmental transmission provides a persistence mechanism within small communities
where epidemics cannot be sustained by direct transmission only (i.e., communities smaller than the critical community size).
Second, environmental transmission offers a parsimonious explanation of the 2–4 year periodicity of avian influenza
epidemics. Third, very low levels of environmental transmission (i.e., few cases per year) are sufficient for avian influenza to
persist in populations where it would otherwise vanish.
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¤ Current address: Unité d’Epidémiologie des Maladies Emergentes, Institut Pasteur, Paris, France

Introduction

Many important infectious diseases persist on a knife-edge:

rapid rates of transmission coupled with brief infectious periods

generate boom-and-bust epidemics that court extinction. Such

violent epidemic behavior has been observed in measles [1–4],

plague [5], cholera [6], meningitis [7,8], and pertussis [9], among

others. Several distinct mechanisms have been proposed to explain

the long-term dynamics and persistence of these pathogens. For

example, measles persistence is primarily determined by the rate at

which the susceptible pool is replenished, leading to Bartlett’s

concept of critical community size, the minimum population size

above which an infectious disease remains endemic [4]. In

contrast, plague is enzootic in rodents and their fleas and thus

its persistence in human populations is explained by intermittent

reintroduction from the animal reservoir [10]. King et. al [6]

argue that rapid loss of immunity to cholera may replenish the

human susceptible pool so quickly that large amplitude cholera

outbreaks can be observed semiannually. Finally, rich strain

polymorphism allows echoviruses –responsible for aseptic menin-

gitis– to circumvent host immunity and thus reinvade the

population [7,8]. These examples illustrate the need for under-

standing alternate persistence/re-invasion mechanisms of infec-

tious diseases for effective management and control.

In this paper, we investigate the persistence and dynamics of low

pathogenic avian influenza virus (AIV) in North American bird

populations. Avian influenza viruses in wild waterfowl constitute

the historic source of human influenza viruses [11], with a rich

pool of genetic and antigenic diversity [11,12] that often leads to

cross-species transmission. Perhaps the best-known and most

topical example is the transmission of H5N1 avian influenza virus

to humans [13]. Human infection with H5N1 is associated with a

significant risk of mortality; to date, approximately 50% of infected

individuals have died from the infection (see [13] and references

therein). Developing a better understanding of the ecology of avian

influenza viruses is, therefore, very timely.

AIVs infect more than 90 species of birds from 13 orders, mostly

Anseriformes (ducks) and Charadriiformes (shorebirds). Long-term

studies of AIV prevalence in North America [14,15] have gathered

time series of annual estimates that extend over 26 years for

Anseriformes and 20 years for Charadriiformes. The data is

stratified over influenza subtype: H3, H4, and H6 were the most

prevalent subtypes isolated from Anseriformes. Most interestingly,

the prevalence of infection with these subtypes as well as the

aggregate prevalence exhibit recurrent outbreaks in duck popu-

lations at 2–4 year intervals.

It is well established that birds infected with avian influenza are

infectious for approximately a week (range 6–10 days), during
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which they continuously shed vast concentrations of viral particles

in their feces [11,16,17]. These virions are then ingested by

susceptible birds, completing the fecal/oral transmission route

[18,19]. However, attempts to recover the patterns of periodicity

and persistence in avian influenza epidemics in waterfowl from

simple modeling principles using only this essentially direct

transmission mechanism are unsuccessful (see, for example, Text

S1 and Discussion). We propose that the missing ingredient in

direct transmission models is the additional indirect contribution

made to transmission by the ingestion of infectious virions that

persist in the environment. It has been demonstrated, for example,

that the avian influenza strain H2N4 (A/Blue-winged teal/TX/

421717/01) can persist for extended periods in the environment,

with an estimated one log decay time of 490 days in water at

temperature 4uC, pH 7.2, salinity 0 ppt [16,20]. Additionally,

these persistent virions are known to be infectious [16,20,21],

arguing for a potentially significant epidemiological contribution

by environmental transmission.

Here we examine whether environmental transmission provides

a more parsimomious explanation for the observed patterns of

avian influenza epidemics. The phenomenon of environmental

transmission is known to be significant for viral infections in

humans (e.g., gastroenteritis [22]) and animals (e.g., rabbit

haemorrhagic disease [23]), water-borne pathogens (e.g., cholera

[6,24] and avian cholera [25]), some bacterial infections (e.g.,

tetanus [26], salmonella [27] and epizootics of plague [28]), prion

diseases (e.g., chronic wasting disease [29] and bovine spongiform

encephalopathy [30]) and zoonoses (e.g., Nipah and Hendra viral

diseases [31]). Despite these examples, the epidemiological

consequences of environmental transmission remain poorly

understood [32–38].

Here we propose a new host-pathogen model that combines

within-season transmission dynamics, with a between-season

component that describes seasonal migration, reproduction and

environmental variation. Analysis of deterministic and stochastic

versions of this model shows that environmental transmission

plays a critical role for the persistence of avian influenza and its

inter-annual epidemics. We conclude that environmental

transmission may provide a parsimonious explanation of the

observed epidemic patterns of avian influenza in wild waterfowl.

Model

Our model is designed to represent a typical population

(,5,000–10,000 individuals) of ducks (Anseriformes) that migrates

twice a year between a northern breeding ground and a southern

wintering ground. As shown in Figure 1, the model assumes two

geographically distinct sites linked by rapid migration (thick black

arrows). The duration of the breeding and the wintering seasons

are assumed to be the same. At the beginning of each breeding

season, new susceptible chicks are added to the flock (Figure 1,

open thick arrow); i.e., we assume pulsed reproduction.

Given the uncertain and possibly complex patterns of cross-

immunity in wild ducks, we focus on the dynamics of a single

subtype. Hence, we assume that after recovery from infection,

ducks acquire life-long immunity. Thus, within each season, the

epidemiological dynamics are of the familiar SIR type with two

transmission routes: direct and environmental. To derive the

environmental transmission functional form, we denote the

probability that a duck escapes infection when exposed to V

virions by q Vð Þ; note that q Vð Þ must decrease with V and

q 0ð Þ~1. Next, we consider a bird that is exposed to V virions in

two steps: first V1 virions and then V2 virions V~V1zV2ð Þ.
Therefore, q Vð Þ~q V2 V1jð Þq V1ð Þ where q V2 V1jð Þ is the condi-

tional probability that the duck will escape infection when exposed

to V2 virions after escaping infection when exposed to V1 virions.

It is assumed that there is no immunological consequence of

unsuccessful exposure; that is, the probability of escaping infection

is independent of past AIV challenges that did not result in

Figure 1. Illustration of the model. The decay curves of the virus
during winter and summer are sketched in blue and red, respectively.
The corresponding symbols of the viral persistence rates within each
ground are also illustrated. The persistence rates of avian influenza
strains in the breeding and wintering grounds are quite different
because they increase strongly with the temperature of the environ-
ment. Since water temperatures where the ducks are present (i.e.,
breeding grounds in the summer and wintering grounds in the winter)
may be similar, we chose the corresponding persistence rates to be
similar, as well. The persistence rate is much reduced (i.e., the
persistence time of the virus increases) in the breeding grounds during
the winter as the temperature drops. Also, the persistence rate is
significantly increased (i.e., the persistence time of the virus decreases)
in the wintering grounds during the summer as the temperature
increases.
doi:10.1371/journal.pcbi.1000346.g001

Author Summary

Avian influenza viruses (AIVs) in wild waterfowl constitute
the historic source of human influenza viruses, having a
rich pool of genetic and antigenic diversity that often leads
to cross-species transmission. Although the emergence of
H5N1 avian influenza virus onto the international scene
has captured the most attention, we do not as yet
understand the mechanisms that underpin AIV persistence
and dynamics in the wild. We developed a novel host–
pathogen model intended to describe the epidemiology of
low pathogenic AIV in temperate environments. Our
model takes into account seasonality in migration and
breeding together with multiple modes of transmission.
AIVs have been detected in unconcentrated lake water,
soil swabs, and mud samples. Laboratory experiments
show that AIVs persist and remain infectious in water for
extended periods. However, so far, the possibility of
environmental transmission of AIV has been largely
overlooked. Our work shows that environmental transmis-
sion provides a parsimonious explanation for the patterns
of persistence and outbreaks of AIV documented in the
literature. In addition to their scientific importance, our
conclusions impact the design of control policies for avian
influenza by emphasizing the dramatic and long-term role
that environmental persistence of pathogens may play at
the epidemic level.

Transmission Dynamics of Avian Influenza Viruses
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infection (q V2 V1jð Þ~q V2ð Þ). Thus, we obtain the exponential

Cauchy equation [39] q V1zV2ð Þ~q V1ð Þq V2ð Þ. Since q is a

decreasing probability function defined on all non-negative real

numbers, the only acceptable solution is q Vð Þ~e{aV where aw0
is a constant with unit of virion{1. Therefore, environmental

infection is modeled using a continuous Markov chain with a

constant rate a. Note that the parameter a is related to the

empirically determined ID50 (the dose at which there is a 50%

probability of infection) by the following equation

1{q ID50ð Þ~0:5, giving a~loge 2ð Þ=ID50. However, a bird is

exposed to virus in the environment via continuous ingestion of

lake water. To model this, we introduce a constant rate r that

expresses the per capita fraction of the V virions ingested per unit

time. Thus r, which we call exposure rate, is given by the per capita

consumption rate scaled by the lake volume. The transmission rate

per susceptible due to environmental contamination is given by

r 1{e{aVð Þ.
Infected ducks shed virus in the environment where the virus

persists. We assume that the viral population V is large enough so

that these two processes can be captured by the following

differential equation

dV=dt~vI{gV , ð1Þ

where I is the number of infecteds, v is the shedding rate and g is

the decay rate of the virus in the environment. If we divide the

above equation by v and use the variable V=v instead of V then

the equation no longer contains the parameter v. Using V=v
instead of V amounts to measuring the number of virions V in

units of virion per shedding rate (i.e., duck year) which is the unit

that we adopt for the rest of the paper. The environmental

transmission rate now becomes rS 1{e{ avð ÞV=v
� �

, where S is the

number of susceptibles. Thus, the dynamics of the model depends

on a and v through their product av, which is a re-scaled

environmental infectiousness.

Model variables and parameters are presented in Tables 1 and

2, respectively. We use capital subscripts to denote the season (i.e.,

B for the breeding season and W for the wintering season) and

lower case superscripts for geographical location (i.e., b for the

breeding grounds and w for the wintering grounds). For a deep

understanding of the system, we develop two versions of the

model: (i) a deterministic system, with continuous state variables,

and (ii) a hybrid framework that consists of discrete population

variables, and stochastic demographic and transmission transition

probabilities together with deterministic virus kinetics. The

transmission dynamics within the continuous model are expressed

as coupled ordinary differential equations and are useful in

examining the underlying deterministic clockwork of the system.

Not surprisingly, however, this framework often predicts biolog-

ically unrealistic fractional numbers of infecteds (Mollison’s so-

called ‘‘atto-fox’’ phenomenon [40]). Since we are particularly

interested in the processes of extinction and persistence of AIV, we

further refined our study by constructing a stochastic model, where

the host population variables are integer-valued.

Model with continuous variables
The model proceeds as follows.

1. The start of the Breeding Season. We start with the initial conditions

S 0ð Þ, I 0ð Þ, R 0ð Þ, Vb
B 0ð Þ and Vw

B 0ð Þ at the beginning of the

breeding season. Then, we add new chicks to the flock. As with

many natural reservoirs, the pathogenicity of AIV to birds is

neglible, thus we assume that ducks have a fixed realized

fecundity, l, irrespective of infection history. We further assume

that chick survival is density-dependent and is determined by

exp {N=Ndð Þ, where N~S 0ð ÞzI 0ð ÞzR 0ð Þ is the total

number of ducks and Nd is the carrying capacity of the habitat.

Therefore, the number of chicks that join the flock every breeding

season is lNe{N=Nd ; i.e., S 0ð Þ?S 0ð ÞzlNe{N=Nd .

2. Breeding Grounds Dynamics. We now integrate the variables S, I ,

R, Vb
B and Vw

B for the duration of the breeding season (i.e., half

a year) according to the following set of differential equations:

dS=dt~{bSI{rS 1{e{av Vb
B=vð Þ

h i
{mS, ð2Þ

dI=dt~bSIzrS 1{e{av Vb
B=vð Þ

h i
{ mzcð ÞI , ð3Þ

dR=dt~cI{mR, ð4Þ

d Vb
B

�
v

� ��
dt~I{gb

B Vb
B

�
v

� �
, ð5Þ

d Vw
B

�
v

� ��
dt~{gw

B Vw
B

�
v

� �
: ð6Þ

The first three equations describe the well-known SIR model

[5], with the addition of an environmental transmission term.

The last two equations describe the dynamics of the virus at the

breeding and wintering grounds, respectively. They reflect the

fact that during the summer at the breeding grounds, virus is

shed by infected birds and decays in the environment. On the

wintering grounds, however, there are no ducks during the

summer, hence virion kinetics are only affected by viral

degradation.

3. Wintering Grounds Dynamics. At the end of the breeding season,

we introduce viral population variables for the wintering season

Vb
W 0:5ð Þ~Vb

B 0:5ð Þ and Vw
W 0:5ð Þ~Vw

B 0:5ð Þ and continue the

integration for another half of a year using the following set of

differential equations that implicitly accounts for the migration

dS=dt~{bSI{rS 1{e{av Vw
W=vð Þ

h i
{mS, ð7Þ

Table 1. The variables of the model.

Symbol Definition Unit

N number of ducks duck

S susceptible ducks duck

I infected ducks duck

R recovered ducks duck

V viral population virion

Vb
B

V in the breeding grounds during the
summer

virion

Vb
W

V in the breeding grounds during the
winter

virion

Vw
B V in the wintering grounds during the

summer
virion

Vw
W V in the wintering grounds during the

winter
virion

doi:10.1371/journal.pcbi.1000346.t001

Transmission Dynamics of Avian Influenza Viruses
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dI=dt~bSIzrS 1{e{av Vw
W=vð Þ

h i
{ mzcð ÞI , ð8Þ

dR=dt~cI{mR, ð9Þ

d Vb
W

�
v

� ��
dt~{gb

W Vb
W

�
v

� �
, ð10Þ

d Vw
W

�
v

� ��
dt~I{gw

W Vw
W

�
v

� �
: ð11Þ

At the end of the wintering season we set Vb
B 1ð Þ~Vb

W 1ð Þ and

Vw
B 1ð Þ~Vw

W 1ð Þ and resume with step 1. with the next breeding

season in a similar fashion.

Hybrid model
In this model, the bird population variables are discrete,

evolving through a continuous-time Markov chain integrated

using Gillespie’s direct method [41]. The SIR processes that take

place throughout a season and their corresponding rates are

summarized in Table 3. The algorithm of the model is as follows.

1. The start of the Breeding Season. Start with the initial conditions

S 0ð Þ, I 0ð Þ, R 0ð Þ, Vb
B 0ð Þ and Vw

B 0ð Þ at the beginning of the

breeding season. New chicks are added as before except that

the number of chicks is given by a binomial stochastic variable

B lN,e{N=Nd
� �

.

2. Breeding Grounds Dynamics. We stochastically integrate the

variables S, I and R according to Gillespie’s algorithm for

one half of a year (i.e, one season). The variables Vb
B and Vw

B

are integrated within a season using Eq. (1). For a time interval

t1,t2ð Þ[ 0,0:5½ � where I is constant,

Vb
B t2ð Þ

�
v~ Vb

B t1ð Þ
�

v
� �

e{gb
B

t2zI t1ð Þ 1{e{gb
B

t2

� �.
g: ð12Þ

For the wintering ground we get

Vw
B tð Þ~Vw

B 0ð Þe{gw
B

t ð13Þ

where 0ƒtƒ0:5 years, as there are no ducks at the wintering

grounds.

3. Breeding Grounds Dynamics. At the end of the breading season, we

introduce viral population variables for the wintering season

Vb
W 0:5ð Þ~Vb

B 0:5ð Þ and Vw
W 0:5ð Þ~Vw

B 0:5ð Þ. The variables S,

I and R are integrated as before. Vb
W and Vw

W are integrated as

follows. Vb
W is given by

Vb
W tð Þ~Vb

W 0:5ð Þe{gb
W

t ð14Þ

where 0:5ƒtƒ1 years, as the ducks have left the breeding

grounds. Vw
W is given by

Vw
W t2ð Þ

�
v~ Vw

W t1ð Þ
�

v
� �

e{gw
W

t2zI t1ð Þ 1{e{gw
W

t2
� ��

g: ð15Þ

for every time interval t1,t2ð Þ[ 0:5,1½ � where I is constant. At

the end of the wintering season we set Vb
B 1ð Þ~Vb

W 1ð Þ and

Vw
B 1ð Þ~Vw

W 1ð Þ and continue with step 1. in a similar fashion.

Table 2. The parameters of the model.

Symbol Definition Value/Range Unit Reference

Nd habitat carrying capacity 3000 duck –

l duck fecundity 2 [56,57]

b direct transmissibility 0–0.05 duck{1year{1 –

r exposure rate 1023
year{1 –

a environmental infectiousness virion{1 –

v virus shedding rate 105–106 virion=duck=day [58]

av re-scaled environmental infectiousness 1–106
duck{1year{1 –

m natural death rate 0.3 year{1 [56]

c recovery rate 52 year{1 [11]

gb
B

virus clearance rate in the breeding grounds during the summer 5 year{1 [21]

gb
W

virus clearance rate in the breeding grounds during the winter 1.3 year{1 [21]

gw
W virus clearance rate in the wintering grounds during the winter 5 year{1 [21]

gw
B virus clearance rate in the wintering grounds during the summer 50 year{1 [21]

For further explanation of the parameter values see the Text S1.
doi:10.1371/journal.pcbi.1000346.t002

Table 3. The processes that take place within a season.

Process Definition Rate

Direct infection S?S{1, I?Iz1 bSI

Environmental infection S?S{1, I?Iz1 rS 1{e{aVð Þ
Death of susceptible S?S{1 mS

Death of infected I?I{1 mI

Death of recovered R?R{1 mR

Recovery I?I{1, R?Rz1 cI

The variables and the parameters are explained in Table 1.
doi:10.1371/journal.pcbi.1000346.t003

Transmission Dynamics of Avian Influenza Viruses
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We note that a continuous-time Markov chain where all the

variables S, I and Vb,w
B,W are evolved using point processes can be

easily constructed by adding birth (i.e., Vb,w
B,W?Vb,w

B,W z1 with

rate vI for Vb
B and Vw

W and rate 0 for Vw
B and Vb

W ) and death

processes (i.e., Vb,w
B,W?Vb,w

B,W {1 with rate gVb,w
B,W ) for Vb,w

B,W to

the list presented in Table 3. First, it can be shown that if the

variables of this Markov chain are approximately uncorrelated

and normally distributed, then their expectations satisfy the

equations of the continuous model presented in the previous

section [42]; i.e., that the mean-field approximation of this

Markov chain is the continuous model represented by Eqs. (2)–

(11). Second, our hybrid model is a good approximation of the

continuous-time Markov chain when the variables Vb,w
B,W are

large and the sum of their rates is much larger than the sum of

all the other rates. Indeed, under these conditions, most

processes are births and deaths of virions and other processes occur

only sporadically. In between these processes, the stochastic

dynamics of the viral load provided by the continuous-time Markov

chain can be satisfactorily approximated by the deterministic

equations of the hybrid model. We thus conclude that in the case

where virus is abundant the continuous model represents the mean-

field approximation to our hybrid model described above.

Results

Model without environmental transmission
As a baseline, we first explored a simplified model that includes

fecal/oral transmission, migration, seasonality and pulsed repro-

duction, without environmental transmission. Whether stochastic

or deterministic, this model is unable to reproduce the recurrent

pattern of avian influenza epidemics. The continuous model shows

unrealistic infected populations as low as 1028 individuals (see

Text S1) while the stochastic model undergoes rapid extinction

when the infected population drops to zero.

Deterministic orbits of mixed transmission model
Figure 2 shows numerical results for a typical orbit of our

deterministic model with both direct and environmental trans-

mission mechanisms (for definitions of the technical terms in this

section the reader is referred to [43–46]). The orbit rapidly settles

to an attractor with a period of two years. Figure 2A–C show the

number of susceptibles, infected and recovered versus time,

respectively. The Fourier power spectrum density of the infected

time series is presented in Figure 2D; a peak at 0:5 year{1 is easily

noted. Figure 2E and 2F show bifurcation diagrams versus the

direct transmisibility b and the re-scaled environmental infec-

tiousness av, respectively. The orbits are sampled annually at the

end of the wintering season when, each year, the number of

infected is the lowest. Panel (e) shows a period doubling and an

inverse period doubling bifurcation, while no bifurcations are

present in Panel (f). The position of the orbit presented on the left

is marked with dotted lines.

However, the continuous model for the parameters of avian

influenza in populations of 5,000 to 10,000 individuals regularly

predicts numbers of infecteds less than one. Thus, the epidemic

would often go extinct as the number of infected would reach zero.

This phenomenon is not captured by a continuous-state model.

Furthermore, note that in Figure 2E model dynamics are

predicted to be rigidly biennial, in contrast to the erratic 2–4

year outbreaks observed in the wild.

Stochastic orbits of mixed transmission model
To understand the extinction and persistence dynamics of avian

influenza we integrated the stochastic version of the model.

Figure 3A–C show the number of susceptibles, infected and

recovered versus time, respectively, in a simulation of our

stochastic model. In this case, the infected population often goes

extinct and the epidemic is then reignited by environmental

transmission. In direct contrast to the predictions of the

deterministic model, a major epidemic does not occur every two

years as such an event is sparked probabilistically (Figure 3B). In

general, the periodicity of stochastic orbits is larger than that of

corresponding deterministic orbits. If an epidemic does not occur

then susceptibles continue to build up and the next epidemic will

thus be more severe. Note that the incidence peaks of the sporadic

epidemics of the stochastic model are higher than those of the

biannual epidemics of the continuous model by about a factor of

three. The Fourier power spectrum density of the infected time

series clearly shows a sequence of peaks corresponding to the

annual inflow of susceptibles; Figure 3D. A peak around

0:5 years{1 is still visible; however, the peak is now very flat,

covering a broad frequency range. The Fourier transform does not

appear to provide a very insightful characterization of the

epidemic dynamics owing to tall and narrow prevalence peaks

that do not occur at very regular intervals.

A more useful approach to revealing periodic patterns in the

stochastic time series is a wavelet spectral decomposition. Here we

use the Difference-of-Gaussians (DoG) wavelet since it fits well the

tall and narrow prevalence peaks of the time series (see Text S1).

Figure 3E and 3F show the global spectral decomposition of

stochastic orbits in DoG wavelets versus the direct transmissibility

b and the re-scaled environmental infectiousness av, respectively.

Each spectrum is an average over 100 wavelet transforms of

individual stochastic realizations of the orbit. The white solid lines

in Figure 3E and 3F trace the positions of the local peaks in the

spectra versus the corresponding system parameters. Note that

stochastic time series show periodicity larger than one year (i.e., at

,2 years and above) for a significantly broader range of b than

deterministic time series. Also, note that the dominant periodicity

of the stochastic time series changes very little with av, similar to

the findings presented in Figure 2F.

The disease-free/endemic transition
It is important to distinguish the parameter sets for which AIV is

endemic. While many model parameters have empirically-

established ranges (e.g., host breeding traits and the duration of

infectiousness [21]), the values of other key parameters, such as the

direct transmission rate b and the environmental infectiousness a
are less certain. Therefore, we explore the plane (av, b) with all

the other parameters of the model given in Table 1. For the

continuous model, the disease-free state is a periodic attractor with

period of one year. This disease-free state loses stability through a

transcritical bifurcation which marks the disease-free/endemic

transition. Since the bifurcation is codimension one, the transition

occurs on a line segment in the (av, b) plane; see Figure 4. The

segment was obtained by numerically solving for the value of av
where the transcritical bifurcation of the continuous model with a

given value of b occurs.

For the stochastic model, the disease-free/endemic transition is

defined in a more subtle way. The disease-free region is defined by

all the parameter sets for which, in all of the realizations of the

model, the number of infected I tð Þ reaches zero in finite time and

stays at zero for all subsequent time, irrespective of the initial

conditions. The epidemic region is defined by all the parameter

sets for which there exist realizations of the model such that, for

any moment of time T , I tð Þ is not zero for all time once twT . In

the disease-free region the probability of an epidemic is zero;

however, in the endemic region, the probability of an epidemic
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increases from zero (close to the boundary with the non-

epidemic region) toward one. Therefore, in the case of the

stochastic model, it is more difficult to numerically obtain a

precise border between the disease-free and the endemic regions.

Here we computed the time-average of the infected over 200

years in 100 realizations of the model for a region in the (av, b)

plane; see Figure 4. (A transient of 100 years was discarded for

each stochastic realization. Numerical analysis reveals that the

results are robust and accurate at these parameters.) Thus, dark

blue region corresponds to an epidemic probability of less than

,1% and encloses the disease-free region. Note that for the

probability of a sustained epidemic to be larger than 1%, the re-

scaled environmental infectiousness av must exceed 103.

Simulations did not show sustained epidemics for low or absent

environmental transmission.

Because of the way in which the disease-free/endemic

transition is defined for the stochastic model, it is difficult to

compare the epidemic threshold of the stochastic model with

that of the deterministic model. In our case, however, we may

expect that they disagree. The mean-field approximation of a

stochastic model is obtained in two steps. First, one derives an

infinite set of ordinary differential equations that describes how

the moments of all orders of the stochastic variables change with

time. Second, under the assumption that all stochastic variables

are uncorrelated and normally distributed, the set of equations is

truncated at the first moment (i.e., moment closure) which is the

expectation [42]. Disagreement between a stochastic model and

its mean-field approximation is expected if the assumptions on

normality or correlations are violated. This typically happens

when any of the population compartments is small. Here, the

disagreement at low numbers of infecteds might be particularly

enhanced because of the fact that the continuous model allows

for the number of infected birds to be less than one so that we

always have two different transmission routes of avian influenza.

Figure 2. Simulation results obtained using our deterministic model. Panels A, B, and C show S tð Þ, I tð Þ and R tð Þ versus t 0vtv25 yearsð Þ;
note the logarithmic scale for I tð Þ. The initial conditions are S 0ð Þ~0 ducks, I 0ð Þ~10,000 ducks, R 0ð Þ~0 ducks, V b

B 0ð Þ
�

v~1 duck year and
V w

B 0ð Þ
�

v~1 duck year. The parameters are as in Table 1 with b~0:015 duck{1year{1 and av~105 duck{1year{1 . Panel D shows the Fourier power
spectrum density of I over a time interval of 25,000 years. Panels E and F show bifurcations diagrams of the model versus b and av, respectively. The
orbits are sampled yearly, at the end of the wintering season. The dotted lines mark the positions of the orbit presented on the left within the
corresponding bifurcation diagrams.
doi:10.1371/journal.pcbi.1000346.g002
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When the epidemic is at its nadir in the continuous model, the

direct transmission rate does not vanish (the number of infected

always stays larger than zero even though it may be substantially

smaller than one) and thus the the chain of transmission is

maintained by both direct and environmental transmission

mechanisms. In contrast, in the stochastic model the numbers

of infecteds often reaches zero. Therefore, AIV maintenance is

exclusively due to environmental transmission. We thus expect

that the disease-free region of the stochastic model is larger than

that of the deterministic model.

The interplay between direct and environmental
transmission

In Figure 5A and 5B we present the time-averages of the direct

and environmental transmission rates, respectively. Note that the

environmental transmission rate is two orders of magnitude

smaller than the direct transmission rate, yet critical in

maintaining the epidemic. The time-average of the direct

transmission rate increases with b and av, following the pattern

of the time-average of the number of infected in Figure 4.

However, the time-average of environmental transmission rate has

a very different pattern, attaining high values at low values of b
and decreasing at high b; Figure 5B. Another picture of these

contrasting patterns is Figure 6. At low b, the environmental

transmission rate is relatively high and increases with b as more

infected individuals shed more virus in the environment. A turning

point in this scenario happens at b&0:01 when direct transmission

starts to dominate. As the direct and environmental mechanisms of

transmission compete for susceptibles, a marked increase in direct

transmission results in a decrease of environmental transmission.

Figure 3. Simulation results obtained using our stochastic model. Panels A, B, and C show S tð Þ, I tð Þ and R tð Þ versus t 0vtv25 yearsð Þ; note
the logarithmic scale for I tð Þ. The initial conditions are S 0ð Þ~0 ducks, I 0ð Þ~10,000 ducks, R 0ð Þ~0 ducks, Vb

B 0ð Þ
�

v~1 duck year and
V w

B 0ð Þ
�

v~1 duck year. The parameters are as in Table 1 with b~0:015 duck{1year{1 and av~105 duck{1year{1 . The blue line in panel D
shows the Fourier power spectrum density of I over a time interval of 3,500 years. The yellow line represents the moving average of the spectrum
density. Panels E and F show the global spectral decomposition in Difference-of-Gaussians (DoG) wavelets of stochastic orbits versus b and av,
respectively. Each spectrum is an average over 100 wavelet transforms of individual stochastic realizations of the orbit over 3,300 years (this time
interval gives 95% confidence to the peaks of each wavelet transform; the fluctuations are due to the stochasticity of the realizations of the model).
The color map represents the power scale measured in duck2 . The dotted lines mark the positions of the stochastic realization presented on the left
within the corresponding panels.
doi:10.1371/journal.pcbi.1000346.g003
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A fundamental feature of environmental transmission is the fact

that it persists (i.e., does not vanish) even when the number of

infecteds (and hence the rate of direct transmission) is zero. As a

result, environmental transmission may reignite the epidemic. To

Figure 4. Color map of the time-average of the number of
infected SITt versus the direct transmissibility b and the
environmental infectiousness av. Each colored point is calculated
by averaging the results of 100 stochastic realizations. For each
realization, a transient of 100 years was discarded and the time average
was performed over 200 years. The white line indicates the epidemic
threshold of the mean-field model: for parameters in the circled area
around the origin there are no epidemics, otherwise epidemics occur. In
the Text S1, we present the results of extensive sensitivity analyses.
doi:10.1371/journal.pcbi.1000346.g004

Figure 5. Direct versus environmental transmission. Color maps versus the direct transmissibility b and the environmental infectiousness av
of the time average of the A direct transmission rate; B environmental transmission rate and the average (over stochastic realizations) fraction of time
when the C direct transmission is not zero; D environmental transmission is not zero. The simulation details are the same as for Figure 4.
doi:10.1371/journal.pcbi.1000346.g005

Figure 6. Re-plot of data from Figure 5. Direct and environmental
transmission rates versus the direct transmissibility b at environmental
infectiousness av~106 duck{1year{1 .
doi:10.1371/journal.pcbi.1000346.g006
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contrast the persistence characteristics of direct and environmental

transmission, we calculated the average (over stochastic realiza-

tions) fraction of time when direct transmission does not vanish

(Figure 5C) and environmental transmission does not vanish

(Figure 5D). The direct transmission rate vanishes when either

S~0 or I~0 while the environmental transmission rate vanishes

when either S~0 or, quite unlikely, V=v~0. (Here we assumed

that the environmental transmission is virtually zero when

V=vv10{5 duck year. Computations with V=vv10{6

duck year yield very similar results.) From Figure 5C, we obtain

that direct transmission at avw104 is non-zero at most 30% of the

time with a relatively prominent peak at b&0:01. In contrast, the

environmental transmission is non-zero at most 70% of the time

and the peak is much more shallow over the chosen range of b.

Therefore, even though much smaller than the direct transmission,

environmental transmission is much more persistent and may

re-ignite the epidemic when there are no infected left.

An investigation of the time-averaged environmental transmis-

sion rate when the epidemic is reignited was performed as follows

(Figure 7). Given a stochastic realization of the model, we selected

the events where the number of infected increases from zero to

one. Say that these events occurred at times tj 1ƒjƒnð Þ and that

the corresponding preceding events occurred at times t�j (i.e., for

every j, the event at time t�j is immediately followed by the event at

time tj ). For each event j, we integrated the environmental

transmission rate rS 1{e{ avð ÞV tð Þ=v
� �

over the time interval

(t�j ,tj ). Then, the time-averaged transmission rate when the

epidemic is reignited is given by

SrS 1{e{ avð ÞV=v
� �

Tt~

Pn
j~1

Ð tj

t�
j

rSj 1{e{ avð ÞV tð Þ=v
� �

dt

Pn
j~1 tj{t�j

� � , ð16Þ

where Sj is the number of susceptibles in the time interval (t�j ,tj )

and is a constant. In the analysis presented in Figure 7 we further

averaged over 100 realizations of the stochastic model. The

pattern in Figure 7 is comparable to that in Figure 5B. Note that

the environmental transmission rate that re-ignites the epidemic is

less than a factor of two larger than the average.

Discussion

In this paper, we have explored the epidemiological dynamics

and persistence of avian influenza viruses, with a view to

understanding the respective roles of environmental transmission

and demographic stochasticity. We have found that an SIR
framework that includes seasonal migration, pulsed reproduction

and fecal/oral, but not environmental transmission is unable to

reproduce the documented recurrent pattern of avian influenza

epidemics. The continuous version of the model predicts

unrealistic infected populations, with values as low as 1028

individuals (see Text S1), while the stochastic analogue predicts

rapid extinction (similar to the depletions of infected in Figure 3B).

The unrealistically low infection prevalence is also observed in the

continuous model with added environmental transmission

Figure 2E and 2F. Including the interaction between the

deterministic clockwork of the continuous system and demograph-

ic noise is fundamental in obtaining realistic dynamics (with

periodicity of 2–4 years), as it is for other infectious diseases; e.g.,

see [47,48] and references therein.

In our full hybrid model, we observe that even small levels of

environmental transmission (a few cases per year) facilitate AIV

persistence. Environmental transmission rates are –on average–

hundreds of times smaller than direct transmission rates, yet they

appear critical in sustaining the virus. The ability of the pathogen

to survive in the environment for a long time before infecting

susceptible hosts may thus have profound epidemiological

consequences.

The relative influence of environmental transmission for epidemic

persistence depends on the population size. If the population is

substantially larger than the critical community size, then the

number of infecteds does not go to zero in between recurrent

epidemics [4,43,49] and direct transmission dominates the course of

the epidemic. If, however, the population is small and the number of

infecteds goes to zero, then environmental transmission is a key

factor in sustaining the epidemic. Thus, environmental transmission

provides an epidemic persistence mechanism within populations

smaller than the critical community size.

Our results hold for low pathogenicity AIV. The extension to

high pathogenicity AIVs, as evidenced by outbreaks in tufted

ducks and pochards [50], awaits additional empirical information.

Another limitation of our model is that we have restricted our

consideration to a single immunological subtype that confers life-

long immunity. We note that partial cross-immunity in a multi-

serotype model would enhance the effective number of susceptibles

and, therefore, should be expected to promote persistence. In

reference [51], we address the conditions under which environ-

mentally and directly transmitted pathogens may coexist.

The actual mechanism of persistence of avian influenza in wild

waterfowl may be complex, including a number of other factors

such as spatial and age structures, waning immunity and strain

polymorphism leading to immune escape. Several studies address

the role of spatial heterogeneity in a general framework. For

example, Lloyd and May [52] show in a metapopulation model

that persistence of epidemics (asynchrony of within-subpopulation

dynamics) occurs only if the immigration in between the

subpopulations is small. A more recent and thorough analysis by

Hagernaas et al. [53] discussing both oscillatory and non-

oscillatory population dynamics arrives at the same conclusion.

Further modeling work is needed in order to evaluate the relative

contribution of other possible persistence mechanisms.

Figure 7. Color map of the time-average of the environmental
transmission rate when the epidemic is re-ignited versus the
direct transmissibility b and the environmental infectiousness
av. The simulation details are the same as for Figure 4.
doi:10.1371/journal.pcbi.1000346.g007
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Further work is also needed to explore our modeling assumption

that host populations form (nearly) closed systems. Empirical

evidence suggests that the interaction between the Eurasian and

American clades of migratory birds is so small (despite overlap in

their Alaskan migratory routes) that their exchange of full genome

influenza viruses has yet to be documented [54]. While this

observation supports our modeling assumption, the data on the

smaller scale interaction between flocks of migratory birds within

the American continent is insufficient for validation. Alternate

modeling assumptions could be explored theoretically.

Using mathematical modeling, we have investigated the role of

environmental transmission for the pattern and persistence of

avian influenza in wild waterfowl and demonstrated that indeed

environmental transmission is a fundamental ingredient for the

modeling of this epidemic. The persistence mechanism induced by

enviromental transmission raises novel problems of epidemic

control since traditional strategies may prove ineffective in the

presence of an environmental viral reservoir [55]. Thus,

environmental transmission remains a topic of increasing interest

in theoretical epidemiology.

Supporting Information

Text S1 Additional explanations of the parameters, wavelet

analysis and further simulations for uncertainty analyses.

Found at: doi:10.1371/journal.pcbi.1000346.s001 (2.05 MB PDF)
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