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Human endogenous retroviruses form a reservoir
of T cell targets in hematological cancers
Sunil Kumar Saini1,12, Andreas Due Ørskov 2,3,12, Anne-Mette Bjerregaard 1,12, Ashwin Unnikrishnan 4,5,

Staffan Holmberg-Thydén 1,6, Annie Borch1, Kathrine Valentini Jensen1, Govardhan Anande4,5,

Amalie Kai Bentzen1, Andrea Marion Marquard1, Tripti Tamhane1, Marianne Bach Treppendahl2,

Anne Ortved Gang6, Inge Høgh Dufva6, Zoltan Szallasi 7,8, Nicola Ternette 9, Anders Gorm Pedersen 7,

Aron Charles Eklund7, John Pimanda 4,5,10, Kirsten Grønbæk2,3,11 & Sine Reker Hadrup 1✉

Human endogenous retroviruses (HERV) form a substantial part of the human genome, but

mostly remain transcriptionally silent under strict epigenetic regulation, yet can potentially be

reactivated by malignant transformation or epigenetic therapies. Here, we evaluate the

potential for T cell recognition of HERV elements in myeloid malignancies by mapping

transcribed HERV genes and generating a library of 1169 potential antigenic HERV-derived

peptides predicted for presentation by 4 HLA class I molecules. Using DNA barcode-labeled

MHC-I multimers, we find CD8+ T cell populations recognizing 29 HERV-derived peptides

representing 18 different HERV loci, of which HERVH-5, HERVW-1, and HERVE-3 have more

profound responses; such HERV-specific T cells are present in 17 of the 34 patients, but less

frequently in healthy donors. Transcriptomic analyses reveal enhanced transcription of the

HERVs in patients; meanwhile DNA-demethylating therapy causes a small and hetero-

geneous enhancement in HERV transcription without altering T cell recognition. Our study

thus uncovers T cell recognition of HERVs in myeloid malignancies, thereby implicating

HERVs as potential targets for immunotherapeutic therapies.
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Human endogenous retroviruses (HERVs) are inherited
genetic germline elements derived from exogenous ret-
roviral infections throughout the evolution of the human

genome, and account for ~8% of our genome1,2. The majority of
HERVs are defective due to evolutionarily acquired disruption or
silencing mutations2,3. Hence, no infectious activity remains from
such HERVs, but they may still be recognized as viral compo-
nents by our immune system. Interestingly, elevated HERV
expression has been associated with a variety of autoimmune
disorders and cancers, although the causative roles and patho-
genicity of HERVs have not been clarified4–13.

Given the potential mutagenic consequences of replications
and re-insertions of HERVs, human cells have developed differ-
ent mechanisms to suppress HERV transcription and
retrotransposition2,3,14. Hence, epigenetic mechanisms serve to
transcriptionally silence the HERV-derived elements through
DNA methylation and/or repressive histone modifications15.
Previous work has shown that the loss of DNA methylation
mediated by DNA-demethylating therapy (hypomethylating
agents [HMAs]), leads to an upregulation of single- and double-
stranded HERV transcripts in human cancer cell lines, revealing a
functional role of DNA methylation in repressing HERV
expression16–18. Recently, we could also show that this occurs in
patients19. Moreover, malignant transformation may by itself
induce the expression of HERVs due to the global DNA hypo-
methylation observed in cancer genomes12,16,17,20.

The HMAs, 5-azacytidine (AZA) and decitabine, have been
shown to be effective in patients with certain hematological
malignancies, such as higher-risk myelodysplastic syndromes
(MDS), chronic myelomonocytic leukemia (CMML), and acute
myeloid leukemia (AML)21,22. Interestingly, a key anti-tumor
effect of HMAs may rely on the activation of innate immunolo-
gical mechanisms induced by HERV derepression19,23,24. Thus, to
take advantage of this biological phenomenon, and to further
boost immune recognition of malignant cells, several trials have
opened, combining HMAs and immune checkpoint inhibitors25.
In this study, we aim to investigate if HERV elements may form a
reservoir of antigens that can at large scale be targeted through T

cell recognition. Selected HERV-derived epitopes have been
described as tumor-associated antigens, which can promote
tumor-specific recognition by T cells in vivo26–33.

Here we include a large library of HERV-derived peptides to
determine if T cell-directed HERV recognition is present in
patients with cancers of low mutational burden. To investigate
the in vivo existence of T cells able to recognize HERV-derived
peptide-antigens, we utilize a DNA barcode-labeled MHC-I
multimer technology recently established by our laboratory. Our
HERV library included HLA-binding ligands, covering 4 different
HLA class I molecules, predicted from the sequences of 66
HERVs that were previously described to potentially retain
translational activity in human tissues34. We analyze 34 patients
and 27 healthy donors for T cell recognition of 1169 different
HERV-derived peptide-MHCs (pMHC) and find that HERV-
directed T cells are enriched in patients with myeloid malig-
nancies. Our results implicate that T cell recognition of HERVs
could be leveraged in future immunotherapeutic strategies.

Results
Prediction of HERV-derived T cell antigens. To examine whe-
ther HERVs can function as a source of cancer-specific antigens
and potentially drive T cell activation in patients with myeloid
malignancies, we first attempted to identify HERV-derived pep-
tides potentially presented on cell-surface MHC class I molecules.
We focused on 66 systematically annotated HERV loci, previously
reported to be transcribed, either in normal or diseased human
cells34 (Supplementary Data 1). The 66 HERVs originate from 17
different groups, annotated according to Repbase, and of these
the HERVK group has the highest representation (39%). The 66
HERVs are generally transcribed at very low levels in the majority
of the healthy tissues as well as in cancers (Supplementary Fig. 1).
The exception to this is ERVV-2, ERVV1, ERVK-6, ERVFRD-2,
ERVFH21-1, which are all highly transcribed across both normal
and cancerous tissue. Some HERVs are also tumor and tissue
specific, for example, ERVH-5, ERVH48-1 and ERVE-4 shown by
Rooney et al. to be tumor specific12.
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Fig. 1 Schematic of HERV-derived peptides selected for T cell analysis. Accession numbers for known transcribed HERVs published by Mayer et al. were
used to download the reported nucleotide sequences from the National Center for Biotechnology Information’s (NCBIs) Entrez database (DB). The
sequences were translated into amino acids until a stop codon occurred. Thereafter, the sequences were chopped into 9-, 10-, and 11mer peptides. Binding
of all extracted peptides to the four most common Caucasian HLA alleles (HLA-A*01:01, -A*02:01, -B*07:02, and -B*08:01) was predicted using
NetMHCpan 2.8. The final library consists of 1169 peptides from 49 of the 66 HERVs, all with a predicted binding percentile rank score of 2 or below to any
of the four HLA alleles.
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We downloaded the nucleotide sequences of the 66 HERVs,
translated them into amino acids, and extracted 9–11mer
peptides predicted to bind to the four most common Caucasian
HLA class I alleles: HLA-A*01:01, HLA-A*02:01, HLA-B*07:02,
and HLA-B*08:01 (Fig. 1). Of the 66 HERVs, 57 could be
translated into amino acid sequences that were long enough to
include 9–11mer peptides, and 49 of the HERVs included binders
to at least one of the four HLA alleles. The total number of
extracted HERV-derived 9–11mer pMHCs was 61,380 and
allowed a prediction frequency of 1.9%. Using the recommended
pMHC-binding rank score ≤235 for NetMHCpan 2.8 on all four
HLAs resulted in 1173 peptides predicted for presentation by the
MHC I molecules. Out of these peptides, 1169 were successfully
synthesized and included in the final library to examine T cell
reactivity (199 for HLA-A*01:01, 237 for HLA-A*02:01, 449 for
HLA-B*07:02, and 284 for HLA-B*08:01, Supplementary Data 2).
Of these, 1036 peptides were unique binders to a given HLA, and
the remaining were found to bind two or more of the selected
HLA molecules.

T cell recognition of HERV-derived elements is present in
myeloid malignancies. To investigate the presence of CD8+ T
cell populations reactive to HERV-derived peptides as a con-
sequence of the malignant transformation and to further evaluate
if HMA therapy impacts the T cell reactivity to our selected group
of HERVs, we analyzed samples from 34 patients before and after
AZA treatment (MDS, AML, and CMML; Supplementary
Table 1). Patient samples collected before and after AZA treat-
ment were included with lymphocytes derived either from per-
ipheral blood mononuclear cells (PBMCs) (n= 22, Danish
patients) or bone marrow mononuclear cells (BMMCs) (n= 12,
Australian patients). HERV-specific T cell responses were ana-
lyzed in up to four post-treatment samples per patient, ranging
from time points at the end of treatment cycle 1 to the end of
treatment cycle 6, depending on sample availability. For a com-
prehensive comparison, PBMCs from 27 healthy donors were
included in the analysis.

T cell recognition of the HERV-derived 1,169 peptides was
evaluated using a DNA barcode-labeled pMHC-I-multimer-based
multiplex technology that enables the analysis of T cell reactivity
against large peptide libraries in a single biological sample36. First,
each pMHC multimer was tagged with an individual DNA
barcode. Then pMHC multimer reagents were selected and
pooled according to the patients’ HLA type, and CD8+ T cells
were tested for their ability to recognize (bind to) such pMHC
multimers carrying HERV-derived peptides. In addition to the
peptide library derived from HERV elements, we also included a
library of 67 previously reported cancer testis antigen (CTA)-
derived T cell epitopes (Supplementary Data 3)37. CTAs are
similarly to HERVs regulated by epigenetic mechanisms and re-
expression has been demonstrated following malignant transfor-
mation and DNA-demethylating therapy38. Moreover, 19 T cell
epitopes from common viruses, such as Epstein-Barr virus (EBV),
cytomegalovirus (CMV), and influenza (Flu) virus, were included
as positive controls and as a measure of the general immune
status (Supplementary Data 4).

pMHC-reactive CD8+ T cells were identified after sorting of
MHC multimer-binding T cells using fluorescence-activated cell
sorting (FACS) based on phycoerythrin (PE) fluorescence
intensity and the composition of the associated DNA barcodes
was retrieved by DNA amplification sequencing. Sequencing data
were processed with the software package ‘Barracoda’ (http://
www.cbs.dtu.dk/services/Barracoda, see “Methods”). T cell popu-
lations were identified based on DNA barcode enrichment (FDR
< 0.1%) in the sorted population compared to the full pMHC

library used for T cell staining (Supplementary Fig. 2). We
detected a substantial increase in T cell reactivity toward HERV-
peptides in patient samples as compared to healthy donors. Out
of 34 patients, 17 had one or more HERV-specific CD8+ T cell
populations as compared to only 4 out of 27 healthy donors
(Fig. 2, red squares). The number of HERV-reactive T cell
populations in patient samples was independent of the source of
the samples; peripheral blood or bone marrow (Supplementary
Fig. 3a). We identified 29 unique HERV-derived epitopes capable
of raising a T cell response across the four tested HLAs (4, HLA-
A*01:01; 10, HLA-A*02:01; 10, HLA-B*07:02; and 5, HLA-
B*08:01) (Fig. 2a–d). These 29 peptides derived from 18 different
HERV loci. Of the 29 peptides, 23 were recognized only in
patients (pre- and post-AZA treatment), five in healthy donors,
and only one specificity was shared between a healthy donor and
a patient sample (Table 1 and Fig. 2e). A large fraction of the
HERV loci included in this study were found to be immunogenic
in patients (18 out of 49; 37%); each giving rise to at least one
recognized T cell epitope.

Applying a T cell reactivity score calculated based on the total
peptides recognized by T cells in all analyzed patients out of total
peptides derived from each HERV locus identifies HERVH-5 as
the most immunogenic of the 49 HERVs analyzed, followed by
ERVW-1 and ERVE-3 (Fig. 2f). Importantly, T cell reactivity was
independent of the peptide-library size as some of the HERVs
with very small peptide libraries showed a relatively high T cell
reactivity and vice versa (Fig. 2f). Among individual HERVs, a
maximum of five epitopes was derived from one single HERV
(ERVFRD-1), whereas most of the remaining epitopes derive
from several members of the HERVK family (Table 1). Moreover,
several of the HERV-derived epitopes served as shared antigens
based on the presence of epitope-reactive T cells in more than one
patient: HLA-A*01:01-WTGTCTIGY, two patients; HLA-
A*02:01-FLLTSFTTGRV, three patients; HLA-A*02:01-CLI-
SILVSSL, two patients; and HLA-B*07:02- RPRVLRLISPR, three
patients (Fig. 2a–d).

In addition to HERVs, T cells reactive to several previously
described epitopes from CTAs were identified in six of the
patients, as compared to only two in healthy donors (Fig. 2a–d).
In the patient samples, we identified T cells reactive to 13 CTAs,
out of which 11 were unique to the patient cohort (representing
NY-ESO-1, MAGE10, MAGEC1, Cyclin A1, TAG-1, CDCA1,
RHAMM, TRAG-3, and PRAME). Furthermore, a large number
of viral antigen-reactive T cells were detected for some of the
common viral antigens (CMV, EBV, and Flu) in both patients
and healthy donors (Fig. 2a–d).

HERV-specific T cells are significantly enriched in patients.
Based on similar cohort sizes of patients (n= 34) and healthy
donors (n= 27), we compared the proportions of individuals
with HERV-reactive T cells in the two groups. The proportion of
individuals with HERV-reactive T cell populations was sig-
nificantly higher in the patient cohort compared to the healthy
individuals (posterior probability that proportion is higher: 99%
for pre-AZA samples and 97% for post-AZA samples; Fig. 3a).
Similarly, the number of different HERV peptides recognized by
T cell populations in individual samples was also significantly
higher in the patient cohort (before treatment) compared to
healthy donors (Fig. 3b), again showing a malignancy-driven
enrichment of HERV-reactive T cells in the patient groups. To
ensure that this result was not biased by individual HLA profiles
(which could be unequally distributed between patients and
controls), we used regression modeling to estimate HERV-specific
T cell reactivity corrected for HLA influence (Supplementary
Fig. 4a, b). Based on this model, both pre-AZA and post-AZA
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patient samples showed a higher HERV T cell response level than
healthy controls (determined as log fold change in the proportion
of HERV-peptides recognized; posterior probability of fold
change >0 was 96% for pre-AZA and 100% for post-AZA;
Fig. 3c). The model further indicates that treatment with AZA
may further increase the HERV T cell response, although the
statistical certainty is less pronounced (posterior probability that
post-AZA response is higher was 82.8%; Fig. 3c). Consistently, we
found increased T cell responses following treatment initiation in
eight patient samples (Supplementary Fig. 3b). However, post-

treatment samples also showed loss of HERV-reactive T cells that
were identified in pre-treatment samples (Supplementary Fig. 3b).

In contrast to the increased HERV-specific T cell responses in
patients, we observed a significant decrease in CD8+ T cells
reactive to the most common viral antigens investigated in our
study (Fig. 2 and Supplementary Data 4) as compared to healthy
donors (Fig. 3d). The presence of T cells reactive to these
common viral antigens could be indicative of the individual’s
overall immune status; thus, a decrease in such virus-reactive T
cell populations in patients suggests an immunosuppressive
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Fig. 2 T cell reactivity to HERV-derived peptides in myeloid malignancies. T cells reactive to HERV-derived peptides, CTAs, and viral antigens were
identified from peripheral blood (Danish patients and healthy donors (HD)) and bone marrow (Australian patients) samples using a DNA barcode-based
pMHC multimer analysis. a–d Identified T cell responses are shown across the four tested HLAs for healthy donors and patient samples pre- and post-AZA
therapy. Vertical axis labels the sample IDs and the horizontal axis shows the peptide sequences (single letter amino acid codes) split into three categories
of antigens (HERV, CTA, and viral). T cell responses are shown based on barcode enrichment (Log2FC) in the sorted population compared to the complete
pMHC library, and red scale determines significant enrichment (FDR < 0.1%) and gray scale if no significant enrichment was found. Peptides identified to
have a T cell response in at least one of the analyzed samples are included; data for all the tested peptides are shown in Supplementary Fig. 2. The white
color indicates peptides not tested in the specific samples. Patient samples with the prefix “RH” and “HH” derive from the Danish patients and patient
samples with the prefix “SH” derive from the Australian patients. e Venn diagram summarizing numbers of immunogenic HERV-derived T cell epitopes
identified in patients and healthy donors. f T cell reactivity score (pink dots, plotted in descending order) and peptide library size (gray diamonds) of
individual HERVs analyzed for T cell recognition in the patients. Pink hollow dots represent HERVs with no T cell reactivity. T cell reactivity score is
calculated as the sum of all the T cell reactive peptides out of the total peptide library of a given HERV tested across the patient samples. Source data are
provided as Source data file.
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cancer-associated state. This has previously been reported in
higher-risk MDS39 and other cancers40. The reduced reactivity
toward viral antigens was observed both as a reduction of the
proportion of individuals with such T cells in the different
cohorts (Fig. 3d) and in the total number of T cell responses
against viral antigens present in each individual (Fig. 3e). Our
regression model with HLA correction clearly shows a negative
fold change in viral antigen T cell reactivity in the patient groups
compared to healthy donors (posterior probability of decrease
100% for pre-AZA, and 94% for post-AZA) (Fig. 3f). Notably,
post-AZA treatment samples showed the significant improved
total number of viral reactive T cell responses as compared to pre-
AZA samples (Fig. 3e), which was further supported by the HLA-
corrected analysis (95.8% probability) (Fig. 3f). Overall, this
suggests a possible AZA-driven improvement of the immune
status.

The patient group displayed reduced T cell reactivity toward
viral antigens, but simultaneously had an increased T cell
reactivity against HERV-derived peptides compared to the
healthy donors. This demonstrates that the HERV response is
not merely driven by a general increase in T cell reactivity, but in
fact is present despite an overall reduced responsiveness of the
immune system. Using the viral response to normalize the HERV
response (essentially using it as an internal control for overall T
cell reactivity) makes the increase in HERV-reactive CD8+ T cells
in patients even clearer (for both pre- and post-AZA samples
there is a 100% posterior probability for an increase compared to
healthy controls; Fig. 3g). The analysis of the normalized response
also shows that, to the extent that AZA treatment leads to an
increase in the HERV response in cancer patients, this can be
explained as a result of the overall increase in T cell responses in
these patients (the normalized log fold change between pre- and
post-AZA samples is estimated to be very close to 0).

Similar to HERVs, we also observed T cells reactive to CTAs in
both patients, pre- and post-AZA, and healthy donors (not
significant, Supplementary Fig. 3c). However, these tended to be
less frequent and a comprehensive, comparative evaluation would
require analysis of a larger cohort.

In summary, we observed a significant enrichment of HERV-
reactive T cells in patients with myeloid malignancies despite a
general immunosuppressive state as observed by decrease in viral
reactive T cells in the patients.

HERV-specific T cells recognize myeloid cancer cells and show
peptide dependent activation. We validated the presence of
HERV-specific CD8+ T cells (HERV-K; HLAB*08:01-
DLILRHHLV) in a healthy donor sample using an independent
flow cytometry analysis based on fluorochrome-labeled pMHC
multimers (Fig. 4a). Since the T cell response identified in this
healthy donor was of low frequency and intensity, we further
confirmed the presence of these T cells by expanding them
ex vivo using a cocktail of pMHCs and cytokines. This strategy
resulted in a seven-fold expansion over the initial frequency
(Fig. 4a, bottom row).

Using similar approach for functional analyses, we expanded a
HERV-specific T cell population identified in one of the patient
samples. The expanded T cells from patient SH7152 (CMML),
that recognized HLA-A02:01-restricted peptides SLVSKVWHKV
(ERVE-3) and FLLTSFTTGRV (ERVS71-1) (Fig. 2b and Table 1),
showed increased cytokine production (IFN-γ and TNF-α) and
degranulation (CD107a) upon incubation with HLA-matching
leukemia cell line THP-1, but not when THP-1 cells were blocked
with anti-HLA-A antibodies (Fig. 4b). THP-1 is a human
monocytic cell line known to express HERVs41 and is derived
from acute monocytic leukemia. Thus, THP-1-driven activation

Table 1 HERV-derived T cell epitopes identified based on CD8+ T cell recognition in patients and healthy donors.

HERV gene ID Peptide HLA Patients or HDs

ERVFRD-1 WTGTCTIGY HLA-A01:01 Patient
STVCNVTFTV HLA-A02:01 Patient
LPSNWTGTCTI HLA-B07:02 Patient
GPIFTNINLM HLA-B07:02 Patient
GPIFTNINL HLA-B07:02 Patient

ERVFRD-2 GPVQVQVPFSM HLA-B07:02 Patient
RPLQRPQPG HLA-B08:01 Patient

ERVE-3 YIDTWLQLMLN HLA-A01:01 Patient
SLVSKVWHKV HLA-A02:01 Patient

ERVFH21-1 SIMILHRMSL HLA-B07:02 Patient
MILHRMSLLRL HLA-B08:01 Patient and healthy donor

ERVK-4, ERVK-9, ERVK-15, ERVK-16 YMRTLLDSI HLA-A02:01 Patient
ERVK-16 FIWQHRILL HLA-A02:01 Patient
ERVS71-1 ATCNQSLLTY HLA-A01:01 Healthy donor

RLHQAVPLL HLA-A02:01 Patient
FLLTSFTTGRV HLA-A02:01 Patient

ERVH-5 RPRVLRLISPR HLA-B07:02 Patient
ERVK-7, ERVK-6, ERVK-21 ITGTWLDAIY HLA-A01:01 Healthy donor
ERVK-6 GPLLSFSIL HLA-B07:02 Patient
ERVK3-3 LLIKENLFL HLA-A02:01 Patient
ERVK3-5 YLKACLTVL HLA-A02:01 Patient
ERVK-5 QPQAPQQTGAF HLA-B07:02 Patient
ERVK-21 ALMIVSMVVSL HLA-B08:01 Patient
ERVK-24 ILVSMDRPWEA HLA-A02:01 Patient
ERVMER61- 1 LPATVPSLPGL HLA-B07:02 Patient
ERVW-1 CLISILVSSL HLA-A02:01 Patient

MIGYFFTSCL HLA-B08:01 Healthy donor
ERVK-12 VPHPQPPTL HLA-B07:02 Healthy donor
ERVK-14, ERVK-11, ERVK-13, ERVK-3, ERVK-24, ERVK-25, ERVK-8 DLILRHHLV HLA-B08:01 Healthy donor
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of T cells specific to HERVs derived from a CMML patient
validates the functionality of HERV-specific T cells in the context
of myeloid malignancies. To further confirm the peptide-specific
activation of HERV-specific T cells, we evaluated the cytokine
release following co-culture with target cells pulsed with either
HERV-peptides (SLVSKVWHKV and FLLTSFTTGRV) or an
irrelevant peptide (HIV epitope ILKEPVHGV). Cytokine release
was observed only when target cells were loaded with HERV-
derived peptides, suggesting a HERV-peptide-specific functional
activation of these T cells (Fig. 4c).

In order to understand whether HERV sequences are, in fact,
translated into protein and whether peptides could be presented
by leukemia cells in the context of HLA class I, we re-analyzed a
published dataset (PMID: 31291378) of HLA-I associated
ligandomes of primary AML tumor material and the OCI-AML
cell line. We identified peptide sequence TTQEAEKLLER, which
originates from the ERK3-1 transcript, in two patients (IDs
005686 and 005685). Peptide TEQGPTGVTM, also originating
from ERK3-1, was identified in OCI-AML cells. Both of these
peptides were part of our HERV library selected for T cell analysis
(Supplementary Data 2). These data further demonstrate that
HERV transcripts are expressed and enter the HLA-I presentation
pathway in AML. Altogether, we demonstrate that HERV-derived
peptides are presented in myeloid malignancies, which can raise
HERV-specific CD8+ T cell responses that are functionally active
and show HLA and peptide dependent activation.

To investigate the relationship between clinical outcome and T
cell response to viral or HERV peptides, we used logistic
regression. Specifically, the aim with this analysis was to predict
clinical outcome (treatment responder or non-responder), based
on the following predictors: (1) whether the patient had any T cell
response to HERV peptides, (2) whether the patient had any T
cell response to viral peptides, (3) an interaction term indicating if
a patient had response to both HERV and viral peptides, and
finally (4) indicator variables for the presence of each of the 4
HLA alleles. None of these variables had a statistically significant
impact on predicting the outcome (the credible intervals for their
regression coefficients all include zero, Fig. 4d and Supplementary
Fig. 4c, d). This is possibly partly due to the small size of the data
set and the resulting low statistical power, and the results indicate
that there may be a positive relationship with response to viral
peptides and also with the interaction term, but certainty is
marginal and require further investigation on a larger cohort.

Transcription of HERV elements is associated with malig-
nancy. We next investigated if the induced HERV-specific T cell
responses that we observed in patients compared to healthy
donors correlated with a higher expression of HERVs. We ana-
lyzed the expression of the 49 HERVs used for T cell evaluation at
RNA transcript level in bone marrow (BM) CD34+ hemato-
poietic stem and progenitor cells (HSPCs) from the Australian
cohort of patients (n= 18)42. Of these 18 patients, 12 patients
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were also included in the T cell analyses. HERV expression
measured as transcripts per million of total reads (TPM) identi-
fied for each HERV in the patients were compared with the
transcripts from healthy donor BM HSPCs (n= 14; reported
previously43–45) (Supplementary Data 5). A strong malignancy-
associated increase was found in the majority of the HERVs
selected for the T cell analyses (Fig. 5a), which aligns with our
observation of a higher HERV-specific T cell recognition in
patients versus healthy donors. This enhanced expression of the
analyzed HERV transcripts was found in samples from both
before and after AZA treatment. An additional, but low, increase
was further observed after AZA treatment when comparing the
level of each individual HERV pre- and post-therapy in each
individual patient (Fig. 5a), but no overall increase was observed
when assessed as the sum of HERVs across the evaluated indi-
viduals (Supplementary Fig. 5a, b). However, a patient-specific
increase in HERV expression post-AZA treatment was observed
in few of the analyzed samples (Supplementary Fig. 5c).

Importantly, we observed that the level of T cell recognition is
correlated to the level of expression of the given HERVs
recognized (r= 0.47, p= 0.018; Fig. 5b). This indicates that the
amount of antigen does play a role for induction of T cell
recognition. Furthermore, at a gross level across all the HERVs
evaluated for T cell recognition, we found a tendency toward
transcript levels being higher for those HERVs recognized by
T cells compared to those not recognized (median 2.06 vs 1.19;
Fig. 5c), indicating that indeed, higher HERV expression may
lead to enhanced levels of HERV T cell recognition. However,
there was a large variation in HERV expression and hence no
significant distinction between the expression levels for T cell
‘immunogenic’ versus ‘non-immunogenic’ HERVs.

Comparison of expression levels in healthy donors to untreated
patient samples showed a substantial induction of almost all the
49 HERV transcripts in the patients, suggesting a strong disease-

related expression pattern (Fig. 5d). Further, we evaluated if AZA
treatment influenced the expression levels of these 49 HERVs in
addition to the induction seemingly caused by the disease. We
compared RNA-seq data from BM HSPCs collected before and
after AZA treatment (at cycle 6 or at the end of the trial) and
observed that AZA-treatment led to enhanced expression of some
HERVs, but repression of others. Furthermore, the effect was very
heterogeneous among the patients evaluated. Hence, no overall
change was observed related to AZA treatment (Fig. 5d, e and
Supplementary Fig. 6a).

Since a number of previous studies have shown upregulation of
silent HERV transcripts upon short-term in vitro treatment with
HMAs16,17, we further examined if any additional changes in the
expression of our selected HERVs could be observed after only
short-term in vivo treatment (pre-treatment compared with 1 and
4 weeks after treatment initiation). However, no overall change in
the HERV expression was present at these earlier time-points
(Supplementary Fig. 6b). For some individual patients, we did
observe an increase in HERV expression over time with AZA
treatment, but in such cases, the later time point displayed the
most prominent upregulation (Supplementary Fig. 6c). This
suggests a minimal impact of AZA treatment, both short and long
term, on the expression of these particular 49 HERVs beyond the
disease-driven upregulation.

Additionally, as we observed several CTA-reactive T cells in this
study (Supplementary Fig. 3a), we investigated the expression of a
large number of known CTAs (CTDatabase) similarly to the HERV
analysis. We found malignancy-associated upregulation of some
CTA genes (SSX4, SSX4B, PRAME, ROPN1, etc.) in the patient
cohort compared to healthy donors (Supplementary Fig. 7).

Altogether, presence of HERV-specific T cells strongly
correlated with the expression of HERVs, which, for the 49
HERVs analyzed in this study, was upregulated in patients before
exposure to DNA-demethylating therapy.

Fig. 3 Patients with myeloid malignancies have increased levels of T cell recognition to HERV-derived peptides. CD8+ T cell responses, identified using
DNA-barcoded-pMHC multimers (Fig. 2), grouped for individual categories of HERV- and viral-antigen libraries across healthy donors and patient samples
before and after AZA treatment. a The proportion of individuals within the respective groups with detectable HERV-specific T cell responses (in a, c, d, f,
and g uncertainty about estimates is indicated by showing the posterior probability distribution in the form of “eye plots”: dot and bars indicate the
posterior median, the 50% credible interval (CI), and the 90% CI values). Median and 90% CI values are: healthy donors 0.13 [0.05, 0.25], pre-AZA 0.37
[0.25, 0.50], post-AZA 0.33 [0.20, 0.46]. Posterior probability that proportions increased: 99% (pre-AZA > healthy donors), 97% (post-AZA > healthy
donors), and 36% (post-AZA > pre-AZA). b The number of HERV peptides recognized by CD8+ T cell populations in individual healthy donors and
patients (pre- and post-AZA). P-values for hypothesis tests comparing the number in pairs of groups: p= 0.02 (healthy donor vs pre-AZA,
Mann–Whitney–Wilcoxon test, one-tailed), p= 0.07 (healthy donor vs post-AZA, Mann–Whitney–Wilcoxon test, one-tailed), and p= 0.60 (pre-AZA vs
post-AZA, Wilcoxon Signed-Rank test, one-tailed). Box plots showing the median, the lower and upper quartiles, and the whiskers as minimum and
maximum values. Healthy donors, n= 27; pre-AZA, n= 33; post-AZA, n= 34 (source data are provided as Source data file). c Log fold change in
proportion of HERV peptides recognized by CD8+ T cells. The proportion of recognized HERV peptides, and the log fold change in these proportions
between pairs of cohorts, was estimated using a regression model that also corrected for the HLA alleles present in each individual sample. Pre-AZA vs
healthy donors 0.75 [0.02, 1.5], post-AZA vs healthy donors 1.1 [0.39, 1.8], and post-AZA vs pre-AZA 0.32 [−0.24, 0.87]. Posterior probability that log
fold change >0: 96% (pre-AZA vs healthy donors), 100% (post-AZA vs healthy donors), and 83% (post-AZA vs pre-AZA). d The proportion of individuals
within the respective groups with detectable T cell responses to viral antigens. Healthy donors 0.73 [0.58, 0.85], pre-AZA 0.50 [0.36, 0.64], post--AZA
0.60 [0.47, 0.73]. Posterior probability that proportions in pairs of groups are different: 97% (pre-AZA < healthy donors), 86% (post-AZA < healthy
donors), and 80% (post-AZA > pre-AZA). e Number of viral antigens recognized by CD8+ T cell populations in individual patients (pre- and post-AZA
treatment) and healthy donors. P-values for hypothesis tests comparing the number in pairs of groups: p= 0.01 (healthy donor vs pre-AZA,
Mann–Whitney–Wilcoxon test, one-tailed), p= 0.097 (healthy donor vs post-AZA, Mann–Whitney–Wilcoxon test, one-tailed), and p= 0.05 (pre-AZA vs
post-AZA, Wilcoxon Signed-Rank test, one-tailed). Box plots showing the median, the lower and upper quartiles, and the whiskers as minimum and
maximum values. Healthy donors, n= 27; pre-AZA, n= 32; post-AZA, n= 33 (source data are provided as Source data file). f Log fold change in
proportion of viral peptides recognized by CD8+ T cells estimated using the regression model and corrected for individual HLA alleles. Pre-AZA vs healthy
donors −0.61 [−0.95, −0.29], post-AZA vs healthy donors −0.26 [−0.55, 0.023], and post-AZA vs pre-AZA 0.35 [0.017, 0.69]. Posterior probability
that log fold change >0: 100% (pre-AZA < healthy donors), 94% (post-AZA < healthy donors), and 96% (post-AZA > pre-AZA). g Log fold change in
proportion of HERV peptides recognized by CD8+ T cells corrected for HLA alleles and normalized to viral antigen responses; pre-AZA vs healthy donors
1.4 [0.57, 2.23], post-AZA vs healthy donors 1.3 [0.58, 2.2], and post-AZA vs pre-AZA −0.04 [−0.69, 0.61]. Posterior probability that log fold change >0:
100% (pre-AZA vs healthy donors), 100% (post-AZA vs healthy donors), and 54% (post-AZA vs pre-AZA).
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Discussion
In this study, we investigated the presence of T cells specific to
HERV-derived peptides in the myeloid hematological malig-
nancies MDS, CMML, and AML. We evaluated 66 HERV loci for
T cell recognition. 1169 peptides from 49 of these 66 HERVs were
predicted to bind the selected four HLA molecules (HLA-
A*01:01, -A*02:01, -B*07:02, and -B*08:01). We determined the
T cell recognition of these 1169 potential T cell epitopes in both
patients and healthy controls, and demonstrated the presence of
T cell populations recognizing 29 novel HERV-derived epitopes
of which 23 were unique to the patient cohort. Among the
evaluated HERVs, HERVH-5, HERVW-1, HERVE-3, and several
members of HERVK family were primarily recognized by T cells
with a high T cell reactivity score, which may be a consequence of

the high expression levels of these HERVs. Our data suggest a
disease-specific enrichment of CD8+ T cells recognizing peptides
of HERV origin which is consistent with the observed change in
HERV expression patterns in patients compared to healthy
donors. This was evaluated by combining T cell recognition
identified in both PBMCs and BMMCs of the two patient cohorts,
as essentially both sampling tissues are part of similar circulating
malignant compartment and we did not observe any tissue-
specific difference in the level of identified T cells. A sample
specific comparison between patients and healthy controls would
require a larger cohort of patient samples.

Previously, CD8+ T cells targeting HERV-derived peptides
have been reported in a few different cancers46. For instance,
Takahashi et al. reported a HERV-E-derived 10mer antigen as a T
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cell target for metastatic renal cell carcinoma demonstrating an
example of anti-tumor activity of HERV-derived T cells27. The
study presented here, is the first comprehensive analysis of T cell
recognition of a large library of HERVs, revealing that on a broad
scale these are potential targets for T cell recognition in cancer.
For hematological malignancies, to our knowledge, no previous
study has demonstrated CD8+ T cells specific to HERV-derived
peptides. Interestingly, one of the HERV-derived peptides

included in our library was earlier found to be active in another
tumor context (FLQFKTWWI; HERV-K-derived and HLA-
A*02:01- and HLA-B*08:01-restricted, for which CD8+ T cell
reactivity was detected in a study including patients with semi-
noma29). However, none of the 29 HERV-derived peptides
identified as targets for T cell recognition in this study has, to our
knowledge, been found active in other contexts. Besides this, we
could also confirm the expression and HLA-I presentation of two
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of our predicted HERV-derived peptides in patients with AML
and in an AML cell line using mass spectrometry.

HMAs, such as AZA, have been shown to derepress HERV
elements in vitro and recently also in vivo, and in turn activate the
viral response pathway through the formation and detection of
viral dsRNAs, which may increase the immunogenicity of the
malignant cells16–19,47,48. Additionally, this pathway may enhance
the visibility of the tumor cells to the immune system through
increased MHC I expression and antigen processing49. On the
other hand, HMAs may also upregulate immune checkpoints
directly or as a compensatory mechanism, which potentially
hamper the immune responses50,51. Therefore, this HERV-
associated antigen reservoir could be of immense interest for
immunological targeting of myeloid malignancies as it presents a
unique opportunity for T cell-mediated therapeutic intervention
when combining HMAs with cancer immunotherapies13. In our
cohort of 34 patients treated with AZA monotherapy, we observed
only a low level of treatment-induced upregulation of the tran-
scripts corresponding to the 66 selected HERVs and a marginal
enhancement of HERV-reactive T cells was observed. However, it
is possible that our HERV library did not capture the pre-
dominantly DNA methylation-regulated HERVs since they were
selected based on transcriptional activity without any prior
treatment with HMAs. Nonetheless, our data show that the
observed T cell recognition correlated with the corresponding
HERV RNA expression, and hence T cell responses to DNA
methylation-regulated HERVs may still be induced by HMAs.
Indeed, a patient tailored treatment strategy with selection of
HERVs specifically silenced by DNA methylation and derepressed
by HMAs may be successful in combination with other immune
stimulatory treatments, such as immune checkpoint blockade.

Recent studies have shown that HERV expression is associated
with tumor immune cytolytic activity12 as well as improved clinical
response to immunotherapy in patients with cancers32,52,53. Our
results indicate that the malignant cells of certain myeloid origins
harbor increased levels of certain HERV transcripts and could serve
as a potential antigen pool for tumor-targeting immunotherapies.
Furthermore, our data suggest that T cell recognition of HERVs
may support the immune reconstitution following HMA treatment,
potentially by mediating cancer-cell control.

For immune checkpoint blockade, there is a robust association
between tumor mutation burden and treatment response54,55.
The mutations in tumor cells can give rise to neoantigens, which
are recognized as non-self-epitopes and thereby enhance the
immune reactivity against tumor cells. Arguably, HERV-derived

epitopes, may act in a similar manner and translate to immuno-
genic (neo)antigens, potentially with a higher degree of similarity
to known pathogenic epitopes, which may predict better respon-
ses56. Moreover, HERV-derived epitopes may serve as a shared
pool of antigens expressed across tumors from different patients,
as compared to neoantigens that are almost exclusively personal
and furthermore subjected to a large degree of intra-tumoral
heterogeneity57. Therefore, HERVs may serve as a reservoir of
targetable antigens in myeloid malignancies that generally carry a
low mutational burden58. In this study, we found that the inves-
tigated HERV loci shared a rather similar regulation at the RNA
level across patients before undergoing epigenetic therapy,
whereas the expression levels after treatment were more hetero-
geneous. This may reflect that AZA is incorporated in the DNA of
the patients’ malignant cells to different degrees, possibly
depending on their division pace and on the specific activity of the
intracellular enzymes responsible for AZA degradation. Moreover,
the activity and efficiency of the intracellular mechanisms
responsible for the degradation of HERV RNA molecules could
also vary among the patients. Obviously, the relative influence of
DNA methylation versus histone modifications on the expression
of the specific HERVs may vary among the patients due to a
disrupted cancer epigenome and different evolutionary ages of the
specific HERVs19,24. Indeed, as discussed earlier, these specific
HERVs may only to a low degree be regulated by DNA methy-
lation. Lastly, the subcellular and clonal composition of the
malignant cells will change unequally in the patients after sub-
jection to AZA treatment, demanding single cell analyses.

Currently, a number of ongoing clinical trials are designed to
determine the impact of combining HMAs and immune check-
point inhibitors, as well as epigenetic therapy and immunother-
apy in general, both in hematological malignancies and solid
cancers13,59. Our data support the need to study HERV-derived T
cell recognition in more detail in these treatment combinations to
determine the direct impact of T cell recognition of HERV-
derived peptides on tumor regression.

Methods
Study plan. The study was designed to investigate the immunogenicity of HERVs
in the context of cancers with low mutational burden, with the hypothesis of
identifying a novel class of antigens reactive to CD8+ T cells and their potential
application in cancer immunotherapy. A comprehensive analysis of HERVs resulted
in the prediction of 1,169 potential epitopes that were used to identify CD8+ T cells
in patients with hematological malignancies.

Patient samples were selected to represent hematological malignancies with a
relatively low mutational burden (MDS, AML, CMML), and represented peripheral

Fig. 5 Enrichment of HERV-specific T cells in patients correlates with enhanced expression of HERV elements. RNA-seq analysis of previously published
data of 18 patients from the Australian patient cohort was performed to quantify the expression of the 49 HERVs tested for T cell analysis. a Expression of
the 49 HERVs in each of the patients (before, n= 18, and after, n= 16, AZA treatment) compared with healthy donors (n= 14). Mann–Whitney–Wilcoxon
test, two-tailed, p < 2.2e−16 (healthy donors vs pre-AZA), p < 2.2e−16 (healthy donors vs post--AZA). Wilcoxon Signed-Rank test, two-tailed, p= 1.8e−4
(pre-AZA vs post-AZA). RNA-seq data of healthy donors were obtained from previously published data (Supplementary Table 6). Healthy donors, n= 588
(49 HERVs across 12 healthy donors; pre- and post-AZA, n= 784 (49 HERVs across 16 patients). b Correlation of HERV-specific T cell responses
identified in patient samples (shown in Fig. 2) with the expression of their associated HERVs. X-axis shows expression of the HERV transcripts (mean
across the 18 patients, before or after treatment). Y-axis shows the proportion of identified T cell epitopes (before and after AZA treatment), i.e., number of
T cell epitopes detected out of total predicted epitopes from a given HERV. Spearman correlation between HERV expression and T cell responses, r= 0.47
was significantly different from zero (p= 0.018) (source data are provided as Source data file). c Expression of the 18 HERV loci recognized by T cell
populations compared with the expression of the 31 HERV loci not contributing to any T cell response. Expression was quantified as transcripts per million
of total reads (TPM) and is given as the mean value for patients, including values both before and after AZA treatment; Mann–Whitney–Wilcoxon test,
two-tailed, p= 0.26. T cell positive, n= 18; T cell negative, n= 31 (source data are provided as Source data file). d Heatmap of estimated fold change for
individual HERVs across the 18 patients (before treatment) compared to mean expression HERV value across all healthy donors (using mean expression
values of transcripts for each HERV gene). For comparative representation, the fold change color scale is restricted from −6 to 6, and fold change values
outside this limit are shown at the maximum (>6= 6) or minimum scale (<−6=−6). HERV specific T cell occurrence together with information regarding
clinical response is annotated in the top bars for each patient. e Similar to (d) comparing pre- and post-AZA treatment. In boxplots the box shows the 1st
quartile (Q1), the median, and the 3rd quartile (Q3), while whiskers extend to 1.5 times the interquartile range (IQR) on either side of the box (or to the
minimum and maximum data values if these are less than 1.5 * IQR from Q1 and Q3).
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blood (PB) (n= 22) and bone marrow (BM) (n= 12) samples to compare a source
dependent analysis of antigen-reactive CD8+ T cells. Samples from 27 healthy
donors were included as controls. Pre- and post-treatment samples from individual
patients treated with HMAs were used to segregate malignancy- and therapy-
driven immunogenicity of HERV-derived peptides. A well-established DNA-
barcode based multiplex technology was used for CD8+ T cell detection in the
patient and healthy donor samples.

Standard bioinformatics tools were used for RNA-seq analysis of HERVs and
CTAs in the patient cohort and compared with RNA-seq data from healthy donors
(see RNA-seq data analysis).

Patients and sample collection. The PB samples derived from 22 Danish patients
with MDS (n= 13), CMML (n= 4), and AML (n= 5), and from 27 healthy
donors, all carrying one or more of the four most common HLA alleles in Cau-
casian populations (HLA-A*01:01, HLA-A*02:01, HLA-B*07:02, and HLA-
B*08:01). The patients were selected based on their sample availability before and
following AZA treatment and their HLA type. The patient PB samples were col-
lected at Rigshospitalet and Herlev Hospital, Copenhagen University Hospitals,
Denmark. All uses of human material have been approved by the committee on
health research ethics in the Capital Region of Denmark and the human research
ethics committee of the South Eastern Sydney Local Health District, Australia, and
informed written consent was obtained in accordance with the Declaration of
Helsinki. All patients were diagnosed according to the World Health Organization
(WHO) criteria60, and patients with MDS and CMML were risk stratified using the
Revised International Prognostic Scoring System (IPSS-R)61 and CMML-specific
prognostic scoring systems (CPSS)62, respectively. The clinical treatment responses
were evaluated in accordance with the International Working Group (IWG)
response criteria63, as complete remission (CR), marrow complete remission
(mCR), partial remission (PR), hematological improvement (HI), stable disease
(SD), or progressive disease (PD). Overall response was defined as CR, mCR, PR,
and HI and determined as the best response during the treatment course. The
patients were treated with 5-azacytidine (AZA; Vidaza, Celgene, NJ) at a dose of
100 mg/m2/day s.c. for five consecutive days on a 4-week cycle according to the
Nordic MDS guidelines (http://www.nmdsg.org). PB samples were as a rule col-
lected before AZA administration on the first and fifth day during each individual
treatment cycle.

The BM samples derived from 12 patients with MDS (n= 7) and CMML (n=
5) that were enrolled in a clinical study in New South Wales, Australia42. As for the
Danish patients, the Australian patients were selected based on their sample
availability before and following AZA treatment and their HLA type. The relevant
institutional ethics committees approved the study and informed written consent
was obtained from the patients. These patients were treated with AZA at a dose of
75 mg/m2/day s.c. for seven consecutive days on a 4-week cycle and BM samples
were collected at defined time points.

Peripheral blood mononuclear cells (PBMCs) from the Danish patients were
isolated from PB immediately after sampling using Ficoll-Paque PLUS (GE
Healthcare) density gradient centrifugation and were cryopreserved thereafter.
PBMCs from healthy donors and BM mononuclear cells (BMMCs) from the
Australian patients were isolated by density gradient centrifugation using
Lymphoprep (StemCell Technologies). CD34+ cell enrichment for RNA-seq was
carried out on the samples from the Australian patients by using CD34+ magnetic
beads and an AutoMACS Pro Machine (Miltenyi Biotec) according to the
manufacturer’s instructions. The remaining BMMCs were cryopreserved. Live
frozen BMMCs from 12 Australian patients could be included in the T cell analysis,
whereas samples from the total cohort of Australian patients (n= 18) could be
included in the RNA-seq analysis.

Healthy donor PBMCs were obtained from the central blood bank,
Rigshospitalet, Copenhagen, in an anonymized form. Healthy donor samples for
RNA-seq analysis originated from three previously published papers and RNA-seq
data were downloaded from the sequence read archive (SRA) using the SRA toolkit
(version 2.8.2-1) fastq-dump (Supplementary Data 5).

HERV peptide library generation. Mayer et al. provides a list of genbank
accession numbers corresponding to 66 HERVs with 1–4 accession numbers per
HERV34; we interpreted the HERV symbol as the gene name and the individual
accession numbers as transcripts that correspond to the same HERV. The list of
accession numbers enabled downloading of the nucleotide sequences using a
custom python script applying the BioPython Entrez.efetch function. The script
used the relevant accession numbers to download the sequences directly from
NCBI’s Entrez database. This generated a FASTA file in which the gene symbols
(identified by Mayer et al.) were added to each individual sequence header. Each
entry in the FASTA file was translated from nucleotide to amino acid sequence
using the first occurring start-codon until a potential stop codon occurred,
applying the BioPython functions Seq.Seq, Alphabet.generic_dna, and dna_se-
quence.translate. The peptide sequences were chopped into overlapping peptides of
9–11 amino acids, and the binding affinity to HLA-A*01:01, HLA-A*02:01, HLA-
B*07:02, and HLA-B*08:01 was predicted using NetMHCpan2.835. Peptides with a
percentile rank score ≤2 were selected and included in the final peptide library.
This was based on the authors’ guidelines of using netMHCpan 2.8 where peptides
determined as binders have a percentile rank score ≤2 (weak binders) and ≤0.5 for

strong binders. The percentile rank for a peptide is generated by comparing its
score against the score-distribution of a large set of random natural peptides; i.e., a
rank score of 1% means that the predicted score of the peptide is equal to the top 1
percentile score of the large set of random natural peptides. The percentile rank
score is recommended, compared to the predicted binding affinity, to ensure
predictive compatibility across different HLA alleles. The predicted binding affi-
nities and percentile rank scores were annotated for each peptide HLA pair,
together with the HERV gene(s) of the peptide origin and the number of occur-
rences for the individual peptides across different HERVs. The resulting CSV file
was sorted according to the predicted percentile rank score (Supplementary
Data 2).

Cancer testis antigens and viral antigens. A cancer testis antigen (CTA) library
was developed based on a literature search and CTAs compiled into a Ctdatabase
(http://www.cta.lncc.br)64. Our library covered 67 well defined CTAs of 8–11
amino acid long peptides that are reported to be associated with several cancer
types (peptide sequence and HLA restriction are described in Supplementary
Data 3).

Similarly, a peptide library of 19 known exogenous viral epitopes, representing
antigens from cytomegalovirus (CMV), Epstein-Barr virus (EBV), human
immunodeficiency virus (HIV), and influenza (Flu) viruses were prepared to
analyze cell reactivity against any of these common viral antigens (peptide
sequences and HLA restriction; Supplementary Data 4).

Peptides. All peptides of HERV-, CTA-, and viral antigens in the library were
custom synthesized by Pepscan Presto BV, Lelystad, The Netherlands. Peptide
synthesis was done at a 2 µmol scale with UV and mass spec quality control
analysis for 5% random peptides. For the HERV peptide library, custom synthesis
was achieved for 1169 out of 1173 peptides by the manufacturer. Peptide stocks
were prepared in DMSO at a 10 mM concentration. Ultraviolet light sensitive
peptide ligands for MHC class I folding were custom synthesized by the Peptide
facility at Leiden University Medical Center (LUMC), The Netherlands, using
previously described methods65–67.

MHC class I monomer production. MHC class I monomers of HLA-A*01:01,
A*02:01, B*07:02, and B*08:01 were produced using methods previously descri-
bed68. Briefly, MHC class I heavy chain and human ß2-microglobulin (hß2m) were
expressed in Escherichia coli using pET series expression plasmids. Soluble dena-
tured proteins of the heavy chain and hß2m were harvested using inclusion body
preparation. The folding of these molecules was initiated in the presence of UV
labile HLA specific peptide ligands. Folded MHC molecules were biotinylated using
the BirA biotin-protein ligase standard reaction kit (Avidity, LLC- Aurora, Col-
orado) and MHC class I monomers were purified using size exclusion chroma-
tography (HPLC, Waters Corporation, USA). All MHC class I folded monomers
were quality controlled for their concentration, UV degradation, and biotinylation
efficiency and stored at −80 °C until further use.

DNA barcode-dextran library preparation. DNA barcodes were prepared using
methods described in Bentzen et al.36, wherein each barcode represents a 5′ bio-
tinylated unique DNA sequence obtained by combining different A and B oligos.
These unique barcodes were attached to phycoerythrin (PE) and streptavidin-
conjugated dextran (Fina BioSolutions, Rockville, MD, USA) by incubating them at
4 °C for 30 min to generate a DNA barcode-dextran library of 1325 unique barcode
specificities.

T cell staining using DNA barcode tagged peptide-MHC multimers. HERV
peptide library specific monomers, restricted to HLA-A*01:01, A*02:01, B*07:02,
and B*08:01, were generated by a UV mediated peptide exchange process65,66,69,70.
These peptide-specific monomers were then attached to their corresponding DNA
barcode dextrans by incubating at 4 °C for 30 min, thus providing a DNA barcode-
labeled dextran for each peptide-MHC (pMHC multimer) specifically to detect the
respective T cell population. The same process was followed for the CTA- and viral
antigen libraries. The T cell staining process used has previously been described36.
Briefly, pooled pMHC multimers (HLA matching HERV and all the CTA- and
viral-specific pMHC dextrans) were incubated with 2–7 × 106 PBMCs or BMMCs
(thawed and washed twice in RPMI+ 10% FCS, and washed once in barcode
cytometry buffer) for 15 min at 37 °C at a final volume of 80 µL. Cells were then
mixed with 20 µL of antibody staining mix containing CD8-PerCP (Invitrogen
MHCD0831) or CD8-BV510 (BD 563919) (final dilution 1/50), dump channel
antibodies: CD4-FITC (BD 345768) (final dilution 1/80), CD14-FITC (BD 345784)
(final dilution 1/32), CD19-FITC (BD 345776) (final dilution 1/16), CD40-FITC
(Serotech MCA1590F) (final dilution 1/40), CD16-FITC (BD 335035) (final dilu-
tion 1/64), and a dead cell marker (LIVE/DEAD Fixable Near-IR; Invitrogen
L10119) (final dilution 1/1000), and incubated at 4 °C for 30 min. Cells were
washed twice with barcode cytometry buffer and fixed in 1% PFA.

For confirmation analysis of pMHC specific T cells, 1.5 µL pMHC multimers (of
individual specificity) were incubated with 2 × 106 PBMNCs or expanded T cells
and stained using methods described above.
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Identification of T cell reactive peptide-MHC specificities. Cells fixed after
staining with pMHC-multimers were acquired on a FACSAria flow cytometer
instrument (AriaFusion, Becton Dickinson). Cells were gated for lymphocytes,
singlets, live, and CD8 positives by the FACSDiva acquisition program (Becton
Dickinson), and all the PE positive (multimer binding) cells of CD8+ gate were
sorted into pre-saturated tubes (2% BSA, 100 µl barcode cytometry buffer) (Sup-
plementary Fig. 8a). Sorted cells belonging to each sample were then subjected to
PCR amplification of its associated DNA barcode(s). Cells were centrifuged for 10
min at 5000 × g and the supernatant was discarded with minimal residual volume.
The remaining pellet was used as the PCR template for each of the sorted samples
and amplified using Taq PCR Master Mix Kit (Qiagen, 201443) and sample specific
forward primer (serving as sample identifier) A-key36. PCR-amplified DNA bar-
codes were purified using the QIAquick PCR Purification kit (Qiagen, 28104) and
sequenced at Sequetech (USA) or GeneDx (USA) using Ion Torrent PGM 314 or
316 chip (Life Technologies).

Processing of sequencing data from DNA barcodes. To process the sequencing
data and automatically identify the barcode sequences, we designed a specific
software package, ‘Barracoda’ (https://services.healthtech.dtu.dk/service.php?
Barracoda-1.8). This software tool identifies the barcodes used in a given experi-
ment, assigns sample ID and pMHC specificity to each barcode, and calculates the
total number of reads and clonally reduced reads for each pMHC-associated DNA
barcode. Furthermore, it includes a statistical processing of the data. Details are
given in Bentzen et al.36 The analysis of barcode enrichment was based on methods
designed for the analysis of RNA-seq data and was implemented in the R package
edgeR. Fold changes in read counts mapped to a given sample relative to mean read
counts mapped to triplicate baseline samples were estimated using normalization
factors determined by the trimmed mean of M-values. P-values were calculated by
comparing each experiment individually to the mean baseline sample reads using a
negative binomial distribution with a fixed dispersion parameter set to 0.136. False-
discovery rates (FDRs) were estimated using the Benjamini–Hochberg method.
Specific barcodes with an FDR < 0.1% were defined as significant. At least 1/1,000
reads associated with a given DNA barcode relative to the total number of DNA
barcode reads in that given sample was set as threshold to avoid false-positive
detection of T cell populations due to low number of reads in the baseline samples.

T cell functional analysis. Patient samples (bone marrow derived) positive for
HERV-reactive T cells were expanded using pMHC-scaffolds conjugated with
corresponding HERV-derived peptide and cytokines (IL-2 and IL-21) for two
weeks in X-vivo media (Lonza, BE02-060Q) supplemented with 5% human serum
(Gibco, 1027-106). Expanded T cells were co-cultured with THP-1 cells (with or
without anti-HLA-A (Nordic BioSite, ACB-5EBF45) antibodies; final dilution 1/10)
or T2 cells (loaded with 10 µM HERV-derived peptide or irrelevant peptide) and
incubated for 4 h at 37 °C in the presence of protein transport inhibitor (GolgiPlug;
BD Biosciences, 555029; final dilution 1/1000). Functional activation of T cells was
measured using anti-CD107a (BD Bioscience, 555801; final dilution 1/40), and
intracellular cytokines IFN-γ (BD Bioscience, 341117; final dilution 1/20) and
TNF-α (Biolegend, 502930; final dilution 1/20). Cells incubated with Leukocyte
Activation Cocktail (BD Biosciences, 550583; final dilution 1/500) were used as a
positive control (Supplementary Fig. 8b).

RNA-seq data analysis. Samples from 18 Australian patients were used to gen-
erate paired-end RNA-seq data (see ref. 42 for RNA-seq procedure). The raw
sequencing reads were quality trimmed with an average quality read score of 20,
standard adaptors were cut at the first 5 bases of the read due to an unknown
sequence skewing the base pair balance. This was done with the wrapper tool trim
galore (version 0.4.0), combining FastQC (version 0.11.2) and cutadapt (version
1.9.1). The transcripts downloaded for the library generation from the NCBI Entrez
database were added to the ENSEMBL GRCh38 version 85 cDNA transcript
reference, to avoid aligning reads of standard genes to HERV-specific genes. The
quality checked reads were given as inputs to Kallisto (version 0.42.1) running 500
bootstraps, and following combination of the output files, the average expression
value in transcript per million reads (TPM) was used as the output
expression value.

All expression values below 0.05 TMP were set to 0.05 TMP to avoid skewing
the scale of the wanted visualized area. In the same manner, transcripts with very
high expression were set to a defined value, which differ from the plots and is
defined in the legend text. All log fold changes were calculated with log2(x)−log2
(y). For comparison of healthy donors and samples from patients before treatment,
the mean values across all healthy donors were used. For comparison of before and
after treatment in patients, the calculated log fold changes were derived from paired
samples and only patients with data from both before and after treatment were
included. Heatmaps were created using pheatmap (version 1.0.12) in R.

Statistical analysis. All statistical analyses were performed using R version 3.6.171.
Null hypothesis significance testing for comparisons of paired data were performed
using the Wilcoxon signed-rank test, while comparisons of unpaired data were
done using the Mann–Whitney-Wilcoxon test, both from the “coin” R-package,
which allows computation of exact p-values also in the presence of ties72. Bayesian

statistical analyses were performed using the software RStan, version 2.19.373,74.
Preparation of data as well as post-processing and plotting of results was done
using the “tidyverse” (version 1.3.0) and “tidybayes” (version 2.0.3) R-
packages75,76.

For all Bayesian models (see descriptions below) we ran 3 independent MCMC
chains for 10.000 iterations each, with 5.000 iterations warm-up, resulting in 15.000
post-warmup samples for each parameter. Convergence of MCMC runs was
monitored by comparing the posteriors from the three independent chains, and it
was checked that the potential scale reduction factor71 (“R-hat”) was close to 1 at
the end of the run for all model parameters, and that effective sample sizes for all
parameters were large (typical values > 5000). Different priors were checked and
found to not influence results substantially (Supplementary Fig. 9).

Bayesian model of proportion of individuals showing an immune response to either
HERV or viral antigens (Fig. 3a, d). It was assumed that each of the three inves-
tigated groups (healthy donors, patients pre-AZA, and patients post-AZA) have a
typical population proportion of responders. It was further assumed that the
observed number of individuals in the samples follow binomial distributions with
the sample N and population proportion as parameters. Non-informative, beta(1,1)
priors were used for the population proportions. Based on the joint posterior
distribution for the three population proportions we could compute the posterior
probability for all contrasts (e.g., the posterior probability that the proportion of
HERV responders is larger among pre-AZA patients than among healthy donors).

Bayesian model of the proportion of viral antigens recognized (Fig. 3f, g). We used
essentially the same model as for proportion of individuals, but with proportion
now being of viral (not HERV) peptides recognized in a class, instead of proportion
of people responding in a class.

Bayesian regression model of number of HERV peptides recognized by T cell
populations, corrected for effect of HLA allele present (Fig. 3c, g). In this analysis the
observed data were the number of peptides recognized by T cells for each indivi-
dual, for the up to 4 different possible HLA-alleles. We assume that the number of
positive peptides is drawn from a binomial distribution where the proportion
depends both on the investigated allele and on the class to which the person
belongs (healthy donor, patient pre-AZA, or patient post-AZA). Specifically, the
population proportion of recognized peptides is assumed to depend on HLA-allele
and person-class in the form of a logistic regression model:

pi ¼ logistic β0 þ βHLA½i� þ βclass½i�
� �

ð1Þ

Here, pi is the proportion of positive peptides for measurement i. The parameter
β0 is the intercept, corresponding to the overall, average proportion of peptides
across HLA-alleles and person-classes (regression parameters in this model fulfill
sum-to-zero constraints meaning they are deflections from the overall mean). The
parameter βHLA[i] is the influence of the specific HLA allele that is present in
measurement i, and βclass[i] is the influence of the specific person class for
measurement i. The number of positive peptides that is observed in the sample, ni,
is then assumed to be drawn from a binomial distribution with the given Ni

(number of peptides tested) and the estimated pi:

ni ¼ binomial Ni; pið Þ ð2Þ
From each regression coefficient parameter value in the MCMC sample file we

can now compute a predicted population proportion for each class that is corrected
for the HLA effects of HLA alleles:

pclass ¼ logistic β0 þ βclass
� � ð3Þ

From the predicted, HLA-corrected proportions we can furthermore compute
any derived measure of interest, including the log fold change measure that we
report in this study:

log fold change ¼ log
pclass1
pclass2

� �
ð4Þ

Notice that we automatically account for uncertainty in these measures since
they are computed for each value in the sample file for the regression coefficients,
resulting in posterior distributions for the derived measures also. We can therefore
compute, e.g., the probability that log fold change is larger than zero,
corresponding to the probability that pclass1 > pclass2, i.e., that the HLA-corrected
proportion of recognized peptides is larger in class 1 than in class 2.

Bayesian model normalizing HERV response to viral response (Fig. 3g). We also used
the response to the set of viral peptides as an internal control for the overall level of
immune response. Specifically, we, for each class of individuals, obtain a posterior
distribution over the proportion of viral peptides recognized in that class of people
(see third model mentioned above). From the posterior distribution of the HLA-
corrected proportion of HERV peptides recognized (pHERV, class, HLA-corrected), and
the posterior distribution of the proportion of viral peptides recognized (pviral, class),
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we then compute the posterior distribution of their ratio:

pclass; normalised ¼
pHERV; class;HLA�corrected

ppviral; class
ð5Þ

From the joint posterior distribution over these normalized values we can
finally compute the probability of contrasts of interest (the probability that the
HLA-corrected, normalized proportion of HERV peptides is larger in some classes
than in others).

Bayesian model of the connection between clinical outcome and T cell response to
HERV or viral antigens (Fig. 4d). We explored the connection between clinical
outcome (where patients are divided into responders or non-responders) and the
combined effects of the responses to HERV and viral antigens. In this model
predictors were: (1) indicator variables for the 4 HLA alleles, (2) indicator variable
for whether there was any HERV response, (3) indicator variable for whether there
was any viral response, and (4) the interaction between response to HERV and viral
peptides (i.e., the effect of having responses to both):

pðresponderÞ ¼ logisticðβ0 þ βHLAxHLA þ βHERVxHERV þ βVIRxVIR þ βHxVxHERVxVIRÞ
ð6Þ

We again used hierarchical priors to regularize estimates and avoid overfitting:
here the three coefficients for HERV, VIR, and HERVxVIR were assumed to be
drawn from a common normal distribution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available from the corresponding
author upon reasonable request. HERV peptides affinity to MHC class I molecules was
predicted using NetMHCpan version 2.8 (http://www.cbs.dtu.dk/services/NetMHCpan-
2.8/). Cancer testis antigen (CTA) library was developed using data available on
Ctdatabase (http://www.cta.lncc.br). Accession numbers for known transcribed HERVs
published by Mayer et al. were used to download the reported nucleotide sequences from
the National Center for Biotechnology Information’s (NCBIs) Entrez database (DB,
https://www.ncbi.nlm.nih.gov/Web/Search/entrezfs.html). Source data are provided with
this paper.

Code availability
Codes used for data analysis are available on GitHub (https://github.com/SRHgroup/
HERV).
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