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Reassortment is an important source of genetic diversity in seg-
mented viruses and is the main source of novel pathogenic
influenza viruses. Despite this, studying the reassortment process
has been constrained by the lack of a coherent, model-based infer-
ence framework. Here, we introduce a coalescent-based model
that allows us to explicitly model the joint coalescent and reas-
sortment process. In order to perform inference under this model,
we present an efficient Markov chain Monte Carlo algorithm to
sample rooted networks and the embedding of phylogenetic trees
within networks. This algorithm provides the means to jointly
infer coalescent and reassortment rates with the reassortment
network and the embedding of segments in that network from
full-genome sequence data. Studying reassortment patterns of
different human influenza datasets, we find large differences
in reassortment rates across different human influenza viruses.
Additionally, we find that reassortment events predominantly
occur on selectively fitter parts of reassortment networks show-
ing that on a population level, reassortment positively contributes
to the fitness of human influenza viruses.
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Through rapid evolution, human influenza viruses are able to
evade host immunity in populations around the globe. In

addition to mutation, reassortment of the different physically
unlinked segments of influenza genomes provides an impor-
tant source of viral diversity (1). If a cell is infected by more
than one virus, progenitor viruses can carry segments from more
than one parent (2). With the exception of accidental release
of antigenically lagged human influenza viruses (3), reassort-
ment remains the sole documented mechanism for generating
pandemic influenza strains (e.g., refs. 4–6).

To characterize reassortment events, tanglegrams, comparison
between tree heights (7, 8), or ancestral state reconstructions (9)
are typically deployed. These approaches identify discordance
between different segment tree topologies or differences in
pairwise distances between isolates across segment trees. Tangle-
grams in particular require a substantial amount of subjectivity
and have been described as potentially misleading (10).

While the reassortment process has been intensively studied
(e.g., refs. 7–9 and 11), there is currently no explicit model-based
inference approach available. We address this by introducing a
coalescent-based model for the reassortment of viral lineages.
In this phylogenetic network model, ancestral lineages carry
genome segments, of which only a subset may be ancestral to
sampled viral genomes. As in a normal coalescent process, net-
work lineages coalesce (merge) with each other backward in
time at a rate inversely proportional to the effective popula-
tion size. We model reassortment (splitting) events as a result
of a constant-rate Poisson process on network lineages. At such
a splitting event, the ancestry of segments on the original lin-
eage diverges, with a random subset following each new lineage.
We thus explicitly model reassortment networks and the embed-

ding of segment trees within these, allowing us to infer these
parameters from available sequence data.

The reassortment process modeled in this way differs from
other recombination processes in that it is known where on the
genome recombination of genetic material occurs and in that
there is no ordering of the segments. The lack of linkage between
segments means that at a reassortment event, any subset of
segments can originate from either parent.

In order to perform inference under such a model, the reas-
sortment network and the embedding of each segment tree
within that network must be jointly inferred. This is similar to
the well-known and challenging problem of inferring ancestral
recombination graphs (ARGs). While many approaches to infer-
ring ARGs exist, some are restricted to tree-based networks (12,
13), meaning that the networks consist of a base tree where
recombination edges always attach to edges on the base tree.
Other approaches (e.g., ref. 14) rely on approximations (15)
and are not applicable to the reassortment model due to its
aforementioned lack of segment ordering. Completely general
inference methods exist (16), but these are again not directly
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applicable to modeling reassortment and furthermore tend to be
highly computationally demanding.

Here, we introduce a Markov chain Monte Carlo (MCMC)
approach specifically designed to jointly sample reassortment
networks and the embedding of segment trees within those
networks under the coalescent model, without any additional
approximations. This approach allows us to jointly infer the reas-
sortment network, the phylogenetic trees of each segment, the
reassortment and coalescent rates, as well as evolutionary rates.

We first show that this approach is able to retrieve reas-
sortment rates, effective population sizes, and reassortment
events from simulated data. Secondly, we discuss how a lack of
genetic information influences the inference of these parameters.
Thirdly, we show how using the coalescent with reassortment can
influence the inference of effective population sizes, as well as
evolutionary rates. We then apply this approach to quantify reas-
sortment across the five seasonal human influenza subtypes, as
listed in SI Appendix, Table S1. Finally, we study how reassort-
ment rates differ on edges with high and low fitness of these
reassortment networks.

Results
Inference of Effective Population Sizes and Reassortment Rates Are
Reliably Inferred from Genetic Sequence Data. In order to test our
ability to infer effective population sizes and reassortment rates
from genetic sequences, we performed a well-calibrated simula-
tion study (Simulations). Using our MCMC approach, we then
inferred the reassortment network, segment tree embedding,
effective population sizes, and reassortment rates from these
genetic sequences.

Fig. 1 A and B shows that we are able to correctly retrieve
effective population sizes and reassortment rates from simu-
lated genetic sequences. Effective population sizes are estimated
more precisely than reassortment rates, which is expected con-
sidering that there are typically many more coalescent events in
a network than reassortment events. Lower evolutionary rates
do not greatly decrease our ability to infer effective population
sizes and reassortment rates (SI Appendix, Fig. S1). Additionally,
these results also hold when using the more complex Hasegawa–
Kishino–Yano (HKY) + Γ4 site model to simulate sequences (SI
Appendix, Figs. S2 and S3).

To test how well true reassortment events are recovered, we
computed the probability of observing exactly the same reas-
sortment events as present in the true (simulated) network. We
considered two reassortment events to be the same if the subtree
of each segment below that node is the same and if the relative
direction of each segment at the reassortment event is exactly the
same (Network Summary).

As shown in Fig. 1C, reassortment events are recovered with
good support, particularly with increasing reassortment distance.
The reassortment distance denotes how much independent evo-
lution happened on the two parent viruses of the reassortment
event (Reassortment Distance). This is particularly true when we
only look at reassortment events between pairs of segments and
drops when we look at three or four segments. This decrease is
driven by our definition that two reassortment events are only the
same if all segments reassort in the same relative direction at the
same time with exactly the same clade below the segment trees:
a requirement that becomes harder to satisfy as the number
of segments increases. As expected for methods that correctly
take into account phylogenetic uncertainty, the posterior support
decreases when lower evolutionary rates are used to simulate the
sequences of the segments.

Joint Inference from Full Genomes Increases Precision of Node
Ages. We compared the internal node ages inferred using the
coalescent with reassortment to ages inferred under the assump-
tion that all segments evolved independently under the standard
coalescent model. To do this, we first compiled datasets of dif-
ferent seasonal human influenza A subtypes, as well as influenza
B (details in the Materials and Methods). From each of these,
we generated 10 datasets consisting of a random sample of
sequences. The 10 different datasets were generated in order to
prevent individual sequences from biasing the results.

We then analyzed each of these subsampled datasets once
using the coalescent with reassortment and once using a nor-
mal coalescent prior with shared effective population size across
all segments, but assuming that each segment evolved indepen-
dently. We first computed the 95% highest posterior density
(HPD) interval of node heights for each clade that was sup-
ported by both approaches with a posterior probability of more
than 0.5. We then normalized the difference between the lower
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Fig. 1. Estimates of effective population sizes and reassortment rates from simulated genetic sequences. (A) Estimated effective population sizes and 95%
CIs (y axis) vs. simulated effective population sizes on the x axis. (B) Estimated reassortment rates and 95% CI (y axis) vs. simulated reassortment rates on
the x axis. (C) Posterior support for true reassortment events (y axis) given the reassortment distance (x axis). Inference of reassortment networks from
sequences simulated with a evolutionary rate of 5× 10−3 mutations per site and year (top row) and 5× 10−4 mutations per site and year (bottom row).
From left to right, the reassortment events are for networks with two, three, and four segments.
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Fig. 2. Comparison of estimates between the coalescent with reassortment and assuming that each segment codes for an independent realization of
the same coalescent process. (A) Comparison of the relative width of the 95% HPD interval of segment tree node heights using 10 random subsets. The
vertical axis shows the distribution of ratios of the relative width of the 95% HPD intervals of the coalescent with reassortment over the coalescent assuming
independent segment evolution. These values demonstrate a strong reduction in node height uncertainty when using the coalescent with reassortment over
the coalescent with independent segments. (B) Comparison between the distribution of posterior clade support of segment trees found the MCC segment
trees using 10 random subsets. (C) Comparison between the inferred effective population sizes. When assuming each segment is an independent realization
of the same coalescent process, the effective population sizes are inferred to be much smaller and much more certain. (D) Comparison between the inferred
clock rates. The coalescent with reassortment infers lower clock rates.

and upper bound of the 95% HPD interval, by the median node
height estimate to get the relative width of the HPD interval
for each clade. As shown in Fig. 2A, using the coalescent with
reassortment reduces the uncertainty of node height estimates
of segment tree nodes by 35% for p2009-like H1N1 up to over
50% for influenza B.

Next, we computed the distribution of clade supports for
clades represented in the maximum clade credibility (MCC)
trees (as described by ref. 17) inferred using the two approaches.
As shown in Fig. 2B, segment tree clades are far better resolved
when using the coalescent with reassortment for all datasets.

We then compared the effective population sizes and evolu-
tionary rates inferred using the two approaches. The coalescent
with reassortment infers higher effective population sizes for
all datasets (Fig. 2C). This also influences the inferred clock
rates, since lower effective population sizes put stronger weight
on shorter branches and therefore larger clock rates (Fig. 2C).
We explain this discrepancy as follows. While we currently do
not account for population structure, the datasets we analyze
are in part shaped by population structure, such as geographic
structure. Ignoring this structure likely affects the coalescent
with reassortment differently compared with assuming indepen-
dent segments. Coalescent events closer to the tips are more
likely between lineages that are, for example, geographically
more closely related and can be assumed to occur rapidly and
provide information about low effective population size values.
Coalescent events deeper in the tree on the other hand are

more representative of those between geographically more sepa-
rated lineages. These events therefore provide information about
larger effective population sizes. Coalescent events across differ-
ent segments that occur close to the tips are less likely to have
encountered reassortment events. In the coalescent with reas-
sortment, they are therefore interpreted as one event, whereas
in the coalescent with independent segments, they are inter-
preted as eight. Coalescent events deeper in the tree are more
likely between lineages that encountered reassortment events
and are therefore more likely to provide independent informa-
tion about the population process. The coalescent with indepen-
dent segments assumes that all coalescent events provide the
same amount of information about the population process and
will consequently favor information about the population pro-
cess closer to the tips. This leads to differences in the estimated
effective population sizes, which then leads to differences in the
estimated clock rates.

We also compared the performance of the two approaches
by inferring tip dates (18). The tips (leaf nodes) are the only
nodes in the trees or network for which we can actually pre-
sume to know the true age, which is set by the sample collection
time. To compare the two approaches, we compiled 1,000 smaller
influenza A/H3N2 datasets, each composed of 20 genomes. Of
those datasets, 500 were randomly sampled from an random
interval of 2 y between 1995 and 2019. The remaining 500
datasets were assembled using a random sampling interval of
10 y between 1995 and 2019. From each of these datasets, we
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randomly selected a single genome and inferred its sampling time
using both approaches, conditional on the sampling times of the
remaining genomes.

The 95% HPD of the sample time posteriors under the coales-
cent with reassortment contains the true sampling time interval
in 91% of cases for the 2-y sampling interval and in 89% for the
10-y sampling interval (SI Appendix, Fig. S4). On the other hand,
the 95% HPD of the sample time posteriors generated by the
independent segment coalescent model contains the true sam-
pling time in only 68% (2-y sampling interval) and 77% (10-y
sampling interval) of cases.

Contrasting Reassortment Rates across Different Human Influenza
Viruses. We compared the reassortment rates of the five dif-
ferent seasonal human influenza types listed in SI Appendix,
Table S1. These include the same datasets described in Joint
Inference from Full Genomes Increases Precision of Node Ages,
as well as an influenza A/H2N2 dataset sampled between 1957
and 1970. We then jointly inferred the reassortment network, the
embedding of segment trees, evolutionary rates, effective popu-
lation sizes, and reassortment rates of these viruses. We find that
the estimated reassortment rates vary greatly between different
influenza viruses.

Influenza A/H3N2 shows the highest rates of reassortment,
while pandemic 1918 (p1918)-like H1N1 and influenza B show
the lowest inferred rates of reassortment (Fig. 3). H2N2 and 2009
pandemic (p2009)-like H1N1 show intermediate rates of reas-
sortment, although the uncertainty on those estimates is quite
large.

Differences between p1918-like H1N1, H2N2, and H3N2 are
particularly interesting since these strains share many common

segments. All segments with the exception of HA, NA, and PB1
of influenza A/H3N2 originate from the p1918-like H1N1 strain
(19), and H2N2 and H3N2 only differ in HA and PB1. p2009-
like human H1N1, which became seasonal in the years after the
2009 pandemic, on the other hand, has one segment (PB1) that
originates from human H3N2 and three segments (HA, NP, and
NS) derived from classic swine viruses that are descended from a
p1918-like strain (5). It shows similar reassortment rates to H3N2
but highly elevated levels compared with the p1918-like H1N1
strain.

Such variations in reassortment rates may be driven by a num-
ber of factors. Differences in coinfection rate (which may be
linked to the effective population size) lead to different prob-
abilities of viruses being in the same host at the same time and
therefore to a difference in the rate at which reassortants appear.
In particular, the higher incidence of influenza A/H3N2 and
the correspondingly likely higher number of coinfection events
compared with other influenza A viruses or influenza B viruses
may contribute to the higher observed reassortment rate in that
case. Additionally, reassortants in the different seasonal human
influenza viruses could have, on average, a different fitness and
therefore be more or less likely to be transmitted.

Reassortment Events Occur on Fitter Parts of Reassortment Net-
works. Next, we test if there is a fitness effect associated with
reassortment events. To do so, we classify every network edge
from the posterior distribution of inferred networks as either
“fit” or “unfit.” We define a fit edge to be any edge having
descendants that still persist at least 2 y into the future, while
every other edge in the network is defined to be unfit. Unfit here,
however, still means that the viruses are likely fit enough to be
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Fig. 4. Estimates of reassortment rates on fit and unfit edges. (A) Here, we show the number of reassortment events on fit and unfit edges of the networks
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posterior distribution of networks. (B) Here, we show the difference between fit and unfit reassortment rates. Values above 0 indicate that reassortment
events are more likely to occur on fitter, while values below 0 indicate that reassortment events are more likely to occur less fit edges.

transmitted. If reassortment events are beneficial, lineages that
are the result of reassortment events should have a higher sur-
vival probability and are therefore more likely to persist further
into the future.

To test if reassortment is beneficial, we calculated the num-
ber of reassortment events on fit edges and on unfit edges for all
networks in the posterior distribution of the MCMC. We then
divided this number by the total length of fit respectively unfit
edges. As shown in Fig. 4, reassortment events occur at a higher
rate on fit edges of the H3N2 and influenza B networks than they
do on unfit edges. This suggests that reassortment is beneficial to
the fitness of influenza A/H3N2 and influenza B viruses.

For the other human influenza viruses, fitness benefits of reas-
sortment are less pronounced. For p2009-like H1N1 and H2N2,
the sampling time windows (both) or number of samples (H2N2)
was however rather small, and the results are likely driven by a
lack of data. p1918-like H1N1 on the other hand had relatively
few reassortment events, overall driven by a low reassortment
rate, and the results are likely driven by a lack of reassortment
events. These same general patterns hold when the definition
of what is a fit edge is changed to having descendants at least
4 or 6 y into the future (SI Appendix, Figs. S9 and S10). For
p2009-like H1N1, where the overall sampling interval is only 10 y,
the evidence for fitness benefits of reassortment events, however,
decreases when using 4 and 6 y instead of 2 y.

We conducted further analysis to probe the robustness of our
result for H3N2, for which densely sampled sequences of long
time intervals are available. We analyzed two more influenza
A/H3N2 datasets, one sampled between 1980 and 2005 and one
sampled from 2005 until the present. For both datasets, we find
higher rates of reassortment on fit edges (SI Appendix, Fig. S11).
Over shorter time frames, the effect of fitness is less visible since
selection has not had enough time to filter out less fit strains. In
turn, this means that if we look at datasets sampled over short
times (for example, over 2 y), we should estimate reassortment
rates consistent with the estimated rates on unfit edges. To test
this, we compiled 9 datasets, each with 100 to 200 sequences
sampled from 2 seasons between 2000 and 2018. Averaged over

all nine datasets, we find the short-term reassortment rate to
be approximately 0.2 reassortment events per lineage per year,
which is consistent with the reassortment rate estimates for unfit
edges (SI Appendix, Fig. S12).

Finally, we sought to rule out the possibility that these pat-
terns are simply a property of our reassortment model. To do
this, we simulated networks under the coalescent with reassort-
ment with the reassortment rates and effective population sizes
fixed to the mean values estimated from the empirical data and
the network tip times fixed to those from the same data. In
these simulated networks, each edge has the same fitness. We
then recomputed the same fit/unfit reassortment rate statistics
from these simulated networks (SI Appendix, Fig. S13) and found
that the patterns we observed in the empirical data completely
disappeared. This strongly suggests that the elevated rate of reas-
sortment on fit lineages is not due to the particulars of our model
but is instead a real effect.

Conclusion
We here present a Bayesian approach to jointly infer the reas-
sortment network, the embedding of segment trees, and the cor-
responding evolutionary parameters. We show that this approach
is able to retrieve reassortment rates, effective population size,
and reassortment events from simulated data.

We have used this approach to show that there are large dif-
ferences in the rates of reassortment across different influenza
viruses and that reassortment events occur predominantly in
fitter parts of the corresponding reassortment networks. We pro-
pose that this is due to selection favoring lineages that have
reassorted. Although we have deployed a relatively simple way
of defining which edges of a network are fit and which are not,
future approaches could more directly incorporate fitness mod-
els into these network-type approaches (20, 21). Additionally,
our ability to infer which segments coreassort will allow us to
further investigate if coreassortment between specific segments
drive these fitness benefits.

Even if one is not directly interested in reassortment patterns,
our approach allows phylogenetic and phylodynamic inferences
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to exploit full-genome sequences for reassorting viruses. This
helps to avoid bias and increase precision compared with, for
instance, assuming segments evolve completely independently.
However, a lot of development remains to be done in the
direction of incorporating skyline models for population size
dynamics (22, 23) together with extending the model to account
for population structure (24, 25).

In summary, this approach allows us to perform network infer-
ence by directly accounting for a special kind of recombination
process, i.e., reassortment. In the future, we will pursue the
development of related approaches to account for a variety of
other recombination processes.

Materials and Methods
The Coalescent with Reassortment. Here, we introduce a model to describe
a coalescent process with reassortment. To do so, we define t to be the time
(increasing into the past) before the most recent sample and Lt as the set
of network lineages extant at time t (Fig. 5). Each extant network lineage
l∈ Lt carries the full set of genome segments, S. In general, however, only
a subset C(l)⊆ S of these are directly ancestral to sampled viruses. We refer
to this subset as the “carrying load.” We further define the total number of
segments |S| and the number of ancestral segments |C(l)|.

The coalescent with reassortment is a continuous time Markov process
that proceeds backward in time. It involves three possible events: sampling,
coalescent, and reassortment events. As is usually the case for coalescent
approaches, we condition on sampling events. These happen at predefined
times and simply increase the number of extant network lineages by 1.
Coalescent events occur between two network lineages l and l′ at a rate
that is inversely proportional to the effective population size Ne and reduce
the number of active network lineages by 1. The smaller the effective pop-
ulation size, the more likely two lineages are to share a recent common
ancestor, i.e., the more likely they are to coalesce. Upon a coalescent event,
the ancestral segments that the parent lineage p of lineages l and l′ carries
is the union of those carried by l and l′, i.e.:

C(p) = C(l)∪C(l′).

no sampled descendents
has sampled descendents

present

Coalescent Event

Coalescent Event

Reassortment Event

Coalescent Event

Coalescent Event

Reassortment Event

past

Fig. 5. Example reassortment network. Here, we give an example of a
reassortment network where we track three different segments differen-
tiated by the different colors through the network. Dashed lines denote
segment lineages that do not have sampled descendants. As done in coales-
cent approaches, we track the network from the present backward in time
to the past.

This coalescent event in the network only corresponds to a coalescent event
in a segment tree when the corresponding segment is present in both C(l)
and C(l′).

Reassortment events happen at a rate ρ per lineage per unit time. A reas-
sortment event on lineage l will increase the number of network lineages
by 1. The segments carried by lineage l are randomly assigned to the two
parent lineages p1 and p2. This means that the probability of the ancestry
of a given segment to follow p1, for example, is 0.5.

As we are not interested in the history of segments that are not ances-
tral to our sample, we explicitly integrate over this ancestry in our model.
As with standard coalescent with recombination models, this is done by
omitting nonancestral events from the process and modifying the reassort-
ment rate to exactly account for this omission. In our model, the events that
are omitted are “reassortment” events on l in which the ancestry of every
ancestral lineage in C(l) is assigned to the same parent. (Thus no true reas-
sortment occurs.) Since each segment chooses its parent edge uniformly at
random, the probability of either p1 or p2 being chosen as ancestral to all
segments is

P(C(p1) = ∅∨ C(p2) = ∅) = 2×
(

1

2

)|C(l)|
= f(l).

The effective rate of “observable” reassortments on lineage l is then simply
ρ(1− f(l)).

Calculating the Posterior Probability. In order to perform joint Bayesian
inference of reassortment networks together with the parameters of the
associated models, we use a MCMC algorithm to characterize the joint
posterior density.

P(N, ~µ, θ, ρ|~D) =
P(~D|N, ~µ)P(N|θ, ρ)P(~µ, θ, ρ)

P(~D)
. [1]

Here, N represents the full reassortment network (including the embedding
of the segment trees); the elements of the vectors ~D and ~µ represent the
segment-specific multiple sequence alignments and their associated molec-
ular substitution models and parameters. The parameters θ and ρ are the
effective population size and per-lineage reassortment rate.

The terms on the right-hand side of Eq. 1 include the network likeli-
hood P(~D|N, ~µ), the network prior P(N|ρ, θ), and the joint parameter prior
P(~µ, θ, ρ). Each of these terms is discussed below. [The denominator P(~D) is
the marginal likelihood of the model and does not concern us here.]

The Network Likelihood. The usual conditional independence of sites
assumption made in phylogenetic analyses allows us to factorize the
network likelihood in terms of the individual segment tree likelihoods:

P(~D|N, ~µ) =
∏
s∈S

P(Ds|Ts,µs).

These tree likelihoods can be computed using the standard pruning
algorithm (26).

The Network Prior. The term P(N|θ, ρ) denotes the probability of the net-
work and the embedding of segment trees under the coalescent with
reassortment model, with effective population size θ and per-lineage reas-
sortment rate ρ. It plays the role of the tree prior in standard phylodynamic
analyses.

We can calculate P(N|θ, ρ) by expressing it as the product of exponential
waiting times between events (i.e., reassortment, coalescent, and sampling
events):

P(N|θ, ρ) =

#events∏
i=1

P(eventi|Li , θ, ρ)× P(intervali|Li , θ, ρ),

where we define ti to be the time of the ith event and Li to be the set
of lineages extant immediately prior to this event. [That is, Li = Lt for t∈
[ti−1, ti).]

Event Contribution. The event contribution of the ith event in the network
is different depending on if the ith event is a coalescent or reassortment
event. If the ith event is a coalescent event between lineage l1 and l2,
the event contribution is the probability density of this particular pair of
lineages coalescing at time ti . For a constant-sized coalescent model, this is

P(eventi|Li , θ, ρ) =
1

θ
.
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On the other hand, if the ith event is a reassortment event on lineage l, the
event contribution is the probability density of an (observable) reassortment
event to occur on that lineage, i.e.:

P(eventi|Li , θ, ρ) = ρ

[
1− 2×

(
1

2

)|C(l)|
]
.

As we condition on sampling events, their event contribution is always
simply 1.

Interval Contribution. The interval contribution P(intervali|Li , θ, ρ) is the
probability of not observing any event in a given time interval. Three dif-
ferent types of events can happen in the coalescent with reassortment:
sampling, coalescent, and reassortment events. Since we condition on the
times of the sampling events, only coalescent and reassortment events
are produced. Given the total rate Λi (probability per unit time) with
which these occur in the interval immediately prior to event i, the interval
contribution can be written as:

P(intervali|Li , θ, ρ) = exp [−Λi(ti − ti−1)].

The total rate is the sum of the coalescence rate λ(c)
i and the reassortment

rate λ(r)
i . The coalescence rate depends on the number of lineages extant at

a particular time and the effective population size in the usual way:

λ
(c)
i =

(|Li|
2

) 1

θ
.

The rate of observable reassortment events is:

λ
(r)
i = ρ

|Li| −
∑
l∈Li

(
1

2

)|C(l)|−1
.

Note that λ(r)
i is generally less than the total rate of reassortment events in

this interval, which would be simply ρ|Li|, as, i.e., λ(r)
i excludes reassortment

events that produce lineages carrying no ancestral segments.

The Parameter Priors. The term P(~µ, θ, ρ) denotes the joint prior distribution
of all model parameters. We factorize the prior distribution by writing it
as the product of the individual parameter priors P(~µ), P(θ), and P(ρ). This
asserts that our prior information on any one of these model parameters is
independent of the prior information we have for the others.

An MCMC Algorithm for Reassortment Networks. In order to perform MCMC
sampling of network and the embedding of segment trees within these net-
works, we introduce several MCMC operators (i.e., proposal distributions).
These operators often have analogs in operators used to explore different
phylogenetic trees. Here, we briefly summarize each of these operators,
providing the complete details in the supplement.
Add/remove operator. The add/remove operator adds and removes reas-
sortment events. An extension of the subtree prune and regraft move for
networks (27) to jointly operate on segment trees as well.
Segment diversion operator. The segment diversion operator changes the
path segments take at reassortment events.
Exchange operator. The exchange operator changes the attachment of
edges in the network while keeping the network length constant.
Subnetwork slide operator. The subnetwork slide operator changes the
height of nodes in the network while allowing to change the topology.
Scale operator. The scale operator scales the heights of individual nodes or
the whole network without changing the network topology.
Gibbs operator. The Gibbs operator efficiently samples any part of the net-
work that is older than the segment tree roots and is thus not informed by
any genetic data.
Empty segment preoperator. The empty segment preoperator augments
the network with edges that do not carry any segments for the duration of
a move, to allow larger jumps in network space.

We validate the implementation of the coalescent with reassortment
network prior as well as all operators in the supplement.

Summarizing Reassortment Networks. To summarize a distribution of net-
works, we use a similar strategy to the MCC strategy (as described by ref.
17) used by phylogenetic inference software such as BEAST to summarize
distributions of trees. We first compute all unique coalescent and reassort-
ment nodes that were encountered during the MCMC. To do so requires that

we define when two coalescent or reassortment nodes are the same. We
define two coalescent nodes to be the same if 1) the parent edges of those
nodes carry the same segments and 2) if the subtree below each segment
includes exactly the same clades between the two coalescent nodes. We
define two reassortment nodes to be the same if 1) both parent edges carry
the same segments in the same relative orientation and 2) if the subtree
below each segment includes exactly the same clades between the two reas-
sortment events. A side effect of this definition is that the more segments
we include in the summary, the more likely two nodes will be considered
different nodes.

While the number of coalescent and reassortment nodes in the network
changes over the course of the MCMC, the number of coalescent nodes on
the segment trees is constant. In order to avoid dimensionality issues when
summarizing, we first compute the frequency of observing each coalescent
node over the course of the MCMC. We then weight this frequency by the
number of coalescent events on segment trees this coalescent node cor-
responds to. We next choose the network that maximizes those weighted
clade credibilities as the MCC network.

In order to compute the posterior support of each reassortment event
in the MCC network, we next compute the frequency of observing each
reassortment event in the MCC network during the MCMC.

Since we require the network to be rooted, we track segments even after
the root of a segment tree is reached. These patterns are however not sup-
ported by any genetic information and follow the prior distribution only. For
the summary of networks, we therefore remove segments from edges if the
root of a segment tree has been reached. Additionally, we remove reassort-
ment loops, i.e., events that start on one edge and then directly reattach to
the same edge. Since the support for individual events can greatly depend
on how many segments are analyzed, we have also implemented an option
to only summarize over a subset of the segments, while ignoring others.

Reassortment Distance. For any reassortment event where segments a and b
take different paths, follow segment a until it reaches a network edge that
carries segment b. We repeat this for any pair of segments that took differ-
ent paths to get the common ancestor height between any two segments.
We then define the reassortment distance and a reassortment event as the
minimal difference between the height of the reassortment event and the
common ancestor height of any pair of segments. This seeks to denote for
how long segments in the two parent viruses at the reassortment event
evolved independently.

Implementation. We implemented the MCMC framework for the coalescent
with reassortment as a BEAST2 package called CoalRe. This package includes
the classes to do simulation and inference under the coalescent with reas-
sortment. The implementation is such that the tree likelihood calculations
are separate from the network framework, which allows using the various
different site and clock models implemented in BEAST2. Additionally, it can
be used with other Bayesian approaches such as nested sampling or parallel
tempering. Further, model comparison as well as integration over evolution-
ary models can be performed. The package can be downloaded by using
the package manager in BEAUti. The source code for the software pack-
age can be found here: https://github.com/nicfel/CoalRe. A tutorial on how
to set up an analysis using the coalescent with reassortment is available at
https://taming-the-beast.org/tutorials/Reassortment-Tutorial (28). Networks
are logged in the extended Newick format (29) and can be visualized using,
for example, https://icytree.org/ (30). Additionally, we provide python scripts
to plot networks based on https://github.com/evogytis/baltic.

Simulations. In the simulation study, we simulated reassortment networks,
using the structured coalescent with randomly drawn effective population
sizes and reassortment rates. To do so, we first sampled random effective
population sizes from a log normal distribution (mean: 5; SD: 0.5) and
reassortment rates from another log normal distribution (mean: 0.2; SD:
0.5). An average effective population size of 5 is similar to the estimated
effective population sizes of seasonal human influenza viruses (Fig. 2C),
and an average reassortment rate of 0.2 per lineage per year is similar
to the later estimated reassortment rates for seasonal human influenza
viruses (Fig. 3). We then randomly sampled the sampling times of 100
taxa, each with 4 segments, from a uniform distribution between 0 and
20. We simulated reassortment networks alongside the embedding of the
segment trees using these parameters. For each segment tree, we next
simulated genetic sequences by using the Jukes–Cantor substitution model
(31) with an evolutionary rate of 5× 10−3 per site and year. We used the
Jukes–Cantor model in order to limit the uncertainty coming from the
substitution model, allowing us to test the performance of the coalescent
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with reassortment under idealized conditions. Each segment consisted of
1,000 independently evolving nucleotides. In order to study the effect of
reducing the amount of genetic information, we additionally considered the
scenario where all segments had the slower evolutionary rate of 5× 10−4

per site and year. These two evolutionary rates are higher (5× 10−3) and
lower (5× 10−4) than those estimated for seasonal human influenza viruses
(Fig. 2C).

Sequence Data Availability and Analysis. We compiled datasets from several
influenza viruses using sequence data downloaded from the Influenza
Research Database (https://www.fludb.org) (pandemic and seasonal H1N1,
H3N2, and influenza B). For the influenza A/H2N2 dataset, we used
the same sequences as in ref. 32. We obtained these sequences from
GISAID (https://gisaid.org; acknowledgments table can be found at https://
github.com/nicfel/Reassortment-Material/blob/master/Applications/H2N2/
oridata/gisaid acknowledge table.xls). For all datasets but the influenza
A/H2N2 dataset, we used subsampling to produce a final set containing
at least 500 samples with an even temporal distribution. We aligned all
segments using Muscle 3.8.31 (33).

We then analyzed every influenza virus under the coalescent with reas-
sortment in BEAST 2.5.2 (34) using parallel tempering (35, 36). We assumed
the sequences to have evolved under an HKY + Γ4 model (37, 38), allowing
the first two codon positions and the third having different rates (39). This

model has been regularly used in previous phylogenetic analyses of seasonal
human influenza viruses (see, for example, refs. 40 and 41).

We then jointly estimated all evolutionary rates, the reassortment net-
works, and embedding of segments trees, as well as the reassortment rates
and effective population sizes. For the influenza A/H2N2 dataset, we addi-
tionally estimated the sampling times for all sequences for which only
the year in which the sample was taken was known. We assessed conver-
gence using effective sample sizes and potential scale-reduction factors (42)
computed using coda (43) (SI Appendix, Fig. S14).

For virus types with sequences downloaded from the Influenza Research
Database (https://www.fludb.org), the full extensible markup language
(XML) files to run the datasets are available online. For the influenza A/H2N2
sequences that were obtained from GISAID, we removed the sequence char-
acters from the XML files in order to comply with the relevant license
regulations, leaving the accession numbers intact, and thus still allowing
reproduction of results based on these data. All other data, such as log files
of BEAST2 runs, as well as scripts to analyze and plot results, are available at
https://github.com/nicfel/Reassortment-Material.

ACKNOWLEDGMENTS. We thank Alexei J. Drummond, Simone Linz, and
Daniel Huson for useful discussions on how to summarize networks. We
also thank the two anonymous reviewers for their helpful feedback on the
manuscript. N.F.M. and T.S. are funded by Swiss National Science Foundation
Grant CR32I3-166258.

1. J. Steel, A. C. Lowen, Influenza A virus reassortment. Curr. Top. Microbiol. Immunol.
385, 377–401 (2014).

2. S. M. McDonald, M. I. Nelson, P. E. Turner, J. T. Patton, Reassortment in segmented
RNA viruses: Mechanisms and outcomes. Nat. Rev. Microbiol. 14, 448–460 (2016).

3. K. Nakajima, U. Desselberger, P. Palese, Recent human influenza a (H1N1) viruses are
closely related genetically to strains isolated in 1950. Nature 274, 334–339 (1978).

4. G. J. Smith et al., Dating the emergence of pandemic influenza viruses. Proc. Natl.
Acad. Sci. U.S.A. 106, 11709–11712 (2009).

5. G. J. Smith et al., Origins and evolutionary genomics of the 2009 swine-origin H1N1
influenza a epidemic. Nature 459, 1122–1125 (2009).

6. Y. Guan et al., The emergence of pandemic influenza viruses. Protein Cell 1, 9–13
(2010).

7. K. B. Westgeest et al., Genomewide analysis of reassortment and evolution of human
influenza a (H3N2) viruses circulating between 1968 and 2011. J. Virol. 88, 2844–2857
(2014).

8. G. Dudas, T. Bedford, S. Lycett, A. Rambaut, Reassortment between influenza B lin-
eages and the emergence of a coadapted PB1–PB2–HA gene complex. Mol. Biol. Evol.
32, 162–172 (2014).

9. L. Lu, S. J. Lycett, A. J. L. Brown, Reassortment patterns of avian influenza virus
internal segments among different subtypes. BMC Evol. Biol. 14, 16 (2014).

10. D. M. De Vienne, Tanglegrams are misleading for visual evaluation of tree congru-
ence. Mol. Biol. Evol. 36, 174–176 (2018).

11. M. I. Nelson et al., Multiple reassortment events in the evolutionary history of H1N1
influenza a virus since 1918. PLoS Pathog. 4, e1000012 (2008).

12. X. Didelot, D. Lawson, A. Daarling, D. Falush, Inference of homologous recombination
in bacteria using whole-genome sequences. Genetics 186, 1435–1449 (2010).

13. T. G. Vaughan et al., Inferring ancestral recombination graphs from bacterial genomic
data. Genetics 205, 857–870 (2017).

14. M. D. Rasmussen, M. J. Hubisz, I. Gronau, A. Siepel, Genome-wide inference of
ancestral recombination graphs. PLoS Genet. 10, e1004342 (2014).

15. G. A. T. McVean, N. J. Cardin, Approximating the coalescent with recombination.
Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1387–1393 (2005).

16. E. W. Bloomquist, M. A. Suchard, Unifying vertical and nonvertical evolution: A
stochastic ARG-based framework. Syst. Biol. 59, 27–41 (2010).

17. J. Heled, R. R. Bouckaert, Looking for trees in the forest: Summary tree from posterior
samples. BMC Evol. Biol. 13, 221 (2013).

18. G. Dudas, T. Bedford, The ability of single genes vs full genomes to resolve time and
space in outbreak analysis. BMC Evol. Biol. 19, 232 (2019).

19. C. Scholtissek, W. Rohde, V. Von Hoyningen, R. Rott, On the origin of the human
influenza virus subtypes H2N2 and H3N2. Virology 87, 13–20 (1978).
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