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We present an investigation into adopting a model of the retino-cortical mapping,

found in biological visual systems, to improve the efficiency of image analysis using

Deep Convolutional Neural Nets (DCNNs) in the context of robot vision and egocentric

perception systems. This work has now enabled DCNNs to process input images

approaching one million pixels in size, in real time, using only consumer grade graphics

processor (GPU) hardware in a single pass of the DCNN.
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1. INTRODUCTION

Deep Learning methods have revolutionised signal and image analysis, and indeed end-to-end
approaches to training these networks can achieve the state-of-the-art in vision-based control
(Viereck et al., 2017; Morrison et al., 2018) and recognition for robotics. However, a real obstacle
to the practical adoption of DCNNs is their requirement for very large training data sets and their
inability to scale to process image matrices of greater than approximately 300 × 300 px in a single
pass. We address this issue directly by adopting a computational model of the space-variant, i.e.,
foveated, visual processing architecture found in the mammalian vision system (Schwartz, 1977).
Our 50K node retina-preprocessor enables current DCNN networks to process input images of
930×930px in size, using only consumer grade graphics processor (GPU) hardware, in a single pass
of the DCNN and this retina pre-processing approach has the potential to scale to accommodate
larger input image sizes. In addition, this pre-processor mapping confers a degree of scale and
rotation invariance to the transformed images facilitating a number of perception tasks, reducing
the parameter size and computation required to train a DCNN.

The above visual processing limitations of current DCNN implementations appear to have
been addressed effectively in biological vision systems. The visual pathway from the retina to
V1 itself implements space variant sampling in the retina to afford a very substantial data
reduction and also a key spatial transformation, the retino-cortical mapping (Schwartz, 1980). This
transformation affords a number of additional signal simplifications, including a degree of scale
and rotation invariance.

In this paper we present a retina-DCNN pipeline that confirms our hypothesis that DCNNs
are capable of learning in cortical-space and undertaking inferences in a single pass of this space.
We detail the results of experiments that confirm it is possible to harness simple functional
computational models of the space-variant retino-cortical mapping to improve the efficiency
of DCNNs and demonstrate combining our latest functional retina models with this mapping.
Accordingly, by applying a model of the retino-cortical transform, as a pre-processing step, to
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produce a much smaller cortical image, current DCNNS are
capable of processing, in a single pass, cortical images generated
from retina input images of the order of one million pixels. The
above efficiency improvement, and those predicted for the other
known processing transformations in the visual pathway, appear
to have the potential to solve many of the data efficiency issues in
adopting DCNNs in practice.

Within the retina itself, opponent ganglion cells compute a
colour space potentially capable of simplifying tasks such as
texture perception and contour detection. Motivated by this
signal simplification property, we present a GPU accelerated
high resolution software retina implementation that incorporates
basic models of opponent colour and intensity P-pathway
ganglion cells.

In addition to the above contributions, we outline a
number of practical examples of the utility of the retina-
DCNN combination: an egocentric perception system based
on human eye-tracking to provide retina gaze control for
training and object recognition, pan-tilt control of a robot wrist-
mounted camera, retina enabled camera interfaces and retina
data management tools.

We now overview the relevant properties of early mammalian
visual pathway and the retino-cortical mapping that are relevant
to supporting efficient visual computations, in the next section.

2. PRIOR RESEARCH IN
RETINO-CORTICAL MAPPING MODELS
OF THE VISUAL PATHWAY

2.1. The Mammalian Vision System
Any perceived light entering the eye-ball stimulates a
hemispherical layer of photoreceptor cells. These cells are
densely packed in the central foveal region of the retina and are
more sparsely distributed in its peripheries (Curcio et al., 1990).
Of the two types of photoreceptor cells, rods & cones, we have
only considered the cones which facilitate photopic colour vision
and discern fine detail. Since the rods are not present in the
fovea, we have not investigated the rod pathway within the scope
of this work which focuses on robot vision systems.

The signals produced by the photoreceptor cells are
sequentially pre-processed through up to four different neuron
types before exiting the retina and reaching the brain. It is
important to note that the typologies of these intermediate retinal
neurons coarsely follow the foveated topology of photoreceptor
cells, i.e., are held in retinotopic registration, and that it is
these topologies combined with visual attentionmechanisms that
enable the retina to control the rate of visual information passed
onto the brain, Curcio and Allen (1990). It has been estimated
(Schwartz, 1993), that if our eyes sampled our whole field of
view at the foveal resolution, our visual cortex would have to
be larger by several orders of magnitude to accommodate this
computational load.

An important feature of the retina’s neural architecture is
the concept of receptive fields. The final intermediate retinal
neurons that relay the visual signal to the brain are called retinal
ganglion cells (RGCs), and most of them receive information

from multiple neighboring photoreceptor cells through intra-
retinal pathways. Those local clusters of photoreceptor cells
comprise the RGC’s receptive field. The sizes of these receptive
fields increase with the distance (eccentricity) from the fovea,
with the foveal RGCs only relaying information from individual
photoreceptor cells (Hubel et al., 1995). Different RGCs have
receptive fields of different response profiles depending on their
specific function, which can range from discerning detail to
computing the magnitude of differential motion (Ölveczky et al.,
2003, 2007). Our basic retino-cortical mapping work is presented
in the next section and more detailed RGC models are also
presented in section 6.1.

2.2. The Retino-Cortical Transform
The RGCs pass the visual signal from the retina to the primary
visual cortex (V1). The signal from each eyeball is split into
two halves and each half is projected separately via a structure
known as the Lateral Geniculate Nucleus (LGN) onto each
hemisphere in V1, where it is can be observed as a form of
spatial complex logarithmic mapping, similar to that in Figure 1,
Left. This mapping appears to be the format in which our brains
process vision and it could potentially be one of the mechanisms
that facilitate scale invariance in biological vision systems
(Schwartz, 1977).

The key phenomenon that Schwartz models in Figure 1,
Left above is cortical magnification. The densely sampled fovea
achieves the effect of appearing to be magnified in the cortex
when compared the retina periphery, which appears to be
progressively compressed as a function of retinal eccentricity.
This of course reflects the photoreceptor sampling density within
the retina beyond the fovea, which decreases exponentially.

The above also gives rise to the data-reduction property of the
retino-cortical mapping and hence its resultant data efficiency.
In O notation used to specify computational complexity, i.e.,
order of, a uniform areal sampling of the retina would require
O(r2) receptive fields while a log-polar mapping reduces this
to O(r), (Wilson and Hodgson, 1992). Indeed if we consider
the number of receptive fields required to sample a contour
this becomes constant (Wilson, 1983, 1985). As a consequence,
the space-variant structure of the retina provides foveal full
resolution and the ability for a human to “thread a needle”, while
simultaneously monitoring ~180◦ (combined binocular vision)
of the environment. In effect nature has equipped us with a static
“zoom lens”.

Schwartz (1980), proposed that the retinal samples are
mapped to the cortex via a form of log-polar mapping. A number
of further perceptual gains arise from the above architecture: a
pure log-polar mapping, Equations 1, 2, results in a local edge
contour segment translating along the θ axis under input rotation
about a fixation point, while scale change centred on the fixation
point causes a local contour segment to translate along the ρ

cortical axis. In addition, peripheral objects located on a common
ground plane (with respect to an observer) also retain their local
shape appearance, i.e., exhibit projective invariance in the cortex.
These three invariance properties are illustrated in Figure 1,
Right (for a log (z+1) cortical mapping) and are referred to as edge
invariance, since the conformal log-polar mapping only preserves
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FIGURE 1 | Left: Global retinotopic mapping (Schwartz, 1977); Right: Scale rotation and projection invariance for a log(z+1) cortical mapping, taken from

Schwartz (1980).

local angles, and the local shape of the contour, but not its
global shape. However, this architectural organisation is clearly of
significance in terms of scale, rotation and projective invariance
for feature descriptors operating over the whole cortical field
(Wilson and Hodgson, 1992), and likewise offers potential utility
for the interpretation of stereopsis and texture perception in the
striate cortex (Schwartz, 1981).

Unfortunately, a pure log-polar transform gives rise to a non-
uniform fovea and a sampling density singularity at the centre
of the fovea. In order to avert this topological crisis, Schwartz
proposed that a small constant, α, be introduced to the horizontal
mapping axis, Equations 4–7. When α is small compared to
the horizontal Field of View (FoV), the fovea then becomes
approximately linear (i.e., shift invariant) in sampling and the
periphery approximates a log-polar mapping. This mechanism
also gives rise naturally to the split in the retinal vertical meridian
observed in the mammalian eye-brain mapping, as described in
Equations (6, 7), and illustrated in Figure 5. While the mapping
no longer produces a purely orthogonal output map in response
to scale input transformations, the effect of such input changes
is to produce a smoothly continuous warp of input contours
along streamlines in cortical space. Accordingly, the continuity
of these transformations still reduces the size of the cortical
pattern space that any subsequent perceptual system must learn
to accommodate invariance to input scale and rotation changes.

Further implications can be found for interpreting egocentric
optical flow fields, where time-to-impact can be read directly
from the ρ axis on the cortex and deviation from a horizontal
flow field can be interpreted as being due to the presence of
non-stationary objects in the FoV (Rojer and Schwartz, 1990).

Schwartz (1980) also demonstrates how his complex-log
mapping can be used to explain the cortical magnifications

observed in a number of mammalian species. Johnson (1986,
1989) extends Schwartz’s analysis by demonstrating that the 3D
nature of retina and cortex that should be taken into account in
order to explain fully the mapping and confirms this hypothesis
with biological data. However, Johnson’s extended mapping is
beyond the scope of this paper.

The foveated nature of the mammalian visual architecture also
impacts visual search, affording an “attentional spotlight” that
suppresses extraneous details while retaining pertinent diagnostic
image features, e.g., one recognises an individual from the
gross structural features of their face, as opposed the detailed
arrangement of their skin pores or strands of their hair. Hence,
full visual acuity is directed by the visual system to interrogate
the scene where required, while gross structural features provide
both context and the necessary diagnostic information for visual
interpretation of the scene, and specific items, or regions, within
it. In an earlier implementation of the retina described here based
on the use of SIFT (Scale Invariant Feature Transform) (Lowe,
2004), visual descriptors for image matching, we found that the
retina actually improved recognition rates over the use of SIFT
processing at full-resolution. We attribute this result to the retina
smoothing out irrelevant detail, when it is directed to classify
diagnostic locations (Ram and Siebert, 2011).

2.3. Functional Retina Models
Commencing with the pioneering work by Schwartz and
his contemporaries, many implementations of vision systems
have been reported which adopt log-polar mappings (for
example: Weiman, 1988; Bolduc and Levine, 1997; Gomes,
2002; Balasuriya and Siebert, 2006). A relatively recent example
of a space-variant vision system was proposed by Pamplona
and Bernardino (2009) who devised a method of generating
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foveated images using overlapping Gaussian receptive fields
and a technique for performing conventional image processing
functions on such images using matrix operations. This work
makes a strong case for using Gaussian receptive fields rather
than superpixels as an accurate and computationally efficient way
of performing retinal sampling, although the resultant images
produced by their method suffer from a number of artefacts.

We have based our work on an earlier retina model developed
by Balasuriya (2006) which also employs Gaussian receptive
fields. Balasuriya reports a complete vision system based on a
self-organised software retina that combines mechanisms for
retina tessellation generation, retina sampling, feature extraction
and gaze control, Balasuriya and Siebert (2003, 2006). The
output from this retina was originally processed using SIFT-like
descriptors and directed by means of a SIFT keypoint based gaze
control system and is now processed using DCNNs in the work
reported here.

2.3.1. Balasuriya’s Retina
A central issue is how to generate a retina tessellation in such a
way that no local discontinuities, distortions or other artefacts are
produced when making a transition between the retina’s quasi-
uniform fovea and its log-polar periphery. To solve this problem
Balasuriya employs a self-similar neural network (Clippingdale
and Wilson, 1996). This method relies on a network of N units
jointly undergoing random translations to produce a tessellation
with a near-uniform dense foveal region that seamlessly
transitions into a sparse periphery, Figure 2, Left. Each node
in the resultant tessellation defines the location of a receptive
field’s centre. The receptive fields somewhat follow the biological
retina’s architecture; they all have a Gaussian response profile the
standard deviation of which scales linearly as a function of local
node density, which in turn scales statistically with eccentricity,
Figure 2, Right, due to the stochastic nature of the tessellation.
This scaling balances between introducing aliasing at the sparsely
sampled peripheries and super-Nyquist sampling at the densely
sampled foveal region. Since the receptor scaling varies locally
with node density it is possible to have receptive fields at the
same eccentricity with slightly different field diameters, as found
in nature, to avoid “holes” in the receptor layout.

FIGURE 2 | Left: The 4196 node tessellation used in this paper. Right:

Gaussian receptive fields on top of a retina tessellation, taken from

Balasuriya (2006).

The values sampled by the receptive fields are stored in an
imagevector, which is essentially a one-dimensional array of
intensity values. After defining the retina in Balasuriya (2006), a
scale-space retina pyramid is presented which is used to extract
corner-based saliency information that drives the gaze control
mechanism. The saliency information is extracted from the
receptive fields, stored in imagevector format, and then back-
projected onto the saliency map which is then normalised based
on the Gaussian field intensity. An inhibition-of-return map
employing a similar mechanism has been adopted to prevent
the retina from continuously fixating upon the same location.
Having computed the saliency map, the retina saccades to
the location with the highest value of the difference between
the saliency map and the inhibition-of-return map and the
whole process is repeated for each retina fixation that follows.
The work presented here is based on an improved version of
Balasuriya’s retina implementation and conceptual aspects of his
gaze control mechanism.

2.4. A 4196 Node Retina Implementation
Our first attempt at coupling the software retina described
in section 2.3.1 to a DCNN utilised a tessellation comprising
N = 4, 196 nodes, for rfov = 0.1, and required Niter =

20, 000 iterations to stabilise, Figure 2, Left and is defined by the
following tessellation parameters:

• N - number of nodes in the retina tessellation
• rfov - the fovea’s radius as a fraction of the tessellation’s radius.
• Niter - number of iterations for self-organisation of

the self-similar neural network, used in generating the
retina tessellation.

Receptive field parameters:

• dist5 - the mean pixel distance of the 5 central foveal nodes to
their 5 closest neighbors

• σbase - base standard deviation of the Gaussian receptive fields
• σratio - the eccentricity scaling factor of the Gaussian receptive

fields’ standard deviation

While the generated tessellation does not exhibit obvious classical
log-polar spirals, due to the stochastic nature of its production,
In Figure 2, Left, we can observe that, at least subjectively,
the annealed retinal tessellation appears similar to the spatial
distribution of cone receptors in the human retina itself (Sawides
et al., 2016). Regarding the locally random nature of the retina
tessellation, has been reported that the stochastic, non-uniform
placement of retina photoreceptors appears to contribute to the
image sampling process by transforming aliasing artefacts to
appear more similar to a noise component which in turn can
be more readily accommodated in subsequent neural processing
(Yellott, 1983).

The dist5 variable essentially defines the pixel distance between
the two closest nodes in the tessellation by globally scaling the
tessellation. The σbase variable defines the base size and standard
deviation of the Gaussian receptive fields: increasing it results
in blurrier images, while overly decreasing it results in aliasing
(jaggy) artefacts as visible in the top right image in Figure 3. The
aliasing artefacts are especially apparent at the peripheries of the
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FIGURE 3 | Backprojected retinal images and their retinas’ Gaussian

heatmaps. Left: a well-parametrised retina. Right: a badly parametrised retina.

image. Finally, σratio defines the difference between the receptive
field sizes in the fovea and the peripheries of the retina.

The information captured by the retina can be visualised
directly by generating a backprojected retina image (Figure 3,
top row). It allows one to check visually whether the retinal
subsampling appears sharp and free of aliasing artefacts. In order
to obtain the backprojected image, every Gaussian receptive
field kernel is projected onto an image-plane and scaled by its
corresponding imagevector value. This image is then normalised
by theGaussian heatmap image (Figure 3, bottom row), which by
itself is a useful visualisation of the spatial distribution of retina’s
receptive fields. The heatmap image can be obtained by simply
projecting the receptive field Gaussians without scaling them by
imagevector values. Aliasing artefacts in backprojected images
can be produced by gaps between receptive fields in the retina’s
Gaussian heatmap image and can be suppressed by increasing
the standard deviation of the projected Gaussian field. However,
this comes at the expense of increasing the degree of blur the
reconstructed image.

The receptive field parameters used were chosen manually
by visually examining the Gaussian heatmaps and backprojected
images for various parameter combinations. The objective being
to produce heatmaps which are both free from “holes” mentioned
above and also not significantly blurred. The chosen receptive
field parameters are: dist5 = 1.0, σbase = 0.4 and σratio = 0.26
to produce a retina of 168× 168 px in size.

3. EXPLOITING THE RETINO-CORTICAL
MAPPING WITHIN DEEP LEARNING

As described above, the basic retina samples an input image
and produces an image vector as output, in a manner somewhat

analogous to the optic nerve. However, this form of output is not
compatible with current DCNN software environments as these
have been designed to process regular image matrices as input.
We have solved this compatibility issue by generating a cortical
image. Even though our initial retina implementations did not
fully exploit the potential data reduction efficiency of the retina
image sampling approach, they did provide a straightforward and
viable means to coupling the retina to any conventional DCNN
architecture. The cortical image efficiency issue has now been
substantially addressed in subsequent implementations (Shaikh,
2018) section 6.

3.1. Cortical Image Generation
3.1.1. Requirements and Approach
We generate cortical images using Gaussian interpolated forward
projection, a technique frequently employed in computer
graphics. The receptive field centres used for retina sampling
are first mapped into cortical space and then each imagevector
intensity value is used to scale a small Gaussian kernel which is
accumulated into the cortical image, centred on the appropriate
cortical location. An alternative approach would be to map the
back-projected retinal image pixel-by-pixel onto a new space;
this however would be more computationally intensive and
would not take advantage of the compression achieved by the
imagevector. Additionally, the pixel-by-pixel approach would be
much less flexible due to fewer parameters defining the behaviour
of the process. It would also result in significant holes in the foveal
region of resultant cortical images, similar to those reported in
the work of Pamplona and Bernardino (2009). The approach
taken eliminates the possibility of holes in the mapping as the
size of the Gaussian kernel projected into the cortical image can
be increased to provide the required degree of overlap and also
suppress aliasing.

The cortical images should ideally preserve local angles,
maintain a fairly uniform receptive field density and preserve
all local information captured by the retina without introducing
any noise. These requirements are laid out in order to enable
the convolution kernels of CNNs to extract features from
the resultant cortical image. The literature reviewed points
toward a form of log-polar space as being the most appropriate
approach since it has been shown to model with reasonable
fidelity the mapping observed in the primate visual cortex
(Schwartz, 1977). Mathematically, this mapping provides a
plausible model, affording the key geometric features of observed
cortical magnification of the fovea and compression of the
peripheral visual field accordingly; it is also a conformalmapping,
meaning that it preserves local angles.

3.1.2. The Cortical Mapping
Retinal log-polar coordinates consist of θ , which is the angle
about the origin (the centre-most point of the fovea), and ρ,
which is the log of the distance from the origin. The x and
y variables below represent retinal space Cartesian coordinates
relative to the origin.

ρ = log

√
x2 + y2 (1)
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θ = atan2(y/x) (2)

As evident in the left side of Figure 4 the log-polar space
suffers from severe sparsity in the foveal region and excessive
density at the peripheries. This has been mitigated by deviating
from the approach proposed in the literature, removing the
log operator from Equation (1) and switching to the “linear”
polar space:

r =

√
x2 + y2 (3)

The right side of Figure 4 demonstrates the drastic improvement
in node uniformity by switching to the polar space, although
the foveal region is still undesirably sparse and the extreme
peripheries are packed in tight rows. The uniformity of the
polar mapping also suffers at r = 30 where the node density
is too high compared to other regions. These issues have been
resolved by adopting the approach from the work of Schwartz
(1980) and adjusting the mapping with an α parameter while
also splitting the retina tessellation vertically into two halves
and mapping each half separately. This solves the singularity
issue at the fovea and brings the mapping closer to the
experimental data of activations in the visual cortices of different
primates. The resultant coordinate equations for the cortical
mappings are:

Ycort =

√
(x+ α)2 + y2 (4)

Xcort = atan2(y/(x+ α)) (5)

As seen in Figure 5 the α parameter is added to the x coordinate
to shift the tessellation’s nodes away from the origin horizontally.
In polar space this manifests itself by translating the nodes closer
to X = 0, with the effect increasing logarithmically toward

the foveal nodes at Y = 0. As the α parameter increases, the
peripheral nodes (red and dark blue in Figure 5, Left) protrude
proportionately; this is desirable as it addresses the issue of tightly
packed rows of nodes from Figure 4. Accordingly, α sets the field
of view of the quasi-linear region of the retino-cortical mapping.
Note that in order for the left half of the retina to mirror the
right one in Figure 5, Left its coordinates have been adjusted
as follows:

Xleft = −

√
(x− α)2 + y2 (6)

Yleft = atan2(y/x− α)− sign(atan2(y/x− α)) ∗ π (7)

It was decided that a value of α = 10 will be used as upon visual
inspection it appeared the most uniform. Lower α values lead to
an overly sparse foveal region, while higher values produced an
overly dense region at Y ≈ ±70, X ≈ 0. In order to define the
aspect ratio of cortical images the mean node distances along the
x and y axes were equated.

Cortical images were produced by projecting Gaussians scaled
by the associated imagevector value onto the appropriate nodes’
locations with a sub-pixel accuracy of 1 decimal place. The
resultant image was then normalised by pixel-wise division with
the cortical Gaussian heatmap image, in a similar process to that
used to generate retinal backprojected images in section 2.4. The
cortical Gaussians were parameterised with σ = 1.2 and clipped
at 7 pixels width. The two halves of the cortical image are also
realigned to facilitate visual inspection.

The resultant cortical images, an example of which can be
seen in Figure 5, Right, satisfy all the criteria for an acceptable
input to a CNN: local angles are preserved, receptive fields
are projected at a sufficiently uniform density and most of the
local information captured by the retina is preserved without
introducing any noise or artefacts. The cortical images have a

FIGURE 4 | Colour coded receptive field centres mapped onto the log-polar (Left) and linear-polar (Right) spaces. Warmer colours indicate receptive fields closer to

the peripheries, whereas colder colours indicate points closer to the fovea.
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FIGURE 5 | Left: Two hemifields of receptive field centres mapped onto a polar space. Going from top left to bottom right the α values are: 0, 5, 15, 30. The points

are colour-coded based on the value of sign(x) ∗ r. Right: A cortical image of the standard Lena image, equivalent to the optimal retinal backprojection from the left

side of Figure 3.

resolution of 179× 96 px, while a square that best fits the retina’s
resolution is 168× 168 px large.

The cortical parameters were selected with a focus on
reconstructing the foveal region of the image to ensure that
the high-frequency content captured by the retina reaches the
CNN. As a result the cortical images for this parameterisation
display aliasing artefacts which are especially visible on images
of synthetic objects with straight edges (Lena’s hat in Figure 5,
Right). Subsequent mappings, described in section 4, now
address this issue.

While the visual data reduction achieved by this retina
is approximately ×7, the compression ratio of the cortical
transform is 1.64 : 1, due to the pixel interpolation required
to generate a hole-free cortical image. However, our ongoing
research has demonstrated that it is now possible to achieve the
full data reduction potential for the approach section 6.

3.1.3. Fovea Size and Hemifield Overlap
As we are inputting image files to the retina, as opposed to
characterising a camera as input with specific FoV characteristics
as determined by a lens etc., the concept of FoV in terms of
visual angle does not apply to this retina as such, but in terms
of pixels, 168px as described above. Specified as a fraction of the
radial FOV, the retina parameterisation above has been chosen to
generates a fovea of ~10%.

Due to the disjoint nature of the cortical mapping at the
interface between the projected cortical hemifields, there is a loss
of neighborhood information along the retina’s vertical meridian,
which is the ‘U’ shaped border region in the cortical mapping
as evident in Figure 5, Right. In future versions this could
be resolved by having the two halves of the cortical mapping
duplicate a set of nodes on the meridian, as found in the
mammalian visual systemwhich shares of the order of 1◦ of visual

FIGURE 6 | Going left-to-right, top-to-bottom: a retinal backprojection image;

the equivalent region of the initial saliency map denoting SIFT feature locations;

the equivalent region of the inhibition map resulting from the singular fixation;

the final saliency map.

overlap along the vertical meridian in the retina, between each
cortical hemifield in human vision. As both cortical hemifields
are processed by a single DCNN in the implementation
reported here, we believe that any information loss is likely to
be minimal.

3.2. Gaze Control
The implemented system follows Balasuriya (2006) by
maintaining a saliency map of the input image, as well as
an inhibition-of-return (IOR) map describing past fixations
Figure 6. Initially the retina is fixated upon the centre of the
image. To populate the saliency map the retinal backprojected
image is scanned for SIFT features. A Gaussian is then projected
at each feature’s corresponding location in the saliency map,
with the caveat that the projections do not sum with the saliency
map’s prior value, but override it if they are larger.
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The location of each fixation is represented in the IOR map
as an amplified Gaussian spanning the retina’s foveal region. In
order to determine the coordinates of the next fixation, the IOR
map is subtracted from the saliency map, the result is blurred
with a 37 × 37 averaging convolution kernel. The coordinates
of the maximum value on the final saliency map determine the
next fixation point. The result is satisfactory - the retina focuses
on areas of the input image with the most corners present, and
does not re-fixate upon the same location.

3.3. Validating the 4196 Node Retina
A dataset suitable for training and evaluating retina-integrated
DCNNs (RI-CNNs) has to meet a set of requirements: the
object of interest has to occupy most of the image in order to
maximise the likelihood of the gaze control algorithm producing
good fixations. Ideally, said object would be either segmented or
cropped out from the background. The images have to be large
enough to take advantage of the retina, but not too large so that
a single fixation of the retina captures a reasonable proportion of
the object of interest. In order to prevent the classification task
from being trivial, each object class in the dataset should share a
subset of its visual features with at least one other class, meaning
that the classes should be somewhat similar to each other.

In order to fulfill the above requirements, a new dataset was
created by selecting and pre-processing the appropriate classes
from ImageNet (Deng et al., 2009). This dataset consists of three
subsets: subset A is made up of cortical images (Figure 7, left),
subset B is retinal backprojected images (Figure 7, centre) and
subset C consists of the conventional images of each fixation,
masked with the retinal lens (Figure 7, right).

The object categories selected for the classification task
are Basketball Hoop, Brown Bear, Keyboard and Racoon. The
similarities between Brown Bear and Racoon (furry animal),
Basketball Hoop and Keyboard (synthetic object with a grid-like
key feature) helped ensure that the classification task is not trivial.
The class objects were cropped out from their original images
using the bounding boxes provided in ImageNet. The resultant
images passed automatic selection that ensured the images were
not too small (width, height > 75, 75) or too long (1/3 <

width/height < 3), and were then processed by appropriate
parts of the retina pipeline to produce the three subsets. In
order to correct a large imbalance between the class frequencies,
the number of retina fixations was varied per class. After the
subsets were produced, they were manually edited to remove

FIGURE 7 | An example Brown Bear image from each of the three subsets

(A–C).

exceptionally bad fixations and false positives resulting from
incorrect labels assigned in ImageNet. The final image counts in
the dataset can be seen in Table 1, Left.

3.4. 4196 Node Retina Results and
Discussion
In order to evaluate the performance of the retinal subsampling
mechanism and the cortical image representation in isolation,
three DCNNs were trained, each with the same architecture
but each using a different subset of the dataset built in the
previous section. The DCNN architecture used, Table 1, Right,
was chosen by trialing various architectures to maximise their
performance over the cortical image dataset. The Keras 2.0.2.
library was chosen as the Deep Learning platform used in
this work. A relatively simple DCNN architecture was chosen
in this pilot study, as our priority was to achieve benchmark
classification performance testing, as opposed to optimisation of
the recognition network.

We employed the Adam Kingma and Ba (2014) optimiser
and a categorical cross-entropy loss function when training the
DCNN. Improvements in validation accuracy were monitored
and training was terminated automatically when this was no
longer productive. L2 regularisation of strength λ = 0.02
was applied to the internal fully connected layers to prevent
overfitting, however that value could most likely have been
increased as the model continued to display signs of overfitting.
The key figures from the training process are:

• Network EVAL-A, using (96 × 179) cortical images, reached
its peak performance (validation loss = 0.605, validation

accuracy = 82.26%) after 16 epochs.
• Network EVAL-B, using (168× 168) retinal backprojected

images, reached its peak performance (validation loss = 0.493,

validation accuracy = 86.14%) after 21 epochs of training.
• Network EVAL-C, using (168× 168) conventional images,

reached its peak performance (validation loss = 0.488,

validation accuracy = 87.51%) after 25 epochs of training.

The results from evaluating the networks against the test set
(Figure 8) show that both applying the full retino-cortical
transform and the retinal subsampling lead to a modest
decrease in the DCNNs’ performance. The network trained on
conventional images performed the best, with an average F1 score
of 0.86; the network trained on retinal images landed an F1 score
of 0.84 while the cortical images network had an F1 score of
0.80 showing that remapping the image from the retinal to the
cortical space was themost damaging aspect of the retino-cortical
transform. As seen in the matrices in Figure 8, the majority of
the networks’ confusion is between the classes sharing similar
key features.

Although the retina has reduced classification performance,
the gap between the different networks’ performances is
not excessive and the network EVAL-A has successfully
demonstrated the learning capacity of convolutional neural
networks for images in the cortical view while achieving a 7-fold
visual data reduction and a 1.64 DCNN input compression ratio,
fulfilling the main objective of this pilot study.
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When interpreting the above pilot results, it should be kept
in mind that it is possible that manually editing the dataset may
not have removed all false positive and bad fixation images. The
dataset is also not optimally large, and the input images are
often small resulting in a number of fixation images being mostly
empty, i.e., lacking visual input by fixating on the black border
surrounding the image region sampled by the retina.

4. A HIGH RESOLUTION 50,000 NODE
REAL-TIME RETINA IMPLEMENTATION

In the light of the above experiment it was decided to develop a
a high-resolution 50K node retina (∼10% fovea size by radius)

to achieve a visual data-rate reduction of approximately ×16.7.
While initial implementations achieved compression ratios of
the order of ×3, even this level of data reduction allows
current DCNN implementations to process images approaching
megapixel resolution in a single pass, described in section 5.
A compression ratio of ×11.5 has now been achieved for this
retina, section 6. Accordingly, the need to apply a DCNNwindow
that is scanned over an image pyramid is no longer required
and this greatly improves the overall efficiency of the DCNN
Ozimek and Siebert (2017), Ozimek et al. (2017), and Hristozova
et al. (2018). This retina implementation has been optimised
in terms of reducing aliasing artefacts resulting from retinal
sampling and cortical image production. Examples of cortical
and back-projected retina images are shown in Figure 10.

TABLE 1 | Left: Per class and per split fixation image counts. The numbers are consistent across all 3 subsets of the dataset. Right: DCNN architecture for 4,196

node retina.

Training Evaluation Test TOTAL

Basketball

Hoop

2,560 727 372 3,659

Brown Bear 2,422 693 350 3,465

Keyboard 2,490 711 360 3,561

Racoon 2,492 704 339 3,535

TOTAL 9,964 2,835 1,421 14,220

Input Image

A: (96 × 179 × 3)

B&C: (168 × 168 × 3)

1st Convolutional Layer

Conv2D: 32, (5 × 5), ReLU

MaxPooling2D: (2 × 2)

2nd, 3rd & 4th Convolutional Layer

Conv2D: 64, (3 × 3), ReLU

MaxPooling2D: (2 × 2)

Flatten

1st & 2nd Fully Connected Layer

Dense: 512, ReLU

Dropout: 30%

Output Layer

Dense: 4

Activation: Softmax

FIGURE 8 | Confusion matrices and different performance metrics of the three DCNNs evaluated against the appropriate test sets.
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Given the level of computation required to execute the
new 50K node retina and the need to support subsequent
retina developments and real-time applications based on retina
sampling, we decided to implement a hardware accelerated
retina. This implementation has been written in CUDA C to
execute on the NVIDIA series of Graphics Processor Units
(GPUs) and is capable of sampling an RGB image to produce a
triple of RGB image vectors in 39.1 ms, executing on an NVIDIA
GTX 1080 Ti GPU (Balog, 2017).

5. HUMAN EYE-TRACKING BASED
EGOCENTRIC PERCEPTION

We have undertaken an experiment (Hristozova, 2018),
to combine the high-resolution 50K node software retina
(Balasuriya, 2006; Ozimek and Siebert, 2017; Ozimek et al., 2017)
with a custom designed DCNN architecture [based on DeepFix
(Kruthiventi et al., 2017)] coupled to an image stream collected
by Tobii Pro 2 eye-tracking glasses (AB, 2017) (Figure 9) worn
by a human observer. Our objective is to demonstrate that we
can achieve state-of-the-art recognition performance using our
high-resolution retina implementation while also achieving
efficiency gains. In addition, we wanted to investigate the
potential to adopt a human observer for directing our software
retina’s gaze to thereby construct a truly egocentric perception
system suitable for both humans and robots. Our final objective
for this experiment is to demonstrate that it is possible for
a human operator to collect appropriate training data for a
software retina-based egocentric perception (Siebert et al., 2016;
Ozimek et al., 2017) system simply by looking at objects. These
objects may then be recognised in images collected by a human
observer using eye tracking glasses, or a machine observer
equipped with a saliency model to direct visual gaze.

5.1. Eye Tracking Pipeline
Our processing pipeline comprises four stages: image capture,
fixation cluster extraction, retina transformation and DCNN
processing. Following image collection using the Tobii glasses,
described below, the images for the observations of each object
are composited, in order to allow the individual fixations
associated with each observation (fixation) to be overlaid on a
single reference image. This approximate alignment was initially
achieved by means of SIFT descriptor matching and extraction

of the inter-image homographies, however, we discovered that
simple head stabilisation was sufficient to achieve the required
image registration. K-means clustering is then applied to these
co-referenced fixation locations, where K has been set to 1% of
the number of fixations in the observations for the current object
class. This both reduces the number of fixated training images
to manageable numbers and also selects locally coherent clusters
of fixations, whose convex hulls are used to locate the software
retina within the input image, as shown in Figure 9. The smaller
cortical images produced by the retina are then input to the
DCNN for both training and inference purposes.

5.2. Eye Tracking Data Collection
A custom interface was developed to allow an operator to control
the acquisition of images using the Tobii Pro 2 eye tracking
glasses. The two observers who participated in this experiment
were instructed to look at locations on the surface of each object
which seem particularly salient, or diagnostic of each object’s
identity, when collecting images. As mentioned above, it was
necessary to stabilise observer’s head by resting their chin on a
desk surface while observing each object using the Tobii glasses
and also by their consciously minimising any head movement.
A data set of over 26,000 images was collected using the Tobii
glasses, split into three categories: Training, Validation and Test.
Each of these categories contains 9 object classes: Eggs, Gnocchi,
Juice, Ling, Milk, Rice, Strep, VitC and Yogurt. Each of the data
categories comprises the following proportion of the total data:
Training 80%, Validation 18% and Test 2%.

5.3. Building a DCNN for Classifying Eye
Tracking Image Data
Inspired by Kruthiventi’s DeepFix Kruthiventi et al. (2017)
network we developed a hand-optimised DCNN architecture
comprising seven convolutional layers(CLs), as summarised in
Table 2. The first two CLs have been configured with 32
convolution filters, the second two CLs with 64 convolution
filters, the fifth CL comprises 128 filters while the final two CLs
comprise 256 filters. In all seven convolution layers the filters
are 3 × 3 in size and each of these layers is coupled by a 2 ×

2 ReLU max pooling function. Thereafter, the output of the last
pooling layer has been flattened prior to being coupled to three
fully connected (FC) layers, each comprising 132 nodes and a
final fully connected layer configured with nodes corresponding
to the number of output classes, in this case 9. Each FC layer

FIGURE 9 | Left: Tobii Pro2 Eye Tracker Glasses; Right: Fixation clustering following homography alignment.
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TABLE 2 | DCNN architecture for Cortical and Fixation Crop image classification

using the 50K node retina.

Input Image

Cortical Image: (399 × 752 × 3)

Fixation Crop Image: (926 × 926 × 3)

1st & 2nd Convolutional Layer

Conv2D: 32, (3 × 3), ReLU

MaxPooling2D: (2 × 2)

3rd & 4th Convolutional Layer

Conv2D: 64, (3 × 3), ReLU

MaxPooling2D: (2 × 2)

5th Convolutional Layer

Conv2D: 128, (3 × 3), ReLU

MaxPooling2D: (2 × 2)

6th & 7th Convolutional Layer

Conv2D: 256, (3 × 3), ReLU

MaxPooling2D: (2 × 2)

Flatten

1st Fully Connected Layer

Dense: 132, ReLU

Dropout: 50%

2nd Fully Connected Layer

Dense: 132, ReLU

Dropout: 0%

3rd Fully Connected Layer

Dense: 132, ReLU

Dropout 0%

Output Layer

Dense: 9

Activation: Softmax

had a rectifier activation function. While the activation function
of the output layer was set to softmax, to provide classification
values ranging from 0 to 1. The classifier was optimised using
stochastic gradient descent and categorical cross entropy was used
to compute the loss function. Drop-out was set to 50% and
applied only once, after the first fully connected layer.

5.4. Cortical and Fixation Crop Image
DCNN Validation
In order to compare the performance obtained when pre-
processing images using the software retina, as opposed to
classifying standard images, two DCNNmodels were trained: the
first with fixation crop images of size 926× 926 px and the second
with the cortical images of size 399× 752 px. Examples of fixation
crop and cortical images are given Figure 10. These images were
also normalised prior to being input to the DCNN.

5.4.1. Cortical Image DCNN Validation
The cortical image classification DCNNmodel was trained using
270 steps per epoch (total number of images/batch size), where
the batch size was set to 64 and the training and validation
data sets comprised 21,310 and 4,800 images respectively. This
model required 55 min processing time to execute 18 epochs and
produced 98% validation accuracy. Figure 11 shows the accuracy

and loss respectively. 6 s of processing time were required for this
model to classify the data in its test set, resulting in an average
accuracy of 98.2%.

5.4.2. Fixation Crop Image DCNN Validation
As illustrated in Figure 10, the fixation crop of an original image
contains the retina’s field of view, but retains the full image
resolution. In order to benchmark the performance of the cortical
image DCNN classifier, a DCNN model was trained using the
full-resolution fixation crop images. In this case 1217 steps per
epoch were used (again total number of images/ batch size) where
the batch size is set to 16 and the training and validation data
sets comprised 19,485 and 4,390 images respectively. The batch
size had to be reduced to 16 from 64 used for the cortical image
DCNN, because the increased numbers of pixels in the fixation
crop images invoked a TensorFlow memory exhaustion error at
any larger batch size. The resulting accuracy and loss are shown
on Figure 11. This model required 2 h and 30 min to execute 18
epochs and produced 99% validation accuracy. 12 s of processing
time were required for this model to classify the data in its test
set, resulting in an average accuracy of 99.5%.

5.5. Eye Tracking Based Retina Validation
Discussion
From the above results, use of retina pre-processing has reduced
the training time for the DCNN from 150 min (using full-
resolution input images) to 55 min using cortical input images.
Since the full-resolution images are ×3 larger than the cortical
images, the training batch size had to be reduced to 16 images
for training with full-resolution images, as compared to a batch
size of 64 images when training with cortical images. This
improvement in data efficiency came at the expense of an average
classification performance reduction of 1.3%. Even this modest
reduction in performance has now been removed in subsequent
work that uses a more efficient cortical image generation process,
Section 6.

In both the cortical image and fixation crop classification
experiments, the validation accuracy obtained for each classifier
is close to the corresponding training accuracy result. Given
the limited range of observations when the observer’s head
is constrained to be stationary, the captured images will be
correspondingly similar. However, due to the non-linear nature
of the retina transformation, the cortical images continue to
exhibit significant variation in appearance when undertaking
small saccades when exploring an object. Since small translations
in retina space result in rotations in the cortex, this appears to
afford a degree of implicit data augmentation when training the
DCNN in cortical space, i.e., the rotated versions of patterns
in the cortex provide a wider range of training data in terms
of pattern-space than the corresponding retinal observations
would otherwise.

6. RETINA DEVELOPMENTS

Our primary technological objective is to realise fully the
potential gains of the combined retina-DCNN approach, its
integration within mainstream robot visual processing DCNNs
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FIGURE 10 | Left-Right: Fixation Crop Image, Corresponding Cortical Image (up-scaled), Example Cortical Images of the 9 Object Classes Captured.

FIGURE 11 | Left-Right: Cortical image accuracy, Cortical image loss, Fixation Crop image accuracy, Fixation Crop image loss, each versus training epoch.

and underpin practical low-cost visual sensors for autonomous
systems. However, any new image format must be adequately
supported to be of any practical utility. Accordingly, the following
section outlines recent work to advance the development of
the retina and to support applications based on the retina
image format.

6.1. Retina Filter Models
In order to further investigate the utility of mimicking the human
visual system we extended the software retina to incorporate a
functional model of single and double-opponent retina cells that
has potential to improve data efficiency through sparsification,
partial figure-ground separation, texture description and contour
isolation Figure 13.

Retina cell models for computer vision purposes typically
comprise basic implementations of the Marr-Hildreth difference
of Gaussians operator (Marr and Hildreth, 1980), perhaps
incorporating a filter-bank operating at a number of different
spatial scales. An example of a more complex retina model is
reported by Gobron et al. (2007) who implement the coarse
functional properties of the retina using cellular automata and
accelerate their model using GPU programming in the OpenGL
environment. The general function of the 5 different retinal
neuron types has been expressed, while other architectural
features of the retina, such as the foveated topography of its
neurons and their receptive field response profiles, are not
represented in this model. The output from this retina is a
depth-like contrast image that is sensitive to motion. While this
model might prove valuable in a retina inspired edge detection

task, it is incompatible with the space-variant retina architecture
adopted here.

Given the limitations of the above retina models based on
uniform sampling, we have developed our own model that
incorporates a basic functional implementation of single and
double opponent retinal ganglion cells which vary in their
receptive field size as a function of eccentricity. This model
utilises a high resolution (50K node), GPU accelerated retina
and is based on the work of Gao et al. (2013). The single
and double colour opponent ganglion cells compute a colour
space potentially capable of simplifying texture perception,
colour constancy and ground-figure segmentation owing to the
combination of both colour and texture features in a single
mapping (Saarela and Landy, 2012).

Our model implements single and double opponent receptive
fields using difference-of-Gaussians kernels, with the surround
receptive field Gaussian having the sigma parameter three
timer larger than the centre receptive field Gaussian, based
on physiological findings regarding the structure of cat retinal
ganglion cells (Rodieck, 1965). The model supplements the RGB
colour space with a yellow channel ((r + g) / 2) in order
to simulate four Type-2 single opponent cell species: centre
opponent r-g and b-y, and surround opponent g-r and y-b.

A single opponent cell is simulated by applying retinal
sampling twice: once using the standard retina (to sample the
centre fields) and then a second time using a retina with Gaussian
receptive fields with a sigma scaled by a factor of three (to sample
the surround fields). Single opponent cells of any species can then
be implemented efficiently by simply subtracting the appropriate
centre and surround image vector responses. The differential
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image vector responses simulating single opponent cells are then
added together in a spatially opponent manner in order to
produce colour channels that model the double opponent cells.

In order to remain faithful to cortical physiology the
summation of the type 2 single opponent cells is leaky, meaning
that the centre receptive field is not perfectly balanced with the
surround receptive field (Shapley and Hawken, 2011). To realise
this the surround receptive field has been scaled by k = 0.9 (Gao
et al., 2013). Such leaky fields imply that absolute intensity or
colour stimuli will generate a response and therefore be encoded
along with the differential response of the antagonistic fields.

For visualisation purposes the outputs of the double opponent
cells were backprojected (section 2.4) onto the image plane using
the centre receptive fields. Figure 12 shows the resultant images
and demonstrates the improved figure-ground differentiation
using colour blindness tests. Since negative-valued signals are
processed in the brain using separate pathways to positive-valued
signals, the outputs of the double opponent cells should be split
into their negative and positive components using a threshold
before further processing. (To enhance visualisation of the filter
outputs, this step was omitted when generating the images in
Figure 12 and diverging colour maps were employed instead).

6.2. Real-Time Tracking Retina
The GPU accelerated implementation of the 50K node retina
has been used to demonstrate real-time gaze control in a target
tracking task (Boyd, 2018). In this experiment we trained a
retina pre-processed DCNN pipeline with example tracking data
based on a centroid colour tracker following an orange coloured
target set against a dark background. The DCNN system learned
to drive the Baxter Research Robot’s wrist camera using pan-
tilt signals learned from the cortical images input to a custom

FIGURE 12 | Low contrast colour-blindness tests processed using our

double-opponency model. Reproduced by permission of EnChroma Inc., from

enchroma.com. Left: Original images. Centre: Retinal backprojections of the

red-green double opponent cells, coloured using a divergent colour map. Red

indicates negative values, yellow indicates values near zero, and green stands

for positive values. Right: retinal backprojections of the blue-yellow double

opponent cells, coloured using a divergent colour map. Red indicates negative

values, yellow indicates values near zero, and blue stands for positive values.

DCNN we designed. Accordingly our DCNN was able to regress,
directly in real time, from cortical space, the appropriate pan-
tilt activation to allow the robot’s wrist camera to track the
coloured target.

6.3. Retina Efficiency
We have made an initial attempt to tackle the fundamental
issue of how best to couple the retina directly to the
DCNN to obtain the maximum data efficiency. Shaikh (2018)
discovered that simply subsampling the cortical image a network
input data reduction of ×11.5 can be achieved, without
compromising performance when undertaking the eye tracking
based classification task described in section 5. Furthermore, by
adopting a scattered datapoint gridding algorithm, developed for
astronomy data processing purposes (Winkel et al., 2016), he
was able to produce cortical images that yield both a network
input data reduction of ×10.8, and also a modest increase in
classification accuracy.

Generating an optimal cortical image offers two strong
advantages: Firstly, the retina pre-processor remains fully
compatible with existing DCNN processing architectures
developed for visual processing. Secondly, by retaining the
continuity of retinotopic map explicitly within a cortical image,
it simplifies the task of interpreting and devising and debugging
new “retinised” visual processing DL networks and allows
efficient shared convolutions to be applied to the CNN layers
which process the input cortical image.

6.4. Retina Sensors for Robotics and
Egocentric Perception
In order to develop self-contained smartphone-based retina
sensors for robotics and egocentric perception applications and
a convenient method for capturing training data by non-expert
users, we have implemented the 4196 node retina on an Apple
iPhone (Wong, 2017). This comparatively small retina samples
a patch in an image captured by the iPhone’s camera and SIFT,
descriptors are extracted from the cortical image to direct the
next retinal fixation location of the next in conjunction with
a simple inhibition of return algorithm. The concept has been
extended to port the 50K node retina to both iPhone (Vinickis,
2018), and Android (Yang, 2018), smartphone platforms. In the
Android implementation no gaze-control has been implemented,
instead relying on the user to direct the cameras to record
compact image vectors, which can then be stored on the cloud.

A fundamental characteristic of any vision system based on
a space variant retina architecture is that it must be directed
appropriately to sample the scene. Commercial high-resolution
pan-tilt security cameras have the potential to serve as low-cost
imaging sensors that can be steered under computer control. We
have constructed a software interface to a standard networked
pan-tilt security camera controller (Zhou, 2018), to allow this
to serve within an active autonomous vision system using retina
processing and cortex-based gaze control algorithms.

Finally, to manage the data generated by retina-supported
camera systems, we have developed a prototype software tool to
allow editing and formatting prior to training DCNN systems
(Fulton, 2018).
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FIGURE 13 | Single and double opponent retina cell model implemented for our 50K node retina, based on the work of Gao et al. (2013).

7. CONCLUSIONS AND ONGOING WORK

We have confirmed the utility of the functional architecture
of the human visual pathway, as predicted by Schwartz and
others, by investigating retino-cortical mapping models within
implementations of computer vision systems based on Deep
Learning. Our primary experiment has shown that it is possible
to make substantial data efficiency gains in terms of training
computation, DCNN sizes, and inference rates by pre-processing
images using our biologically inspired retina-cortexmapping that
affords both visual data reduction and also a degree of scale
and rotation invariance. It should be noted that we have not yet
measured directly any scale and rotation invariance afforded by
our retino-cortical mappings in the DCNNs we have trained to
date, but plan to in future investigations.

While our initial attempt at demonstrating the concept, based
on a 4,196 node retina, achieved only modest data reduction
gains, our 50K node retina is now able to achieve a˜×16.7 visual
data reduction and network input reduction of ˜ ×11.5, while
maintaining state-of-the-art performance in a classification task.
We also demonstrated the viability of using human fixations to
provide gaze-control for this 50K node software retina, which
generated cortical images that were processed by means of our
own DCNNmodel to obtain excellent classification performance
on a database of 9 object classes. This approach has also
demonstrated substantial reductions in DCNN training times
and critically has provided the means for a DCNN to process an
image of 930×930 px image for training or prediction in a single
pass, while executing on a standard consumer-grade GPU.

Given that the initial experiments we report here have utilised
the most basic of DCNN architectures, our current research is
focussed on building improved DCNN models to process the
cortical images generated by the retina. Inspired by predictive
encoding brain theory, deep predictive coding networks Wen
et al. (2018) which adopt feedforward, feedback and recurrent
connections and have been reported to consistently outperform
feedforward only DCNNs when undertaking object recognition
and would therefore appear to be a promising architecture to
investigate coupling to the retina.

The combined retina-DCNN approach is currently being
investigated in a number of contexts for visual processing
required by robotics systems for tracking and grasping and in the
perception of egocentric imagery. Accordingly, our laboratory
is developing the necessary infrastructure in terms of camera
interfaces and data management tools to support DL-based
visual processing based on the software retina. Furthermore,
the software retina mapping also has potential for use in visual
models developed to interpret human fMRI imagery for visual
cortex modelling purposes.

Given both the visual data reduction potential of the retino-
cortical mapping and the consequent implications for low-cost
robotics and egocentric visual processing systems, especially
mobile systems using smartphone or embedded processing
hardware, the authors believe that this approach will underpin
both a new wave of biologically motivated computer vision
research and make possible vision-based products requiring
high-resolution imaging that would otherwise be impractical to
achieve using currently available hardware technology.

In conclusion, researchers have been attempting to harness
log-polar visual mappings for over four decades and the
authors believe that work we have presented is the first viable
demonstration of using the retino-cortical mapping within a
general purpose visual processing methodology.
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