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Abstract: To verify the size and emergence time of new permeability pathways (NPPs) in malaria
parasites, the permeability of the Plasmodium falciparum-infected erythrocytes was tested with different
particle sizes of nanomaterials by flow cytometry assay. The results confirmed the permeability of the
host cell membrane increases with parasite maturation for the stage-development evolution of NPPs,
and especially found that a particle size of about 50 nm had higher efficiency. As a kind of the novel
nanomaterials, nitrogen-doped carbon dots (NCDs) showed no toxicity, specificity binding ability to
the malaria parasites, and could label live elder blood-stage P. falciparum through NPPs, indicating
the potential application in cell imaging. NPPs and some nanomaterials such as NCDs deserve more
attention and exploration for the elimination and prevention of malaria.

Keywords: Plasmodium falciparum; nitrogen-doped carbon dots; new permeability pathways; flow
cytometry

1. Introduction

Malaria caused by the apicomplexan protozoan of the Plasmodium genus, remains one
of the most prevalent parasitic diseases in the world. There were an estimated 14 million
more malaria cases and 47,000 more deaths in 2020 compared to 2019, due to disruption
of services during the pandemic [1]. In the human hosts, erythrocyte stages of malaria
parasites were the main period cause symptoms [2,3]. To survive within erythrocytes,
malaria parasite causes major changes in the structure, composition, and function of the
host plasma membrane [4,5]. For the survival of parasite, it appears that “New permeation
pathways” (NPPs) with pore-like properties induced in membranes of infected blood cells
(iRBCs), which allow anions, small nonelectrolytes, and also macromolecules gain access to
the parasite [6–8]. Furthermore, beads with a diameter of less than 80 nm were found to
be capable of accessing intracellular parasites in iRBCs [9]. NPPs play an essential role in
parasite development, and show stage-dependent evolution [10]. As an important channel
to connect the internal parasite and outside, NPPs are obvious excellent routes to explore
the internal living parasites.

As technology advances, nanotechnology with interdisciplinary approaches has poten-
tially changed the entire scenario of the biomedicine. Nano refers to a size scale of 100 nm
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or less, nanoparticles have enormous applications in biomedical field for the unusual
properties such as optical, physical, biological, and so on. Fluorescent microspheres were
designed with a known diameter which make them ideal reference standards for calibra-
tions, sensitive image registration, and quantitative measurements with stained fluorescent
cells. Carbon dots (CDs) with a size of less than 10 nm, tunable fluorescence, and strong
fluorescence merit to be used as intracellular imaging probes [11]. Fluorescent carbon dots
have emerged as a feasible alternative to the more well-known quantum dot or molecular
probe [12–14]. The functionality of CDs could be improved by modulating their electronic
structure, such as doping with heteroatoms [15]. In particular, nitrogen-doped carbon dots
(NCDs), have attracted considerable interest due to their advantageous features, including
photoluminescence and photostability [16]. Moreover, NCDs show great advantages in cell
penetration and imaging [17], which indicates that NCDs could be potential application in
the imaging of live malaria parasites through NPPs.

Bioluminescent P. falciparum lines have been frequently employed in parasite biology
research as well as experiments requiring the detection and quantification of parasite
development or maturation [18–21]. However, there are significant drawbacks to this
approach, such as low transfection efficiency and, as a result, the long time it takes to
develop stable transfectants [22,23]. Based on the properties of nanomaterials and malaria
parasites, here we attempted to verify NPPs in blood-stage P. falciparum with florescent
microspheres, and further explore the potential application of NCDs for labeling the internal
living parasites.

2. Results and Discussion
2.1. Synthesis and Purification of NCDs

We successfully synthesized and purified the NCDs and labeled the NCDs with
fluorescein isothiocyanate isomer (FITC). The image of transmission electron microscopy
(TEM) showed the spherical nature of the prepared NCDs (Figure 1A). The average size
histogram (Figure 1B) revealed that 77.6% of particles were dispersed over the range
5~10 nm with an average size of 8 nm.
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Figure 1. Characterizations of NCDs. (A) Morphology of NCDs in TEM measurement. (B) Size
distribution of NCDs.

2.2. Detection of P. falciparum-Infected Erythrocytes by Flow Cytometry with TO and HE

The two commonly used nucleic acid dyes, Thiazole Orange (TO) and Hydroethidine
(HE), were utilized to establish the flow cytometry assay. Comparing with normal RBCs,
iRBCs showed clearly defined populations at different stages. Flow cytometry revealed
that the majority of the ring-stage parasites had weaker fluorescence, and the peak was
higher and narrower (Figure S1(Ab)). In contrast, the fluorescence intensity of the tropho-
zoite and schizont stages gradually increased, and the peak gradually fell and broadened
(Figure S1(Ac,d)). No significant difference was observed between TO and HE (Figure S1B).
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Comparing to the Giemsa-based microscopic analysis, TO/HE-based flow cytometry assays
were reliable, indicated about 95% of the parasitemia.

The technology of flow cytometry used in this study helped us work out the results
rapidly and correctly which provides the opportunity to get more information about malaria
parasites [24]. HE is a nucleic acid fluorochrome which transformed by metabolizing cells
to ethidium. After incubating with HE, live and dead leukocytes and iRBCs and RBCs
could all be identified based on the fluorescence intensity and size, as a previous study
showed [25]. TO is a cyanine stain which is based on thioflavin T and it stains primarily
RNA [24]. Both stainings, HE and TO, had high efficiency to detect parasites at the blood
stage as described in previous study and were confirmed again in this study [26,27].

2.3. Detection of P. falciparum-Infected Erythrocytes by Flow Cytometry with Nanomaterials

NCDs and polystyrene fluorescent microspheres (PFMs) with particle size of 20 nm,
50 nm, 80 nm, 100 nm, which were marked as PFMs20, PFMs50, PFMs80, and PFMs100,
were serial diluted (25 µg/mL to 100 µg/mL) and incubated with asynchronous iRBCs
(6.28% parasitemia, schizont dominated) for 1 h and 3 h at 4 ◦C, 25 ◦C, and 37 ◦C, respec-
tively, compared with TO as a positive control. The optimal incubation conditions were
determined by the above experimental operations. As shown in Figure 2 and Figure S2, the
largest percentage fluorescent events of NCDs, PFMs20, PFMs50, PFMs80, and PFMs100
were 3.10%, 4.03%, 4.32%, 2.00%, and 0.44%, respectively, and the relative binding rates
were 51.19%, 58.28%, 67.20%, 27.63%, and 3.18%, respectively, which were achieved with
100 µg/mL, 3 h and 37 ◦C. The five fluorescent nanomaterials showed special parasites
binding ability except PFMs100, and PFMs80 showed lower ability compared to others. For
the binding rate of nanomaterials changed consistently at different incubation temperatures,
NCDs and PFMs20 were selected for experimental verification. The results were consistent
and indicated the lowest binding rate at 25 ◦C (Figure S3A,B). The binding efficiency was
also different for the incubation time, 3 h was better than 1 h.
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(B) temperature: 4 ◦C, 25 ◦C and 37 ◦C, (C) incubation time: 1 h and 3 h. One factor was tested with
the optimal conditions of other two factors. x-axis indicates incubation condition, y-axis indicates
binding rate. The data below this chart showed specific binding rate of nanomaterials.

Then, 100 µg/mL of each nanomaterial is incubated with different interval cultures
after synchronization (0, 8, 16, 22, 28, and 34 h) for 3 h at 37 ◦C. Parasites were synchronized
using two rounds of 5% D-sorbitol treatment to get a stage window of 0~10 h post infection
(p.i.) out of the 42~48 h of the cycle. As the result, only ring stage parasites were observed
at 0 h after synchronization, 80.7% rings and 19.3% early trophozoites at 8 h, 22.2% rings
and 77.8% medium age trophozoites at 16 h, and schizonts occurred at 22 h (63.3%), which
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reached the highest at 28 h (85.5%), then decreased for partial mature schizonts rupture
to enter a new cycle at 34 h (Figure 3). Of all the nanomaterials used here, PFMs20 and
PFMs50 showed higher binding efficiency, especially PFMs50, and PFMs100 was the lowest
(Table 1, Figure 4). The binding rates were increased with parasites development, low at
0 h, and reached the top at 28 h. At 0 h, only ring stage existed, and the binding rates of
NCDs, PFMs20, PFMs50, PFMs80, and PFMs100 were 2.30%, 12.32%, 15.63%, 2.38%, and
4.49%, respectively, compared to 28 h, which were 55.18%, 59.17%, 60.08%, 26.83%, 26.83%,
and 9.95%, respectively (Figures 4 and S4, Table 1). When the schizonts became the main
stage at 22 and 28 h, the binding rates of the nanomaterials were increased except PFMs100,
and the highest binding rate of PFMs80 was only 26.83%. As a positive control, the binding
rate of TO was about 95% throughout (Figure 4B, Table 1).

Table 1. The binding rate (%) of different size particles with different interval cultures of P. falciparum
3D7 after synchronization.

0 h 8 h 16 h 22 h 28 h 34 h

NCDs 2.30 ± 0.00 4.84 ± 0.01 18.60 ± 0.03 41.02 ± 0.01 55.18 ± 0.02 43.26 ± 0.03
PFMs20 12.32 ± 0.04 19.53 ± 0.04 28.21 ± 0.10 53.54 ± 0.02 59.17 ± 0.02 42.13 ± 0.05
PFMs50 15.63 ± 0.01 26.64 ± 0.04 55.37 ± 0.01 54.60 ± 0.05 60.08 ± 0.07 40.13 ± 0.04
PFMs80 2.38 ± 0.01 7.61 ± 0.02 8.93 ± 0.03 21.92 ± 0.04 26.83 ± 0.06 13.65 ± 0.03

PFMs100 4.49 ± 0.04 8.67 ± 0.03 6.48 ± 0.02 9.33 ± 0.04 9.95 ± 0.08 8.68 ± 0.04
TO 94.25 ± 0.03 97.34 ± 0.01 95.13 ± 0.04 98.21 ± 0.06 96.34 ± 0.03 95.35 ± 0.04

The binding rate reported as mean ± standard deviation.
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As an anion-selective channel, NPPs are the penetration path of numerous essential
nutrients required for the survival of parasites [8], and also fluorescently labeled latex
beads with particle size less than 80 nm can also pass through this channel [9]. As expected
and shown before, special binding was not observed with PFMs100. However, the binding
efficiency was not correlated with the size tightly, even PFMs80 was lower than others
with smaller size, PFMs50 was the highest, then PFMs20, and NCDs. Based on our study,
the optimal size of materials pass through NPPs is about 50 nm. By analogy, antimalarial
nanocarriers with approximately 50 nm in diameter could access furthest intracellular
parasites in iRBCs.
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The permeability of the host cell membrane increases with parasite maturation for the
stage-development evolution of NPPs, reaching a peak at approximately 36 h p.i. [28]. Nor-
mally, NPPs generate by parasite activity, and occur 12~16 h after P. falciparum invasion [29].
However, NPPs are fully deployed in the majority of iRBCs until the mid-trophozoite
stage, and evolve differentially throughout the ring stage [10]. As a kind of carbohydrate,
sorbitol can pass through NPPs [30], and is used in the osmotic decomposition method for
parasite synchronization. With two consecutive sorbitol treatments, we got a stage window
of 0~10 h p.i. Starting from this early ring stage, parasites were cultured and the binding
efficiency was checked with fluorescent nanomaterials intervals. Because of incubation for
3 h, the eldest parasites could be 13 h, then weak binding was observed for PFMs20 and
PFMs50 at 0 h, and reaches the peak at 28 h (28~38 h p.i.), which was consistent with the
results presented previously [6].

2.4. NCDs Show No Toxicity to P. falciparum-Infected Erythrocytes

Different from the low viability of parasites in the positive control chloroquine wells,
the parasites grew well and no significant difference was seen with the negative control
wells (iRBCs only) even with the highest concentration of NCDs (200 µg/mL). The results
of SYBR Green I-based drug sensitivity assay were consistent with the microscopic way,
indicating no toxicity of NCDs with the tested concentrations.

Accordingly, we confirmed the low cytotoxicity of NCDs to blood stage of malaria
parasites, the results showed no toxicity of NCDs to the parasites even at the highest con-
centration of 200 µg/mL, which provided a basis for further research in malaria field [31].

2.5. Determination the Distribution of NCDs in P. falciparum-Infected Erythrocytes

After microscopic analysis, the cultured iRBCs with mixed developmental stages were
analyzed in two ways. One was following the steps of IFA, blood smears were prepared
before incubation with NCDs. It was found that NCDs were all outside of the cells and
no special binding of the parasites was seen (Figure 5B). In the contrast, another way was
incubating NCDs with the cultured parasites ahead, then making slides and observing
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by fluorescent microscopy. The results indicated that NCDs could enter the cytoplasm of
iRBCs at trophozoite and schizont stages, instead of young ring stage forms (Figure 5C).
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Meanwhile, PFMs20 and NCDs were done in parallel with the second method. Dif-
ferent incubation temperatures, 4 ◦C, 25 ◦C, and 37 ◦C were tested simultaneously, no
significant differences were observed between the two nanomaterials. Consistent with the
flow cytometry assays, the highest binding efficiency was under 37 ◦C, and the lowest was
25 ◦C (Figure S3). In terms of incubation temperature, when nanomaterials were incubated
with Plasmodium at 25 ◦C, both flow cytometry and fluorescence microscopic imaging
showed the binding rate was significantly reduced. We preliminarily infer that 25 ◦C will
affect the activity of NPPs, but the specific reason needs further experimental verification.

The NCDs that we used were dispersed over the range 5~10 nm with an average
size of 8 nm. After NPPs occur, NCDs can penetrate the iRBC with low toxicity and good
biocompatibility. Therefore, NCDs could be an ideal fluorescent probe for live elder blood-
stage P. falciparum. However, it was reported that the displayed excitation-independent
behavior of NCDs, and NCDs derived from the hydrothermal synthesis of different amino
acids have a variation in the fluorescence [28,32]. In our study, the NCDs were labeled
with FITC for detection, then the possibility of own fluorescence application, and how to
improve the special binding efficiency are still worth to be further explored.

3. Materials and Methods
3.1. Sources of Nanomaterials

PFMs contain green fluorescent dyes (Ex 488/Em 525). Particle sizes of 20, 50, and
100 nm fluorescent microspheres were obtained from ACME Microspheres Inc. (Indianapo-
lis, IN, USA), and 80 nm fluorescent microspheres was obtained from Beijing Dk Nano
technology Co., LTD. (Beijing, China).

The NCDs aqueous solution was prepared according to the literature with some
modifications [33]. In details, 5 mM ammonium citrate was dissolved into 10 mL water
and 335 mL ethylenediamine was added. Then the solution was transferred into 25 mL
Teflon-lined autoclave, heated at 200 ◦C for 5 h. After the solution was cooled down to
room temperature, the obtained product was subjected to dialysis (MWCO of 3500 Da) for
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24 h to acquire the final NCDs aqueous solution. Partial of the synthesized NCDs were
conjugated with FITC (Sigma, St. Louis, MO, USA) using the method as described [34] with
minor modification: FITC (20 µL, 50 mg/mL) was added to the NCDs (200 µL, 5 mg/mL)
solution, adjusted the pH to 8.5 with the total volume 1 mL, stirred for 12 h at 4 ◦C under
dark. At last, the NCDs-FITC conjugates were dialyzed against phosphate-buffered saline
(PBS) overnight to remove the unreacted dye.

3.2. Parasite Cultivation and Synchronization

Plasmodium falciparum strain 3D7 was obtained from Malaria Research and Reference
Reagent Resource Center, and routine cultured in vitro as previously described [35]. Briefly,
P. falciparum 3D7 was cultured in human erythrocytes by standard methods under a low
oxygen atmosphere at 37 ◦C. The complete medium was RPMI 1640 supplemented with
gentamicin, NaHCO3, HEPES, AlbuMAX II, and hypoxanthine (Gibco, Carlsbad, CA, USA).
The cultures were synchronized by treatment with 5% D-sorbitol (Sigma, St. Louis, MO,
USA) twice continuously with 40 h interval when required [36,37]. The blood smears were
prepared, fixed with methanol, and stained with Giemsa. The parasitemia of each stage
was determined by counting intact iRBCs [38].

3.3. Flow Cytometry Analysis

Flow cytometry analysis was carried out as described previously [25]. TO (AAT
Bioquest, Sunnyvale, CA, USA) and HE (AAT Bioquest, Sunnyvale, CA, USA) were selected
as reference. Briefly, TO was diluted 10,000 times and HE was diluted 200 times with PBS;
100 µL of each diluted dye was mixed with the 5 µL packed cells, and incubated in the dark
for 20 min at 37 ◦C.

For optimal incubation conditions, iRBCs were suspended in diluted concentrations
of nanomaterials (25, 50, 100 µg/mL) in PBS and kept in the dark at 4 ◦C, 25 ◦C, and 37 ◦C
for 1 h and 3 h, respectively. Then, under the optimal concentration and temperature
incubation condition, NCDs, PFMs20, PFMs50, PFMs80, and PFMs100 were incubated with
different interval cultures after two synchronizations (0, 8, 16, 22, 28, and 34 h). The binding
efficiencies were detected by flow cytometry. All the flow cytometry data acquisition and
analysis were performed using a FACS Calibur. The detectors of forward scatter, side
scatter, FL1 (for detection of TO and FITC), and FL2 (for detection of HE) were set in
logarithmic mode.

3.4. SYBR Green I-Based Drug Sensitivity Assay

In vitro activity against P. falciparum was explored by means of SYBR Green I fluores-
cence assay which were described by Neils and colleagues [39]. The routine cultured iRBCs
were synchronized with 5% sorbitol, the serial diluted NCDs (2000 µg /mL to 200 µg/mL)
and the control chloroquine were added to the synchronized ring-stage parasite suspension,
to obtain a 2% hematocrit and 0.5–1% parasitemia in triplicate wells of a 96-well plate.
After 72 h incubation at 37 ◦C, the effectiveness was measured by the SYBR Green I-based
fluorescence assay [40] in parallel with the microscopic examination.

3.5. Fluorescence Microscopic Imaging

Mature parasites were fixed and stained by two different methods to redefine the
way in which NCDs enter iRBCs. One is following the step of immunofluorescence assay
(IFA) with the blood smears of iRBCs as described [41]. After blocking with 5% skimmed
milk in PBS, the slides were incubated with FITC-labeled NCDs and DAPI (Invitrogen,
Carlsbad, CA, USA). Images were captured using a Nikon Eclipse 80i Upright Fluorescence
Microscope.

Another one is living iRBCs were incubated in PBS with the presence of NCDs and
DAPI (1 µg/mL, Invitrogen). After incubation, blood smears were prepared and fixed with
glacial acetone for 3 min, images were captured as above.
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3.6. Statistical Analysis

Statistical analyses were performed using GraphPad Prism (version 8.0; GraphPad,
San Diego, CA, USA) and SPSS software (version 16.0; SPSS, Chicago, IL, USA). The
experiments were performed in triplicate, and Student’s t-test was used to analyze the
significance of the different levels between two groups. The data are expressed as the
mean ± standard deviation (SD) and a difference with p < 0.05 was considered statistically
significant.

4. Conclusions

In summary, with the flow cytometry assay, we verified the size and emergence time
of NPPs, and meanwhile compared the efficiency of nanomaterials with different particle
sizes to iRBCs. As one kind of the novel nanomaterials, NCDs showed no toxicity and
the specific binding ability to the malaria parasites indicates wide application in the field,
such as fluorescent probe, but the application in this field remains to be explored. Some
nanomaterials such as NCDs and new permeation pathway (NPPs) deserve more attention
and exploration for the elimination and prevention of malaria.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27134163/s1, Figure S1: Flow cytometry gating for
determining the position of each stage and quantification of P. falciparum-infected erythrocytes.
Figure S2: Flow cytometric profiles of iRBCs stained with five nanomaterials at 25, 50, 100 µg/mL,
respectively, tested with the optimal temperature and incubation time. Figure S3: Analysis the effect
of temperature on P. falciparum-infected erythrocytes permeability. Figure S4: Flow cytometry results
of nanomaterials with different particle sizes.
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