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Topological data analyses are widely used for describing and conceptualizing large

volumes of neurobiological data, e.g., for quantifying spiking outputs of large neuronal

ensembles and thus understanding the functions of the corresponding networks. Below

we discuss an approach in which convergent topological analyses produce insights

into how information may be processed in mammalian hippocampus—a brain part

that plays a key role in learning and memory. The resulting functional model provides

a unifying framework for integrating spiking data at different timescales and following

the course of spatial learning at different levels of spatiotemporal granularity. This

approach allows accounting for contributions from various physiological phenomena into

spatial cognition—the neuronal spiking statistics, the effects of spiking synchronization

by different brain waves, the roles played by synaptic efficacies and so forth. In

particular, it is possible to demonstrate that networks with plastic and transient synaptic

architectures can encode stable cognitive maps, revealing the characteristic timescales

of memory processing.
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1. INTRODUCTION

Spatial cognition in mammals is based on an internal representation of their environments—a
cognitive map—used for spatial planning, navigating paths, finding shortcuts, remembering the
location of the home nest, food sources and so forth. A central role in producing these maps
is played by the hippocampal neurons famous for their spatially tuned spiking activity. In rats,
these neurons, known as “place cells,” fire in specific domains of the navigated environment—their
respective “place fields” (O’Keefe and Nadel, 1978; Moser et al., 2008). Thus, the spatial layout of
the place fields in a given environment E—a place field map ME—defines the temporal order in
which place cells fire during animal’s moves (Schmidt and Redish, 2013; Agarwal et al., 2014), and
can therefore be viewed as a geometric “proxy” of the animal’s cognitive map.

Experiments in “morphing” 2D environments demonstrate that place field maps are flexible: if
the environment is deformed, then the place fields may change their shapes, sizes and locations,
while preserving mutual overlaps, adjacencies, containments, etc. (Gothard et al., 1996; Leutgeb et
al., 2005; Touretzky et al., 2005;Wills et al., 2005; Dabaghian et al., 2014; Bellmund et al., 2020; Place
andNitz, 2020). Hence the sequences in which the place cells fire during animal’s navigation remain
largely invariant within a certain range of geometric transformations, which suggests that the
hippocampus provides a qualitative, topological representation of space—more akin to a subway
map than a than to a topographical city street map (Alvernhe et al., 2012; Dabaghian et al., 2014;
Wu and Foster, 2014).
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The mechanisms that produce cognitive maps and the
computational principles by which the brain converts patterns
of neuronal firing into global representations of external space
remain vague. Broadly, it is believed that the information
provided by the individual place cells is somehow combined
into single coherent whole. However, this “fusion” should
not be viewed as a naïve aggregation of the smaller “pieces,”
because the signals provided by the individual neurons have
no intrinsic spatial attributes; rather, spatial properties are
emergent, i.e., appearing at a neuronal ensemble level (Wilson and
McNaughton, 1993; Pouget et al. , 2000; Postle, 2006).

A computational framework developed in Dabaghian et al.
(2012), Arai et al. (2014), Hoffman et al. (2016), Basso et
al. (2016), Babichev et al. (2016a,b), Babichev and Dabaghian
(2018), Dabaghian (2019), and Dabaghian (2016) helps to

understand these phenomena by integrating the activity of the
individual neurons into a large-scale map of the environment
and to study the dynamics of its appearance, using algebraic
topology techniques. Below we review some basic ideas and key
concepts used in this framework, and discuss how theymay apply
to hippocampal physiology and cognitive realm. We then outline
several examples that demonstrate how various characteristics
of individual cells and synapses can be incorporated into the
model and what effect these “microscopic” parameters produce
at a “macroscale,” i.e., in the map that they jointly encode.

2. TOPOLOGICAL MODEL

2.1. Alexandrov-Čech’s Theorem
The topological nature of the cognitive map suggests that
the information transmitted via place cell spiking should be
amenable to topological analyses. For example, a place field map
can be viewed as a cover of the environment E by the place fields
υi, E = ∪iυi, which, according to the Alexandrov-Čech’s theorem
(Alexandroff, 1928; Čech, 1932), encodes the topological shape of
E . To evaluate its specific characteristics, one constructs the nerve
of the cover—an abstract simplicial complexN whose simplexes,
νi0 ,i1 ,...,ik = [υi0 , υi1 , . . . υik ], correspond to non-empty overlaps
between the place fields, υi0 ∩υi1 ∩ . . .∩υik 6= ∅. If these overlaps
are contractible, thenN has the same topological shape as E , i.e.,
the same number of components, holes, tunnels, etc. (Hatcher,
2002). An implication of this construction is that if the place fields
cover the environment sufficiently densely, then their overlaps
encode the topology of E , which provides a link between the place
cells’ spiking pattern and the topology of the represented space
(De Silva and Ghrist, 2007; Curto and Itskov, 2008; Chen et al. ,
2012; Dabaghian et al., 2012; Kang et al., 2020).

2.2. Temporal Coactivity Complex
From the physiological perspective, the arguments based on the
analyses of place fields provide only an indirect description of the
information processing in the brain. In reality, the hippocampus
and the downstream brain regions do not have access to the
shapes and the locations of the place fields, which are but artificial
constructs used by experimentalists to visualize their data. In
the brain, the information is transmitted via neuronal spiking
activity: if the animal enters a location where several place fields

overlap, then there is a probability that the corresponding place
cells will produce spike trains that overlap temporally (Curto
and Itskov, 2008; Dabaghian et al., 2012). Such coactivities may
be interpreted intrinsically by the downstream brain areas, and
integrated into a global map of the ambient space. Thus, a proper
description of place cell (co)activity requires a temporal analog
of the nerve complex, built using temporal relationships between
spike trains—which is, in fact, straightforward. Indeed, since the
place field overlaps represent place cells’ coactivities, one can
construct a “coactivity complex” T whose simplexes correspond
to combinations of active place cells, σ = [ci0 , ci1 , . . . , cik ]. It was
shown in De Silva and Ghrist (2007), Curto and Itskov (2008),
and Dabaghian et al. (2012) that if such a complex is sufficiently
complete (i.e., if it incorporates a sufficient number of the
coactivity events) then its structure is similar to the structure of
the spatially-derived nerve complexN , e.g., T correctly captures
the topology of the physical environment. Note however, that
structural similarity between N and T (representability of T )
is a non-trivial point with profound mathematical implications
(Tancer, 2013).

2.3. Simplicial Schemas of Cognitive Maps
Both complexes N and T provide a contextual framework
for representing spatial information encoded by the place
cells (Babichev et al., 2016b). For example, a sequence of
place fields traversed during the rat’s moves over a particular
trajectory γ and the place cell combinations ignited along
this trajectory can be represented, respectively, by a “nerve
path” ŴN = {ν1, ν2, . . . , νk}—a chain of nerve-simplexes
in N , or by a “coactivity path” ŴT = {σ1, σ2, . . . , σk}—a
chain of the coactivity-simplexes in T (see also Babichev and
Dabaghian , 2018). These simplicial paths qualitatively represent
the shape of the physical trajectories: a closed simplicial path
represents a closed physical route; a non-contractible simplicial
path corresponds to a class of the physical paths that enclose
unreachable or yet unexplored parts of the environment; two
topologically equivalent simplicial paths Ŵ1 ∼ Ŵ2 represent
physical paths γ1 and γ2 that can be deformed into one another
and so forth (Brown et al., 1998; Jensen and Lisman, 2000;
Guger et al., 2011; Dabaghian, 2016). By the Alexandrov-Čech’s
theorem, the net pool of the simplicial paths can thus be used
to describe the topological connectivity of the environment E via
homological characteristics ofN and T .

2.4. The Large-Scale Topology of the
Cognitive Map
C(E), as represented by a coactivity complex, can be described at
different levels. A particularly concise description of a topological
shape is given in terms of its topological loops (surfaces identified
up to topological equivalence) in different dimensions, i.e., by
its Betti numbers bn, n = 0, 1, . . . (Alexandrov, 1965; Hatcher,
2002). For example, the number of inequivalent topological loops
that can be contracted to a zero-dimensional (0D) vertex, b0(T ),
corresponds to the number of the connected components in
T ; the number of loops that contract to a one-dimensional
(1D) chain of links, b1(T ), defines the number of holes and
so forth (Alexandrov, 1965; Hatcher, 2002). The full list of
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the Betti numbers of a space or a complex X is known as its
topological barcode, b(T ) = (b0(T ), b1(T ), b2(T ), . . .), which
captures the topological identity of T (Zomorodian, 2005;
Zomorodian and Carlsson, 2005; Ghrist, 2008; Carlsson, 2009,
2013; Edelsbrunner and Harer, 2010). For example, the barcode
b = (1, 1, 0, . . .) corresponds to a topological annulus, the
barcode b = (1, 0, 1, 0, . . .)—to a two-dimensional (2D) sphere
S2, the barcode b = (1, 2, 1, 0, . . .)—to a torus T2 and so forth
(Edelsbrunner andHarer, 2010). Thus, by comparing the barcode
of the coactivity complex b(T ) to the barcode of the environment
b(E) one can establish whether their topological shapes may
match, i.e., whether the coactivity complex provides a faithful
representation of the environment at a given moment t.

2.5. A Model of Spatial Learning
A key difference between the complexes N and T is that the
topological shape of N is fully defined by the structure of the
place field map, whereas the shape of T unfolds in time at the rate
with which the spike trains are produced. At every given moment
of time, the coactivity complex T represents connections between
the place fields that the animal had time to “probe”: as the animal
begins to explore a new environment, T is small, fragmented and
may contain gaps that represent lacunae in the animal’s internal
map of the navigated space, rather than physical obstacles or
inaccessible spatial domains. As the animal continues to navigate,
more combinations of coactive place cells contribute connectivity
information, the coactivity complex grows, T (t) ⊆ T (t′), t <

t′, and acquires more details, converging to a stable shape that
captures the physical structure of the surroundings.

Mathematically, T can thus be viewed as a filtered complex,
with the filtration defined by the times of the simplexes’
first appearance, tσ (Dabaghian et al., 2012). Methods of the
Persistent Homology theory allow describing the dynamics of the
topological loops in T , e.g., evaluating the minimal time Tmin

after which the topological structure of T matches the topology
of the environment, bn(T ) = bn(E) (De Silva and Ghrist, 2007;
Curto and Itskov, 2008; Dabaghian et al., 2012). Biologically,
this value provides a low-bound theoretical estimate for the time
required to learn a novel topological map from place cell outputs
(Figure 1A) (Dabaghian et al., 2012; Arai et al., 2014; Babichev
et al., 2016a,b, 2018; Basso et al., 2016; Hoffman et al., 2016;
Dabaghian, 2019).

2.6. Facing the Biological Realm
The physiological viability of these algebraic-topological
constructions depends on the parameters of neuronal firing
activity: just as there must be a sufficient number of place fields
covering a space in order to produce a topologically correct
nerve complex N , certain conditions must be met by the
place cell spiking profiles in order to produce an operational
coactivity complex T . For example, there should be enough
cofiring of place cells with sufficient spatial specificity of
spiking; the encoded relationships should not be washed out
by noise; the model should make realistic predictions, e.g.,
produce viable learning periods in different environments,
etc. Given that biological systems are highly variable (Fenton
and Muller, 1998), these criteria may or may not be met

by the physiological place cell ensembles, or vice versa,
the model may single out a certain “operational” scope of
parameters that may not match the biological range. In
the following, we discuss this and other correspondences
between the topological model and hippocampal physiology.
We demonstrate that, first, the model can incorporate a vast
scope of physiologically relevant characteristics of spike times,
spiking statistics, their modulations by the “brain waves,”
efficacies of synaptic connections, architectures of the neuronal
networks, etc., all of which correlate with dynamics of spatial
learning. Second, the model allows converting this information
consistently into coherent, biologically viable descriptions of
a wide scope of neurophysiological phenomena. It becomes
possible to systematically deduce functional properties of the
system following not just the only empirical observations
or experimental line of reasoning that currently dominate
neurophysiological literature, but also the models’ own,
intrinsic logic.

2.7. Parameterization
To cope with the complexity of the cognitive map’s construction,
the model is built hierarchically: its main components implement
most prominent physiological phenomena, and more subtle
effects are incorporated as modifications of the skeletal
structures. In the following, we will proceed in steps, by selecting
a specific phenomenon, embedding it into the model using
a minimal set of tools, outlining the results and discussing
biological implications.

To simplify the approach, we will describe neuronal spiking
in terms of Poisson firing rates, which, in case of the place cells,
can be approximated by Gaussian functions of rat’s coordinates
with the amplitude fi (the ith place cell’s maximal firing rate), and
the width si (the size of the corresponding place field) (Barbieri
et al., 2004; Dabaghian et al., 2012). For an ensemble of N place
cells, the N values si and fi can be viewed as instantiations of two
random variables drawn from their respective distributions with
certain modes (s and f correspondingly) and standard deviations,
σs and σf . To avoid overly broad or overly narrow distributions
we impose additional conditions σs = bs and σf = af with the
coefficients a and b selected so match the experimental statistics
(Brunel et al., 2004; Barbour et al., 2007; Buzsáki and Mizuseki,
2014). As a result, each specific place cell ensemble can be indexed
by a triplet of parameters, (s, f ,N).

Second block of parameters characterizes animal’s behavior,
e.g., speeds and trajectory shapes, which are computationally
intractable. We assume a practical approach to this problem
and simulate non-preferential exploratory spatial behavior, with
no artificial moving patterns or favoring of one segment of the
environment over another, with typical experimentally observed
speed ranges. Such approach allows reproducing a natural flow of
spiking data and estimating how long it takes to integrate it into
a topological map. The statistical alternatives for the model are
produced by randomizing place field maps over a fixed trajectory
rather than by sampling over different trajectories, which is
practically much more efficient.

It should be emphasized however, that these and all the
subsequent simplifications should not be viewed as limitations
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FIGURE 1 | Topological description of spatial learning. (A) As the rat begins to explore an environment, the simplicial complex T (t) contains many 0D cycles that mark

contractible spatial domains represented by small groups of cofiring place cells. Additionally, there exists many 1D cycles that represent transient holes in T (t). As

exploration continues, spurious cycles disappear, leaving behind only a few persisting ones, which express stable topological information. (B) Each point in the

parameters space with coordinates (s, f ,N) represents a particular place cell ensemble. The colors of the dots represent the mean learning time Tmin; the larger the

dot, the higher the rate of capturing the correct topological information for the corresponding (s, f ,N). The ensembles that can produce a correct map occupy a

particular domain of the parametric space—the Learning Region, L, where learning is fastest and most accurate; near the boundary, map forms over times and

exhibits higher error rates. Outside of L learning fails. Importantly, the parameter values that correspond to L happen to parallel experimentally derived values, which

indicates a biological relevance of the model. The smaller L on the left panel corresponds to a 2D arena with a hole, about 1.5× 1.5 m in size, and the larger L on the

right corresponds to a quasi-linear environment (top right corner of each panel). The more complex the environment, the more tuned the neural ensembles have to be

to learn the space.

of the approach but only as approximations used for simplifying
specific computations. The model would also work with more
detailed information, e.g., using more precisely estimated
spike times or behavioral parameters, physiologically recorded
or generated via accurate network models, detailed synaptic
transmission mechanisms, etc.

3. OVERVIEW OF THE RESULTS

3.1. The Learning Region
For a particular set of values (s, f ,N), a trajectory traversing
a place field map ME produces a certain time-dependent
coactivity complex T (t). Onemay inquire whether, and for which
ensembles, such a complex acquires the correct topological shape
and how long this process may take. As it turns out, the coactivity
complexes produced by generic place field maps can assume
correct topological shapes, bk(T ) = bk(E), k ≥ 0, in a biologically
feasible period—if the spiking parameters fall into a specific
domain in the parameter space that we refer to as the learning
region, L (Figure 1B). It is important to note that although the
exact structure of T (t) depends profusely on the details of the
map ME (Babichev and Dabaghian , 2018), most large-scale
characteristics of T (t), e.g., its Betti numbers, are largely ME -
independent. This leads to the model’s first predictive outcome,
namely to the observation that the mean spiking parameters
(s, f ,N) may be used to identify a particular hippocampal “state”
with a certain learning capacity,

Tmin = Tmin(s, f ,N). (1)

The second key observation is that the placement of the learning
region in the parameter space matches the biological range of
spiking characteristics derived from electrophysiologically

recorded data (Dabaghian et al., 2012). A priori, this
correspondence is not guaranteed: the region L that emerges
from the “homological” computations could have appeared
anywhere in the parameter space. However, the fact that the
“operational” domain of the topological model appears to match
the biological domain, suggests that the topological approach
captures actual aspects of the neurophysiological computations
taking place in the hippocampal network. In particular, it
indicates that the physiological neurons can indeed encode a
topological map of space in a biologically feasible time. On the
other hand, boundedness of L also shows that spatial selectivity
of firing does not, by itself, guarantee a reliable mapping of the
environment, despite a widespread belief among neuroscientists
to the contrary.

Third, the size and the shape of L reflect the scope of
the biological variability that the hippocampus can afford in
a given environment: the larger the learning region L, the
more stable the map (Figure 1B). Indeed, the model implies
that the hippocampus can change its operating state inside L

without compromising the integrity of the topological map:
if one parameter begins to move outside the learning region,
then a successful spatial learning can still occur, provided that
compensatory changes of other parameters can keep the neuronal
ensemble inside L. This observation allows reasoning about
the effects of certain diseases [e.g., Alzheimer’s Cacucci et al.,
2008; Cohen et al., 2013] or environmental toxins [e.g., ethanol
Matthews et al., 1996; White and Best, 2000, cannabinoids Robbe
and Buzsáki, 2009] that produce more diffuse place fields, lower
place cell firing rates, smaller numbers of active cells and thus
may disrupt spatial learning by shifting system’s parameters
beyond the perimeter of the learning region.

Fourth, the structure of the learning region may also vary
with the geometry of the environment, the laboriousness of
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navigation: the greater the task’s complexity, the narrower the
range that can sustain learning—as suggested by experimental
studies (Nithianantharajah and Hannan, 2006; Fenton et al.,
2008; Eckert and Abraham, 2010). Thus, despite the topological
nature of the information processing, the place cells are not
“agnostic” about the scale and the shape of the navigated space. In
fact, it can be shown that maps of large spaces can be assembled
from the maps of their parts, e.g., if a domain E is split into two
subdomains E1 and E2 that meet but do not overlap, then one
can compute the individual learning times Tmin(E1) and Tmin(E2)
using only the spikes fired within each subdomain. The sum of
these learning times is similar to total time spent by rat in the
entire arena, Tmin(E) ≈ Tmin(E1) + Tmin(E2), with statistically
insignificant differences (Arai et al., 2014). Mathematically, this
result may be viewed as an adaptation of the Mayer-Vietoris
theorem that states that if a space E is split into pieces E1
and E2 that overlap over a domain with vanishing homologies,
Hq(E1 ∩ E2) = 0, then the homologies of the whole space are
given by the direct sum of the homologies of the components,
Hq(E) = Hq(E1) ⊕ Hq(E2) (Hatcher, 2002). In case of the
coactivity complexes, simulations demonstrate that persistent
loops that represent topological obstacles in two complementary
domains combine into the set of the persistent loops that
represent the whole space, providing a novel perspective on the
learning process.

These outcomes of the model correspond well with our
subjective learning experiences: the complexity of the task and
the size of the navigated environment influence learning time;
difficult tasks are accomplished at or just beyond the limits of our
capacity; disease or intoxication can reveal limits in our spatial
cognition that would normally be compensated for, and so forth.

3.2. Coactivity Window
The results discussed above are based on topological analyses
of spiking data produced by large populations of coactive place
cells; but what defines neuronal coactivity in the first place?
At a phenomenological level, an instance of coactivity may be
characterized by the length of the period allocated for detecting
the spikes fired by two ormore cells. Experimental studies suggest
that the “physiological” width w of the coactivity window ranges
between tens to hundreds of milliseconds, with the standard
estimate w ∼ 200 ms (Ang et al., 2005; Huhn et al., 2005; Maurer
et al., 2006; Mizuseki et al., 2009). The topological model allows
addressing this question theoretically: one can ask, e.g., what
range of window sizes could allow constructing topological maps
and would these values match the biological range of coactivity
periods? One can also inquire, given a particular width w,
whether the dynamics of T (t) depends on a specific arrangement
of the coactivity intervals along the time axis and how sensitive
the results may be with respect to the windows’ variations from
one instance of coactivity to another. In biological terms: can the
noise and/or variability of coactivity readouts affect the animal’s
learning capacity?

As it turns out, the answer to the latter two questions
is negative: the statistics of place cell coactivity and hence
the structure of the coactivity complex do not exhibit strong
dependence on either the coactivity windows’ random temporal

FIGURE 2 | Dependence of learning time on window width, with (blue line)

and without (black line) θ-modulation of spiking activity. The radius of the

circles indicates the percentage of times when topological learning is

successful. In both cases, the coactivity complexes with physically correct

topological shapes start to form at about wo = 0.2 θ-periods, when the

learning time is long (hours) and sensitive to the variations of w, and fail at

w ∼ 4.5 θ-periods, when learning becomes unreliable. At ws ∼ 1.5 θ-periods

the dependence Tmin(w) plateaus, marking the domain of stable w, which

continues to ws ∼ 3 θ-periods. As w grows further, the success rate

diminishes, and for ws > 5.5 θ-periods topological learning fails. Here s = 23

cm, f = 28 Hz, and N = 350 cells.

shifts or on the window sizes’ “jitter” (both for up to 50% of
the mean w). On the one hand, this justifies using a single
parameter w for studying the dependence of the coactivity
complex’ structure on the window width. On the other hand, it
is clear that learning dynamics should depend on the systematic
changes of w: if the coactivity window is too narrow, then the
spike trains produced by the place cells will often “miss” one
another, so that the map will either fail or take a long time to
emerge. However, if w is too wide, then the place cells with
disconnected place fields will contribute spurious links that may
compromise the map’s structure.

Simulations show that indeed, an accurate topological map
emerges within a well-defined range of ws, wo ≈ 25 ≤

w ≤ wc ≈ 1, 250 ms, beyond which the maps have vanishing
convergence rates (i.e., maps rarely or never produces the correct
Betti numbers). In-between, the learning time follows a power
law dependence, Tmin(w) ∼ w−α , with α ≈ 1.2 starting at high
values [Tmin(wo) ≈ 5 h] that rapidly decrease with growing w
(Figure 2). The “operational” range of ws is even smaller since
the biological dependence Tmin(w) should be not only finite, but
also stable, i.e., it should not be hypersensitive to variations of
w or exhibit low convergence rates. In the model, such a range
of ws lays approximately between 125 and 250 ms (Figure 2),
which matches the domain implicated in experimental studies.
Thus, the model once again allows deriving the physiologically
observed values—in this case the operational widths of the
coactivity windows—from purely theoretical considerations.

3.3. The Brain Waves
The temporal organization of the spike trains is strongly
influenced by the oscillating extracellular electrical fields—the
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brain waves, that control the temporal architecture of the spiking
activity and the parcellation of the information flow in the brain
(Buzsáki and Draguhn, 2004). In particular, the θ-wave (4–
12 Hz) and the γ -waves (40–80 Hz), are known to modulate
the place cells’ activity at several timescales and affect spatial
leaning (Buzsáki, 2002; Hasselmo et al., 2002; Colgin and Moser,
2010). However, it remains unclear at what level, and through
what mechanisms, do these waves exert their influence. Most
theoretical analyses address the effect of θ- and γ -rhythms on
individual cells’ spiking (Lisman and Idiart, 1995; Jensen and
Lisman, 2000; Hasselmo et al., 2002). In contrast, the topological
model allows addressing this question at the ensemble level, by
tracing how the θ- and the γ -modulation of spike trains changes
the dynamics of the corresponding coactivity complexes, e.g., the
speed of their convergence toward correct topological shape, the
statistics of topological defects exhibited during this process and
so forth. Let us discuss a few examples.

(i) θ-phase precession is a key mechanism by which the θ-
wave controls place cell’s spiking: as a rat moves through a
place field, the corresponding place cell spikes near a certain
preferred θ-phase that progressively diminishes for each new
θ-cycle (Buzsáki, 2005; Huxter et al., 2008) (Figure 3A). As
discussed in Jensen and Lisman (1996) and Skaggs et al. (1996),
this phenomenon helps to recapitulate the temporal sequence of
the rat’s positions in space during each θ-period and it is therefore
widely believed to enhance learning (Buzsáki, 2002, 2005).

Simulations show that indeed, θ-precession significantly
enlarges the learning region, making otherwise poorly
performing ensembles much more capable of learning. Without
θ-precession, the learning region L is small and sparse, and
vice versa, certain place cell ensembles that in absence of θ lay
beyond the learning region, become functional with the addition
of θ-precession (Figure 3B). Moreover, θ-precession increases
the probability of the correct outcome for ensembles that
occasionally fail to form an accurate map, which suggests that
θ-precession may not just correlate with, but actually enforce
spatial learning (Arai et al., 2014).

In terms of the coactivity complex’ structure, θ-enhancement
of learning is manifested through shortened durations of the
spurious 1D cycles, while initially increasing their number. In
other words, θ-modulation suppresses spurious defects in the
cognitive map at the price of creating more transient errors at
the initial stages of the navigation. Curiously, simulations also
show that learning times are relatively insensitive to the details
of the θ-wave structure: the presence of a spike-modulating θ-
rhythm by itself is more important than a specific wave shape
(Arai et al., 2014).

As for the interplay with the coactivity parameters,
the stabilization of the Tmin(w) dependence is achieved at
approximately the same range of ws as without the θ-precession,
at w ∼ 1 − 2 θ-cycles (Arai et al., 2014) (Figure 2). Such
recurrent matches between the preferred coactivity timescale
and the θ-timescale suggest that the interplay between neuronal
spiking and the parameters of animal’s behavior (e.g., speed)
required for optimal processing of topological information
may actually define the temporal domain of neuronal
synchronization in the rat’s hippocampal network. Thus,

θ-modulated coactivity complexes provide a self-consistent
description of the hippocampal network’s function at the θ-
timescale, predicting inter alia an optimal integration window
for reading out the information and the temporal domain
of synchronization.

(ii) γ -modulation of spiking. As w shrinks beyond the
range predicted for the independently θ-precessing place cells
(w < wo), spatial learning fails. Interestingly, this happens
precisely at the timescale where complementary mechanisms of
spike synchronization, driven by the second key component of
the hippocampal brain waves—the γ -oscillations—are taking
over (Colgin et al., 2009; Buzsáki and Wang, 2012). This raises
question about whether an additional γ -synchronization
of spiking could improve the predicted properties of
the cognitive map, i.e., produce topologically correct
coactivity complexes.

Physiologically, γ -wave represents fast oscillations of the
inhibitory post-synaptic potentials. As its amplitude Aγ (t) drops
at a certain location, the surrounding cells with high membrane
potential spike (Lisman, 2005; Jia and Kohn, 2011; Nikoli et
al., 2013). As a result, each γ -trough defines the preferred θ-
phase of several cells, i.e., marks an ignition of a particular
place cell combination, represented by a coactivity simplex.
Computationally, coupling spike times with the γ -wave can be
achieved by modulating neuronal firing rates with a Boltzmann
factor e−Aγ (t)/τi . The parameter τi can be interpreted as an
effective “temperature” that controls the temporal spread of
spikes around the ith γ -trough: for large mean τ = 〈τi〉, the
spikes are “hot,” i.e., spread diffusely near the γ -troughs and for
small τ they “freeze” at them. In particular, the case in which the
spike trains are uncorrelated with the γ -troughs corresponds to
the limiting case of an “infinitely hot” hippocampus (τ = ∞,
e.g., the pure θ-modulated cells discussed above). Meanwhile,
the “physiological” effective temperature that describes the
characteristic huddling of spikes within a γ -period observed in
the experiments (Colgin et al., 2009; Colgin and Moser, 2010) is
comparable to the mean γ -amplitude, τ ≈ Aγ .

The net effect of the γ -modulation on the coactivity
complexes is as follows: as the effective temperature drops and
the temporal spread of the spikes near the γ -troughs shrinks, the
coactivity complexes produce fewer, faster-contracting spurious
loops. In particular, at the “physiological” effective temperatures,
γ -synchronized cognitive map can robustly capture the topology
of the environment by integrating place cell coactivity at the γ -
timescale, i.e., yield finite learning times at w < wos, which
provides a direct demonstration of the importance of the γ -
synchronization at the systemic level.

This result may shed light on the well-known correlation
between successful learning and retrieval with the increase
of the γ -amplitude in raised attention states (Moretti et al.,
2009; Vugt et al., 2010; Lundqvist et al., 2011; Trimper et al.,
2014). In particular, it helps understanding why suppression of
the γ -waves induced, e.g., by psychoactive drugs (Whittington
et al., 2000a,b), such as cocaine (Dilgen et al., 2013; McCracken
and Grace, 2013), or arising due to neurodegeneration or
aging (Vreugdenhil and Toescu, 2005; Lu et al., 2011), usually
correlates with learning impairments—according to the model,
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FIGURE 3 | Brain waves enhances learning. (A) θ-precession and γ -synchronization modulate place cell spiking activity: Spike times precess with the θ-rhythm (≈ 8

Hz), schematically shown by the red wave: as the rat traverses a place field, the corresponding place cell discharges at a progressively earlier phase in each new

θ-cycle. The preferred θ-phases correspond to γ -cycles (≈ 60 Hz). The blue wave shows the net θ + γ amplitude. Boxed image: the spikes, shown by tickmarks

colored according to the place fields traversed by the animal’s trajectory, cluster over the γ -troughs, yielding dynamical cell assemblies. The spike time probabilities

are modulated by a Boltzmann factor e−Aγ (t)/τ , where Aγ the amplitude of a trough and τ is an “effective temperature.” (B) Learning regions with θ-precession (left)

and without it (right). In the latter case, the size and the density of L diminishes, indicating that θ-oscillations enhance place cells’ ability of to encode spatial maps,

making them more resilient in the face of the spiking rate or population size changes. Computations are made for a 1× 1 m environment shown in the top left corner.

all these phenomena suppress map formation—or retrieval—at
the γ timescale. On the constructive side, the model suggests
a new characteristics of the γ -synchronized spiking activity—
the effective γ -temperature of spiking—that may be studied
empirically and explained via neuronal mechanisms.

3.4. Ramifications of Coactivity Complexes
The predictions derived from the constructions discussed above
are not universal. For example, a direct application of the model
to the case of the bats navigating 3D caves (Ulanovsky and Moss,
2007; Yartsev and Ulanovsky, 2013) often produces dysfunctional
coactivity complexes, with hundreds of persistent spurious
loops—even for the experimentally observed parameters of
spiking activity (Hoffman et al., 2016). On the one hand, this
failure can be explained by the relatively high speeds of the
bat’s movements (over 2 m/s), which allows producing spurious
coactivities between place cells with non-overlapping place fields
(Hoffman et al., 2016). On the other hand, it also suggests that
the very idea that place cells operate by responding to certain
spatial domains (currently dominating in the field) may be only a
simplified interpretation of their spiking mechanism, suitable for
low speeds and basic environments. The model points out that
deriving topological maps from such “passive responses” may, at
higher speeds, generate mismatches between the spatial pattern
of the prearranged place fields and the temporal pattern of the
corresponding place cells’ coactivities. In other words, the model
suggests that the raw pool of place cell spiking data requires
editing—a surprising conclusion because it appeals to reasoning
beyond the model’s original setup. In effect, it suggests that the
hippocampal network should be wired to highlight some place
cell coactivities and suppress others, even though no explicit
references to the networks’ structure were made in the original
Alexandrov-Čech construction.

Curiously, this line of arguments addresses to a well-
known neurophysiological phenomenon, namely the fact
that place cells tend to form operative units known as
cell assemblies—functionally interconnected groups of neurons
that drive their respective “readout” neurons in the downstream
networks (Harris et al., 2003; Harris, 2005; Jackson and Redish,
2007; O’Neill et al. , 2008; Buzsaki, 2010). The spiking response
of the latter actualizes connectivity relationships between the
regions encoded by the individual place cells: if a specific instance
of place cell coactivity does not elicit a response of a readout
neuron, then the corresponding connectivity information does
not contribute to the hippocampal map (Buzsaki, 2010; Babichev
et al., 2016b). A cell assembly network of a specific architecture
can thus control processing of the information supplied by the
place cell spiking activity and the overall connectivity structure
of the cognitive maps (Figure 4A).

3.4.1. Clique Coactivity Complexes
A simple model a place cell assembly network can be built by
constructing a coactivity graph G, whose vertexes vi correspond
to place cells ci and the links, ςi0i1 = [vi0 , vi1 ] represent
the connections (functional or physiological) between pairs of
coactive cells (Burgess and O’Keefe, 1996; Muller et al., 1996).
The place cell assemblies then correspond to fully interconnected
subgraphs of G, i.e., to its maximal cliques ς = [ci0 , ci1 , . . . , cin ].
As a combinatorial objects, cliques are identical to the simplexes
span by the same sets of vertexes; hence the collection of G-
cliques produces a complex (Jonsson, 2008) that may serve as a
schematic representation of either the cell assembly network or
the cognitive map encoded by it (Babichev et al., 2016a).

Simulations show that such complexes, denoted below as Tς ,
are structurally very similar to the original coactivity complexes
derived from the higher-order place cell coactivities, which we
will denote as Tσ . However functionally, Tς s often performmuch
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FIGURE 4 | Synaptic efficacies and cell assembly complexes. (A) Cell assemblies are functionally interconnected network of place cells (black dots) are modeled as

cliques of the coactivity graph G. Spikes from kth pair of coactive place cells in an assembly σ are transmitted to a readout neuron (blue pentagons) with probability

pσ ,k < 1 (an ignited cell assembly is shown in red). The net structure of the cell assembly network is represented by the corresponding cell assembly complex TCA,

which captures the topology of underlying environment E . (B) The number of coactivity links shrinks with the diminishing spike transmission probability at a power rate

(black line), whereas the number of spurious topological loops in TCA proliferates exponentially. (C) As synapses weaken, the learning time Tmin grows at a power rate.

The size of the data points represents the percentage of the outcomes with the correct Betti numbers [b0,1(TCA) = b0,1(E ) = 1]. Computations are performed using an

ensemble of N = 400 neurons with a mean firing rate of f = 28 Hz and mean place field size 30 cm.

better than Tσ s, e.g., they exhibit a much smaller number of
shorter-living spurious loops, more robust learning times, etc.
(Babichev et al., 2016a; Basso et al., 2016; Hoffman et al., 2016).
The explanation for this effect is simple: the lowest order, pairwise
place cell coactivities are captured easier and more reliably than
the higher-order coactivity events (Katz et al., 2007; Brette, 2012).
An additional advantage is offered by a structural flexibility of
the clique coactivity complexes, since it is possible to assemble its
individual cliques ς ∈ Tς by accumulating low order coactivities
over time, rather than by detecting higher-order coactivity events.
For example, in order to identify a third-order coactivity clique,
ς = [ci0 , ci1 , ci2 ], one can first detect the coactive pair [ci0 , ci1 ],
then [ci1 , ci2 ] and then [ci0 , ci2 ], over an extended integration
window ̟ , whereas in order to produce a coactivity simplex
σ = [ci0 , ci1 , ci2 ], all three cells must become active within a single
coactivity window w.

From the physiological perspective, the clique construction
can be used to model a wide scope of physiological phenomena,
e.g., for testing whether the readout neurons may operate as
“coincidence detectors” that respond to nearly simultaneous
activity of the pre-synaptic cells [for short integration windows
̟ ∼ w Katz et al., 2007; Brette, 2012] or as “integrators”
of the spiking inputs [for ̟ ≫ w König et al., 1996; Magee,
2000; London and Häusser, 2005; Spruston, 2008; Ratté et al.,
2015], along with the intermediate and/or mixed cases. The
original approach based on the Alexandrov-Čech’s construction
corroborates with the first scenario: indeed, the nerve complexN
is derived from the spatial overlaps between the regions, which
mark the domains of nearly simultaneous place cell coactivity.
The architecture of the clique coactivity complex suggests an
alternative approach that significantly broadens the models’
capacity to represent synaptic computations.

Simulations show that, in fact, the connections within most
cliques of G activate nearly simultaneously, i.e., most simplexes

of Tσ are also present in Tς . Nevertheless, there exists a small
population of cliques that are never observed as simultaneous
coactivity events and require assembling over extended periods
(Hoffman et al., 2016). As a result, clique coactivity complexes Tς

are typically larger and produce much fewer spurious topological
loops that rapidly disappear with learning. In particular, such
complexes produce correct topological maps of 3D spaces for
the experimentally observed parameters of the spiking activity
(Hoffman et al., 2016), suggesting that the readout neurons in
bats’ (para)hippocampal areas should function as integrators
of synaptic inputs (with estimated spike integration period of
about 4 min), rather than detectors of place cells’ coactivity—a
prediction that may potentially be verified experimentally.

Another curious difference between the rats’ and the bats’
cognitive map construction mechanism is that less than 4%
of the bat’s place cells exhibit significant θ-modulated firing
(Yartsev and Ulanovsky, 2013), which implies that θ-precession
in these animals may not play the same role as in rats. Indeed,
simulating bat’s movements with and without θ-precession
reveals that in the θ-off case, the ensembles of place cells
acquire correct maps faster than in the θ-on cases, producing
fewer topological loops both in the simplicial and in the clique
coactivity complexes (Hoffman et al., 2016). To explain these
results, one can consider the effect of θ-precession from two
perspectives: on the one hand, it synchronizes place cells and
hence increases their coactivity rate, which may help learning
(Buzsáki, 2002; Harris et al., 2002; Lee et al., 2004; Geisler et
al., 2010; Jezek et al., 2011). On the other hand, it can be
viewed as a constraint that reduces the probability of the cells’
coactivity and hence decimates the pool of coactivity events
(Skaggs et al., 1996). In relatively slow moving rats, when the
coactivity events are reliably captured, the first effect dominates,
contributing a steady influx of grouped spikes to downstream
neurons. In rapidly moving bats however, when the network
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struggles to capture the coactivities, the constraint imposed by
phase precession acts more as an impediment and slows down
spatial learning process.

3.5. Cell Assembly Complex
Question arises, whether the coactivity complexes may be
implemented, in some capacity, in physiological networks or vice
versa, whether it is possible to construct complexes that capture
the organization of the cell assembly networks. Simulations
show that the original set of coactive place cell combinations
is very large: the numbers of d-dimensional simplexes in Tς ,

Nd, scale proportionally to the binomial coefficients Cd+1
N . More

specifically, it can be shown that the ratios ηd = Nd/C
d+1
N depend

primarily on themean place field sizes and the firing rates and not
on the number of cells within the ensemble, N (Arai et al., 2014).
In contrast, the number of cells that may potentially serve as
readout neurons is similar to the number of place cells N, which
implies that only a small fraction of coactive place cell groups
can form assemblies (Shepherd, 2004; Buzsaki, 2010). This raises
the question: is it possible to identify a sufficiently small but
functionally complete set of place cell combinations—putative
cell assemblies—using simple selection rules?

In model’s terms, the task of identifying a subpopulation
of coactive place cell combinations corresponds to selecting
a “cell assembly subcomplex” TCA of Tς , according to some
biologically motivated criteria. First, the total number of the
maximal simplexes in TCA should be comparable to the number
of its vertexes (i.e., of active cells), Nmax(TCA) ≈ N(TCA),
but the latter should not differ significantly from the original
number of place cells, N(TCA) ≈ N(Tς ). Second, only a few cell
assemblies (selected cliques) should be active at a given location,
to avoid redundancy of the place cell code. Conversely, the
periods during which all place cell assemblies are inactive should
be short, so that the rat’s movements should not go unnoticed
by the hippocampal network. Third, the larger is the number
of cells shared by consecutively igniting cell assemblies (i.e., by
the adjacent simplexes in a simplicial path), the more contiguous
is the representation of the rat’s moves. Hence the contiguity
between the simplexes in TCA should not decrease compared to
Tς . Lastly, TCA should correctly capture the topological shape of
the environment (Babichev et al., 2016a).

As it turns out, it is possible to carry out the required
construction by selecting the most prominent combinations of
coactive place cells—the ones that appear most frequently. This
selection principle is motivated by theHebbian “fire together wire
together” neuronal plasticity mechanisms: frequently appearing
combinations have a higher chance of being wired into the
network (Neves et al., 2008). Specifically, one can construct
the desired clique complexes by identifying the connections the
coactivity graphs G(ξ ) that activate at a rate exceeding a certain
threshold ξ . Alternatively, one can select, for every cell ci, its n0
neighbor-cells that are most frequently coactive with ci, which
yields another family of coactivity graphs, G(n0). Computations
show that the first family, G(ξ ), exhibits certain random graph
properties while the second family, G(n0), demonstrates scale-
free properties (Barabási and Albert, 1999; Albert and Barabási,

2002), characteristic of the hippocampal network (Bonifazi et
al., 2009; Li et al., 2010). However, both families of “restricted”
coactivity graphs allow constructing operational cognitive map
models, for a viable set of ξ s and n0s.

As expected, the size and the dimensionality of the
corresponding clique complexes, Tς (ξ ) and Tς (n0), decrease with
the growing threshold ξ or diminishing n0. In addition, their
maximal simplexes become more contiguous and their number,
Nmax, remains close to the number of cells. Lastly, the topological
behavior of both Tς (ξ ) and Tς (n0) is also regular: with minor
rectification algorithms that do not change significantly the
complex’s structure or alter the appearance rate of simplexes,
correct topological shapes can be attained as fast and as reliably
as with the entire set of the place cell coactivities, without
compromising the place cell coverage of the environment or
fragmenting the map (Babichev et al., 2016a). Thus, the generic
biological requirements listed above are met and we may
conclude that the selected “critical mass” of coactive place cell
combinations can produce viable cell assembly complexes TCA(ξ )
and TCA(n0) (Babichev et al., 2016a).

3.6. Synaptic Parameters
The physiologically implementable cell assembly complexes TCA
set the stage for further developments of the topological model.
For example, the simplexes of TCA can be rigged with parameters
describing transferring, detecting and interpreting neuronal
(co)activity in the corresponding cell assemblies, allowing us to
account for the effects of the hippocampal network’s synaptic
architecture and providing a basic description of the synaptic
computations in the cell assemblies.

In a phenomenological approach, synaptic connections can be
characterized simply by the probabilities of transmitting spikes
from a place cell to a readout neurons’ membranes and by
the probabilities that the latter will spike upon collecting their
inputs. If the cell assemblies are modeled as cliques of the
coactivity graph, then the key role is played by the probability
of transmitting the coactivity from the pairs of coactive place
cells to the corresponding readout neurons’ and response
probabilities. In principle, these probabilities can be evaluated
using detailed neuronal and synaptic models; however, in a
simpler phenomenological approach, they may be regarded as
random variables drawn from stationary, unimodal distributions
with the modes p∗ (transmission) and q∗ (response) and the
variances 1p and 1q. The stationarity here implies that we
disregard synaptic plasticity processes (Brunel et al., 2004;
Barbour et al., 2007; Buzsáki and Mizuseki, 2014).

Under such assumptions, it is possible to study how the large
scale, systemic characteristics of the spatial memory map depend
on the synaptic strengths, at what point spatial learning may
fail, and so forth. It can be shown, e.g., that if the characteristic
coactivity transmission probability is high (0.9 ≤ p∗ ≤ 1) then
its small variations do not produce strong effects on the spatial
map. On the other hand, as p∗ decreases further, the changes
accumulate and, as p∗ approaches a certain critical value pcrit ,
learning times diverge at a power rate,

Tmin ∝ (p∗ − pcrit)
−κ ,
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with κ ranging typically between 0.1 and 0.5 (Figure 4B). The
effects produced by the diminishing probability of the post-
synaptic neurons’ responses, q∗, are qualitatively similar but
weaker than the effects of lowering the spike transmission
probability p∗ (Dabaghian, 2019).

These results suggest explanations for numerous observations
of correlative links between weakening memory capacity and
deterioration of synapses, broadly discussed in neuroscience
literature (Shapiro, 2001; Selkoe, 2002; Toth et al., 2012).
According to model, weakening synapses reduce the size the
coactivity complex and degrade its topological structure. For
example, simulations demonstrate the number of connections in
the coactivity graph G near pcrit drops as N2 ∝ (p∗ − pcrit)δ ,
δ ∼ 1, whereas the number of longer-lasting 1D spurious loops
in the corresponding coactivity complex grows exponentially,
log(b1) ∝ (pcrit − p∗) (Figure 4C), suggesting a phase transition
from a regular to an irregular state (Donato et al., 2016). In
physiological terms, this implies that synaptic depletion reduces
the number of detectable coactivities while generating defects
in the cognitive map, which results in a rapid increase of the
learning time.

Moreover, weakening synapses reduce the learning region
down to its compete disappearance at p∗ = pcrit , which suggests
that spatial learning may fail not only because the parameters
of neuronal firing are pushed beyond a certain fixed “working
range,” but also because that range itself may shrink or cease to
exist. In particular, the fact that the learning region disappears
if the transmission probability drops below the critical value
implies that deterioration of memory capacity produced by the
synaptic failure cannot be compensated by increasing the place
field’s firing rates or by recruiting a larger population of active
neurons—for more details see Dabaghian (2019).

3.7. Dynamical Cell Assemblies
Physiologically, cell assemblies are dynamic structures: they may
form among the cells that demonstrate repeated coactivity and
disband as a result of deterioration of synaptic connections,
caused by reduction or cessation of spiking, then reappear during
a subsequent surge of coactivity, disband again and so forth
(Harris et al., 2003; Buzsaki, 2010). In the model, the formation
and disbanding of the cell assemblies is represented by the
appearances and disappearances of the corresponding simplexes,
so that the net dynamics of the cell assembly network and the
evolution of the resulting cognitive map is represented by a
“flickering” cell assembly complex, denoted as F(t). Unlike its
“perennial” counterpart T (t), which can only grow and stabilize
with time (Figures 5A,B), the flickering complex F(t) may
inflate, shrink, fragment into pieces that may fuse back together,
produce transient holes, fractures, gaps, and other dynamic
“topological defects” (Figures 5C,D).

One of the key questions that can be addressed by the
model is the following: experimentally, cell assemblies’ lifetimes
range between minutes (Goldman-Rakic, 1995; Billeh et al.,
2014; Hiratani and Fukai, 2014) and hundreds of milliseconds
(Whittington et al., 2000a,b; Bi and Poo, 2001; Bennett et al.,
2018), whereas cognitive representations of environments can
last for days and months (Clayton et al., 2003; Brown et al.,
2007; Meck et al., 2013). How can a rapidly rewiring network

sustain stable representations of the world? In model’s terms,
can the large-scale topological properties of F(t) be stable,
despite rapid recycling of its simplexes? Computationally, this
question can be addressed using Zigzag Persistent Homology
theory (Edelsbrunner et al., 2002; Carlsson et al., 2009; Carlsson
and Silva, 2010).

(i) Decaying flickering coactivity complexes. Flickering of the
coactivity complexes and their topological dynamics can be
simulated in many ways (see Battiston et al., 2020 for a broad
review). A simple model can be based on the dynamics of links of
the coactivity graph G as follows.

• Vertexes ςi of G appear at the moment of the
corresponding place cells’ first activation and thereupon
remain stable, as place cells do in learned environments
(Thompson and Best, 1990).

• A link ςij between vertexes ςi and ςj appears with
probability p+ij = 1 at the moment when cells ci
and cj become coactive and disappears with probability
p−ij (t) =∼ e−t/τij , where time t is counted from the
moment of ςij’s last activation and τij defines its proper
decay time. Below we consider a simple case in which all
connections decay at the same rate, τij = τ ,

p−ij (t) =∼ e−t/τ , (2)

so that the decay dynamics of the flickering coactivity
graph depends on a single parameter τ .

• The behavior of the higher-order cliques and hence of the
flickering complex Fτ are also defined by the link decay
period τ . Note that pairs of place cells may coactivate
before decaying, i.e., links in Gτ can rejuvenate; hence
cliques of orders m ≥ 1 may acquire effective lifetimes

τ
(m)
e > τ .

As mentioned in §1 of this section, details of the coactivity
complex’ dynamics depend on the sequence in which the rat
traverses place fields in a map ME . For a given map ME ,
a trajectory γ (t) and fixed physiological parameters (firing
rates, place field sizes, etc.), the Betti numbers bk(Fτ (t))
depend primarily on the links’ decay time τ (Babichev and
Dabaghian, 2017a,b; Babichev et al., 2018, 2019). One would
expect that if τ is too small (e.g., if the coactivity simplexes
tend to disappear between two consecutive co-activations of
the corresponding cells), then the flickering complex should
rapidly deteriorate without attaining an adequate topological
shape. If τ is too large, then the effect of the decaying
connections should be insignificant, i.e., the flickering complex
Fτ (t) should follow the dynamics of its “perennial” counterpart
T (t) ≡ F∞(t), constructed for the same spiking parameters. In
particular, if the place cells’ coactivity complex T (t) assumes the
correct topological shape in a biologically viable time Tmin(T ),
then a similar behavior should be expected from its slowly
decomposing counterpart Fτ (t). For intermediate values of τ ,
the topological dynamics of Fτ (t) may exhibit a rich variety
of behaviors.

Simulations show that a characteristic interval between
successive activations of links in the environment shown on
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FIGURE 5 | Perennial and flickering coactivity complexes. (A) In absence of decay, the coactivity complex T steadily grows. At first, it contains many pieces riddled

transient holes, but then, as the place cells’ spiking information accumulates, there emerges just one stable piece and only one hole survives (shown by red chain of

simplexes)—the one that corresponds to non-contractible simplicial path encircling a hole in the environment E (Figures 3B, 4A). (B) The timelines of 0D (top) and 1D

(bottom) topological loops in T , computed using Persistent Homology theory methods, show that the topological shape of the coactivity complex stabilizes. One

persistent loop in each dimension remaining after the minimal learning time Tmin (vertical dashed line) indicate the stable topological barcode of T . (C) If decay is

allowed, then the coactivity simplexes may not only appear but also disappear, yielding a “flickering” coactivity complex F . Unlike the perennial complexes T ,

flickering complexes F may never stabilize, i.e., transient topological defects, described by Zigzag Persistent Homology theory (D) may persist indefinitely.

Figures 5A,C is about 1t ≈ 30 s. If the proper decay times are
not too large (2.51t . τ . 4.51t), then the time intervals
between consecutive births and deaths of a link ς distribute
bimodally: the relatively short lifetimes distribute exponentially,

with about twice longer effective lifetimes τ
(2)
e ≈ 2τ (higher-

order simplexes decay more rapidly, e.g., τ
(3)
e ≈ τ , etc.). In

addition, there appears a pool of long-living connections that
persist throughout the entire navigation period (Figure 6A). In
other words, the flickering coactivity complex Fτ (t) acquires a
stable “core” formed by a population of “surviving simplexes,”
enveloped by a population of “rapidly fluttering” simplexes.

The resulting mix of skeletal (stable) and fluttering simplexes
rapidly grows at the onset of the navigation and begins to
saturate by the time a typical link makes an appearance, which,
incidentally, is comparable to the “perennial” learning time
Tmin(T ) (a few minutes). The characteristic size of Fτ (t) grows
to about a half of the size of F∞(t), with about 15% fluctuations
(Figure 6B). Thus, the population of simplexes inFτ (t) is indeed
transient: although the size of Fτ (t) fluctuates slowly from one
moment of time to the next, the set of simplexes that are present
at a given moment of time t but missing at a later moment t′,
grows as a function of temporal separation |t − t′|, becoming
close to the sizes of either Fτ (t) or Fτ (t′) in approximately one
learning period Tmin(T ) (Babichev et al., 2018, 2019).

The topological shape of Fτ (t) changes much slower: after
a brief initial stabilization period, the topological barcode
b(Fτ ) remains similar to the barcode of the navigated
environment E , exhibiting occasional topological fluctuations at
the Tmin-timescale (Figure 6C). Thus, the coactivity complex
Fτ can preserve not only its approximate size but also
its topological structure, despite the ongoing recycling of
its simplexes.

As τ grows, the effective lifetimes τ
(2)
e and τ

(3)
e , as well

as the number of simplexes actualized at a given moment
increase approximately linearly, yielding a growing “stable core”
(Figure 6). As a result, a complete suppression of topological

fluctuations in the coactivity complex is achieved at a finite
values of τ = τ∗ (Figure 7), which gives a theoretical estimate
for the rate of physiological transience that permits stable
representations of the environment E (Babichev et al., 2018). This
observation illustrates the phenomenon of emergent topological
stability in flickering complexes, which may provide insight into
how transient networks sustain lasting representations of stable
physical reality.

(ii) Finite latency flickering coactivity complexes. An alternative
model of flickering clique complexes can be built by restricting
the period over which the coactivity graph is formed to a shorter
“spike integration” time window ̟ (Theunissen and Miller,
1995; Hoffman et al., 2016; Perea, 2019). In such approach, the
coactivity simplexes that emerge within the starting ̟ -period,
̟1, will constitute a coactivity complex F(̟1); the simplexes
appearing within the next window, ̟2 will form the complex
F(̟2) and so forth. A given clique-simplex ς (as defined by
the set of its vertexes) may therefore appear through a chain
of consecutive windows, ̟1,̟2, . . . ,̟k−1, then disappear at
the kth step ̟k (i.e., ς ∈ F(̟k−1), but ς /∈ F(̟k)), then
reappear in a later window ̟l≥k, then disappear again, and so
forth. The duration of ς ’s existence between its k-th consecutive
appearance and disappearance, δtς ,k, can then be as short as the
shift between the consecutive windows 1̟ or as long as the
animal’s navigation session.

It is natural to view the individual, “instantaneous” complexes
F(̟i) as instantiations of a single “finite latency” flickering
coactivity complex, F(̟i) = F̟ (ti). As it turns out, such
complexes exhibit a number similarities with the decaying
complexes Fτ (t), e.g., for ̟ ≥ Tmin(T ) the pool of maximal
simplexes is renewed at about ̟ timescale, but the net number
of simplexes contained in F̟ (t) changes within about 5 − 10%
of its mean value (Figure 8A). Biologically, this implies that a
cell assembly network that described by F̟ (t) fully rewires in
about a ̟ period, without changing its overall size. Specifically,
for ̟ exceeding the perennial learning time Tmin(T ) and small
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FIGURE 6 | Topological dynamics of the decaying coactivity complex. (A) The histogram of the time intervals between the connections’ consecutive appearances and

disappearances: the lifetimes the rapidly “fluttering” simplexes are distributed exponentially (red line fit). The population of the “survivor” links produces a bulging tail of

the distribution (red arrow). (B) The population of 1D (blue trace) and 2D (green trace) simplexes in the decaying “flickering” complex Fτ (t), compared to the population

of 1D and 2D simplexes in the perennial complex T (t) (dashed lines). The size of Fτ (t) remains dynamic, whereas T (t) saturates in about 10 min. (C) At τ = 125 s

decay period, the mean Betti numbers b0(Fτ ) (blue) and b1(Fτ ) (green) converge to their “physical” values b0,1 = 1 as the active place cell population increases from

N = 300 to N = 750 units; the b0,1-fluctuations decrease (shrinking error bars) and the rates ξ0,1 of producing the correct Betti values grow to nearly 100%. Statistics

evaluated over a T = 25 min navigation period.

FIGURE 7 | Topological stabilization. As the decay constant τ grows from ∼ 75 to ∼ 135 s, the topological shape of Fτ (t) stabilizes. A complete suppression of

topological fluctuations is achieved for τ ≈ 2− 2.5 min, with the other system parameters (rat’s speed, place cell firing rates, place field sizes, etc.) within a

physiological range. Blue and green dots show Betti numbers b0 and b1 at select moments of time. The ξ values show the percentage of times when physically

correct topological signature was captured.

time steps 1̟ & 0.01̟ , the intervals δtς ,k, as well as their
means, tς = 〈δtς ,k〉k, are exponentially distributed, which allows
characterizing the simulated cell assemblies by a half-life, τ̟ that
typically varies within τς ≈ 3 − 20 s. As ̟ widens, the mean
lifetimes tς of the maximal simplexes grow, and vice versa, as the
memory window shrinks, simplex-flickerings intensify.

On the other hand, the large-scale shape of F̟ (t) is much
more stable than its individual simplexes, as in the case of
the “decay model” (2). The topological fluctuation reduce with
growing ̟ , and, for sufficiently long latency periods ̟ ≥

̟∗ ≈ 1.5Tmin they tend to disappear completely (Figure 8B)—
even though the simplexes’ lifetimes remain short (τ ∗̟ ≈ 15 s
for the environment illustrated on Figure 5A). For sufficiently

long latencies, ̟ & 1.2Tmin(T ), the time required to produce
physical barcode b(F̟ ) = b(E) within typical window ̟k

is similar to the perennial learning time, T̄min = 〈T
(k)
min〉k ≈

Tmin(s, f ,N), with a variance of about 20 − 40% of the mean,
which shows that topological dynamics of the simulated cognitive
maps is largely time-invariant. In plain words, this result shows
that accumulation of the topological information can start at any
point (e.g., at the onset of the navigation or after an exploratory
delay) and produce the desired stable map after about the same
period of learning. In effect, this observation justifies using
perennial coactivity complexes for estimating Tmin in Dabaghian
et al. (2012), Arai et al. (2014), Basso et al. (2016), Hoffman et al.
(2016), and Dabaghian (2019).
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FIGURE 8 | Topological dynamics in the finite latency flickering complexes. (A) At each moment, tn, the blue line shows the proportion of maximal simplexes of F̟ (tn)

that were present at the previous time tn−1, i.e., in F̟ (tn−1). The green line shows the proportion of maximal simplexes of F̟ (tn) that were present at the onset of the

navigation, i.e., in F̟ (t1). The latter population changes by about 95% in about 2 min. (B) The low-dimensional Betti numbers, b1, b2, b3, and b4 (colors shown in the

left box) as a function of time, computed using ̟ = 1.5Tmin demonstrate full topological stabilization of F̟ (t), whose shape fully matches the topological shape of the

underlying environment (right box) at all times. Here (s, f ,N) is (23, 28, 350).

Moreover, for these latencies [̟ & ̟crit ≈ 1.4Tmin(T )],

the instantaneous learning times T(k)
min become ̟ -independent,

i.e., the finite latency model can provide a parameter-free
characterization of the time required by a network of place cell
assemblies to represent the topology of the environment and
establishes the timescale for the topological fluctuations in the
simulated cognitive map.

Note that finite latency model (ii) cannot be naívely reduced
to the decay model (i) by fixing the links’ lifetimes, i.e., by using
the decay probability

p−(t) =

{

1 if t = τ

0 if t 6= τ .
(3)

The topological structure of the “quenched-decay” coactivity
complex F∗

τ (t) controlled by the distribution (3) exhibits more
unstable dynamics than either F̟ (t) or Fτ (t), even for the
τ -values that reliably produce physical Betti numbers for the
exponentially distributed lifetimes. As decay slows down (i.e., as
τ grows), the population of survivor links produced by (3) also
grows and the topological structure ofF∗

τ (t) eventually stabilizes;
nevertheless, robust Betti numbers appear at much higher values
of τ than with the exponentially decaying links, and the match
between them and the physical Betti numbers is much less
frequent. Thus, the statistical spread of the connections’ lifetimes
produced by the tail of the exponential distribution (2) plays an
important role in attaining the net complex’ stability, i.e., that
a certain “synaptic disorder” is required for effective learning
(Chowdhury et al., 2018).

Overall, the model suggests that although many details of
topological dynamics of flickering complexes may depend on
the simplexes’ lifetimes and other parameters, several qualitative
features, notably the emergent topological stability of F(t) are
universal, i.e., largely independent from the simplex-recycling
mechanisms. In fact, even if the functional connections between

place cells are established and pruned randomly, at a rate that
matches the statistics (2), the resulting random connectivity
graph Gr(t) produces a random clique complex Fr(t) whose Betti
numbers converge to the Betti numbers of the environment at the
same timescale as the Betti numbers ofFτ (t) orF̟ (t), exhibiting
similar pattern of the topological fluctuations. Importantly, in the
latter case, the details of these processes are controlled by the
physiological parameters, e.g., by the number of active cells and
their firing rates (see Figure 6C and Babichev et al., 2018, 2019).

3.8. Memory Spaces
In the above discussion, the coactivity complexes were used
to describe topological structure of the hippocampal spatial
memory frameworks—cognitive maps (Moser et al., 2008;
Schmidt and Redish, 2013). However, it is well-known that
hippocampus encodes not only spatial but also generic, non-
spatial memories (Wood et al., 2000; Ginther et al., 2011; Wixted
et al., 2018; Wu et al., 2020), embedding them into broader
contexts, placing them in sequence of preceding and succeeding
events (Agster et al., 2002; Fortin et al., 2002). In Eichenbaum et
al. (1999) it was suggested that the resulting integrated memory
structure may be viewed as a memory space M that subjects
can “mentally explore” or “mentally navigate” (Theves et al.,
2020). In other words, it was suggested that individual memory
episodes and the spatiotemporal relationships between them
may be viewed as “locations” or “regions” that may overlap,
contain one another or be otherwise related in a spatial manner
(Babichev and Dabaghian , 2018). In particular, the standard
spatial inferences that enable spatial cognition and behavior are
viewed as particular examples of the memory space navigations
(Johnson and Redish, 2007; Hopfield, 2010; Issa and Zhang, 2012;
Dabaghian, 2016).

From a physiological perspective, the fact that a memory
space associated with a given environment E is encoded by the
same place cell population that produces a cognitive map of E ,
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suggests that the corresponding coactivity complex TCA may be
used to represent both structures. To gain an insight into this
representation, notice that any simplicial complex, in particular
TCA, defines a finite topological space A(TCA), endowed with
Alexandrov topology: the locations in A(TCA) correspond to
the coactivity simplexes and the topological neighborhoods of
a given location represented by a simplex ς are formed by
the locations whose simplexes include ς (Alexandroff, 1937;
Babichev and Dabaghian , 2018). Since the simplexes of TCA
represent combinations of coactive place cells, which, in turn,
are believed to represent memory elements, one may view
the resulting “topological space of coactivities” A(TCA) as a
representation of the topological memory space encoded by the
corresponding cell assembly network, M = A(TCA). There are
three immediate implications of this construction.

i. The dynamics of the large-scale topological structure
of memory space can be inferred directly from the algebro-
topological studies of the corresponding coactivity complexes,
since the (singular) homologies of M(TCA) are identical to the
(simplicial) homologies of the coactivity complex TCA (McCord,
1966; Stong, 1966; Babichev et al., 2016a). This implies, e.g.,
that a memory space that contains a topological map of a given
environment emerges over the same learning period Tmin and
within the same scope of spiking parameters L as the cognitive
map, that it is similarly affected by the brain waves, by the
deteriorating synapses, etc., and by the remappings (Babichev
and Dabaghian , 2018).

ii. It can be shown that neuronal activity representing a
trajectory γ traced by the animal in physical space maps
continuously into path ℘ navigated in the Alexandrov topology
of the memory space M(TCA). This provides a theoretical base
for the intuition of “mental exploration,” allowing to interpret
the succession of the place cell activities as a representation of
a continuous succession of memory episodes (Samsonovich and
McNaughton, 1997; Issa and Zhang, 2012; Buzsáki et al., 2014;
Dabaghian, 2016).

iii. In neuroscience literature it is recognized that “space
is constructed in the brain rather than perceived, and the
hippocampus is central to this construction,” and yet its meaning
remains unclear: “how can spaceless data enter the hippocampal
system and spatial cognitive maps come out” (O’Keefe and Nadel,
1978; Nadel and Hardt, 2004). The topological model may shed
light on these problems, because it allows interpreting spatiality
intrinsically, as a certain relational structure defined on spiking
activity (Vickers, 1989; Roeper, 1997; Cohn and Hazarika, 2001),
thus providing an ontological foundation for the emergent
spatiality of the cognitive map, mentioned in the Introduction.

4. DISCUSSION

Extensive studies are dedicated to establishing correlations
between parameters of neuronal activity and the characteristics
of cognitive phenomena that emerge from this activity (Postle,
2006). The approach discussed above aims at filling the “semantic
gap” between these two scales of information processing within
a unified framework, based on the conjecture about topological

nature of the hippocampal memory organization (Dabaghian
et al., 2014; Babichev et al., 2016b; Babichev and Dabaghian ,
2018). A formal connection with the realm of simplicial topology
is made based on an observation that neuronal computations
may be described as operations over spike combinations—
which ones are produced over a given period, which ones
are detected or transformed into specific outputs, etc. Viewing
each particular collection of spikes as an abstract simplex
allows representing large volumes of spiking data as abstract
simplicial complexes whose topological properties describe the
net qualitative information emerging at the neuronal ensemble
level. With this approach, the simplicial complex’ dynamics
may be used as a metaphor for the learning processes, which
permits not only phenomenological descriptions at different
spatiotemporal scales but also possesses explanatory power, i.e.,
allows embedding empirical data into qualitative and quantitative
schemas for reasoning about cognitive phenomena.

The framework also allows describing the flow of information
in transient networks, which significantly expands the scope of
the modeled phenomena. The net structure of this information
is represented by flickering coactivity complexes that exhibit
topological dynamics at three complementary timescales. The
fastest timescale corresponds to rapid recycling of the local
connections, which represents the flow of the ongoing, temporary
information—the short-term memory (Hebb, 1949; Cowan,
2008). The net topological dynamics, described by the time-
dependent invariants, e.g., Betti numbers, unfolds at a timescale
that is by about an order of magnitude slower than the simplex-
level fluctuations. Physiologically, this “operational” timescale
corresponds to the intermediate-term memory (Eichenbaum et
al., 1994; Kesner and Hunsaker, 2010). Lastly, the topological
variations occur over a robust base that marks persistent,
qualitative characteristics that marks the long-term memory.
Such stratification indicates functional importance of the
complementary learning systems for processing information
at different levels of spatiotemporal granularity (O’Reilly
and McClelland, 1994; McClelland et al., 1995; Fusi et al.,
2005).

The model reveals complex interactions between these
dynamics; for example, for sufficiently slow transience rates,
the fluctuations of the topological shapes encoded by the
network freeze out, i.e., the simulated cognitive map can acquire
topological stability. Physiologically, this implies that if the
cell assemblies rewire sufficiently slowly, then the net map
encoded by the corresponding network may retain its structure
despite the recycling connections in its neuronal substrate. In
other words, the model suggests that synaptic and structural
plasticity, which are ultimately responsible for the network’s
ability to incorporate new information (McHugh and Tonegawa,
2009; Leuner et al., 2010; Schaefers et al., 2010), do not
necessarily compromise the qualitative information represented
by the system. Rather, renewing connections allow correcting
errors, e.g., removing spurious topological defects that may
have appeared by an accident. As a result, a network capable
of recycling information demonstrates better learning capacity,
suggesting that both learning and forgetting components are
necessary for physiological learning (Dupret et al., 2010; Kuhl
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et al., 2010; Murre et al., 2013). The model also suggests
that memory deterioration caused by an overly rapid decay of
the network’s connections may be compensated by increasing
neuronal activity, e.g., by boosting the neuronal firing rates
(Babichev et al., 2018) or by increasing the “off-line,” endogenous
activity of the hippocampal network that can occur in wake
or in sleep states (Ji and Wilson, 2007; Karlsson and Frank,
2009; Dragoi and Tonegawa, 2011, 2013). In certain contexts,
such replays can be viewed as manifestations of the animal’s
“mental explorations” of its cognitive map (Foster and Wilson,
2006; Johnson and Redish, 2007; Hopfield, 2010; Issa and Zhang,
2012; Dabaghian, 2016), which are believed to help learning
and memory consolidation (Girardeau et al., 2010; Roux et al.,
2017). Indeed, the model shows that frequent place cell replays
significantly reduce the structural fluctuations in the cognitive
map, thus helping to separate the fast and the slow timescales and
to extract stable, qualitative representation of the external world
(Babichev et al., 2019).
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