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Abstract. Regulator of ribosome synthesis 1 (RRS1) is a key 
factor in ribosome biosynthesis and other cellular functions. 
High level of RRS1 in breast cancer cell lines is associated 
with increased cell proliferation, invasion and migration. 
RRS1 controls the assembly of the 60s subunit and matura‑
tion of 25S rRNA during ribosome biosynthesis. In this study, 
lentiviral transfection of sh‑RNA was used to knock down the 
level of RRS1, to detect the effect of RRS1 on cell function 
and to explore the specific mechanism of RRS1 affecting cell 
invasion and metastasis by COIP and dual‑luciferase reporter 
gene assays. The present study found that RRS1 knockdown 
reduced the accumulation of ribosome protein L11 (RPL11) 
in the nucleolus, which then migrated to the nucleoplasm and 
bound to c‑Myc. This inhibited trans‑activation of SNAIL by 
c‑Myc and eventually decreased the invasion and metastasis 
capacity of the human breast cancer cell line BT549. Taken 
together, RRS1 regulates invasion and metastasis of human 
breast cancer cells through the RPL11‑c‑Myc‑SNAIL axis. 
The findings are of great significance for exploring the 
mechanism of breast cancer invasion and metastasis and the 
corresponding regulatory factors.

Introduction

Breast cancer is a highly prevalent malignancy among women 
and remains fatal in spite of the decrease in mortality rate in 
recent years (1). Clinically, three types of biomarkers are used 
to classify breast cancer: Estrogen receptor α (ER), proges‑
terone receptor (PR) and epidermal growth factor receptor 2 

(HER‑2) (2,3). Among them, Luminal A subtype highly 
expresses ER and PR, lacks HER‑2 expression and has the 
characteristics of low proliferation rate and good prognosis (4). 
Luminal B subtype is similar to Luminal A subtype, but lacks 
PR expression. It demonstrates higher proliferation rate, worse 
prognostic effect and tolerance to hormone therapy (5). The 
HER‑2 subtype is characterized by HER‑2 overexpression, 
which can be further divided into HER‑2 positive and HER‑2 
negative according to the expression of ER. It is more resistant 
to chemotherapeutics and the prognosis is worse than that of 
the Luminal subtypes. Triple negative breast cancer (TNBC) 
is characterized by absence of HER‑2, PR and ER expres‑
sion. It has strong chemotherapy resistance and metastasis. 
The prognosis of patients with triple‑negative breast cancer 
is extremely poor and relapse common (6,7). Distant organ 
metastasis, especially to the brain, bones, lungs and liver, is a 
characteristic feature of breast cancer (8,9). Currently, meta‑
static breast cancer is treated by surgery, radiotherapy and 
adjuvant chemotherapy. Surgical resection has inherent disad‑
vantages and is associated with high recurrence rates (10,11), 
whereas radiotherapy and chemotherapy have a number of 
adverse effects, such as cardiac damage caused by combined 
chemoradiotherapy (12,13). Therefore, it is critical to identify 
novel therapeutic targets for metastatic triple negative breast 
cancer (TNBC).

The ribosomal regulatory protein RRS1 was discovered in 
Saccharomyces cerevisiae by Tsuno et al in 1999 (14). The 
human RRS1 gene is located on chromosome 8q13.1 and 
contains only one exon (15). RRS1 regulates ribosome biosyn‑
thesis by recruiting 5S ribonucleoprotein (RNP) to form the 
pre‑60S ribosomal subunit with ribosomal production factor 2 
(Rpf2) and promoting the maturation of 25S rRNA (16‑18). 
RRS1 also mediates the export of pre‑60S ribosomal subunit 
from the nucleolus to the cytoplasm. Thus, depletion of 
RRS1 results in the accumulation of the pre‑60 subunit in the 
nucleoplasm, eventually stalling ribosome biosynthesis (18). 
Studies show that RRS1 also regulates chromosome rear‑
rangement during mitosis (19) and telomere aggregation (20) 
and serves an important role in delayed cell aging (21) and 
in the development of Huntington's disease (22). In addition, 
RRS1 is abnormally expressed in various cancers (23‑30). 

Downregulated RRS1 inhibits invasion and metastasis of 
BT549 through RPL11‑c‑Myc‑SNAIL axis

RUNZE WANG1,  CUIXIU PENG1,  JUNYING SONG1,  YANAN HUA2,  QINGLAN WU1,  
LIN DENG1,  YI CAO3,  JINYU ZHANG1,  LI ZHANG4,  LI WU5  and  LIN HOU1

Departments of 1Biochemistry and Molecular Biology and 2Neurobiology, Basic Medical College;  
3Department of Biochemistry, Medical College; 4Experimental Center for Undergraduates of Pharmacy,  

School of Pharmacy; 5Department of Breast Center, The Affiliated Hospital of Qingdao University, 
Qingdao University, Qingdao, Shandong 266000, P.R. China

Received November 4, 2021;  Accepted February 4, 2022

DOI: 10.3892/ijo.2022.5323

Correspondence to: Professor Lin Hou, Department of Biochemistry 
and Molecular Biology, Basic Medical College, Qingdao University, 
308 Ningxia Road, Shinan, Qingdao, Shandong 266000, P.R. China
E‑mail: qingyi001@126.com

Key words: regulator of ribosome synthesis 1, ribosome protein 
L11, ribosome biosynthesis, breast cancer, invasion and metastasis



WANG et al:  DOWNREGULATED RRS1 INHIBITS INVASION AND METASTASIS OF BT549 VIA RPL11‑c‑Myc‑SNAIL AXIS2

Through binding of RPL11, which inhibits the interaction 
between RPL11 and murine doubleminute 2 (MDM2), it 
promotes the proliferation of breast cancer cells and reduces 
p53 levels (26). Knocking down RRS1 in breast cancer cells 
significantly reduced their proliferation rates by inducing cell 
cycle arrest (26).

RPL11 is a component of 5S ribonucleoprotein particles 
(5S RNP) and is translocated to the nucleus along with RPL5 
by the nuclear import protein Syo1, where they bind to 5S 
rRNA (31). RPL11 regulates MDM2 (32), which prevents 
p53 accumulation during cellular stress by inducing protein 
ubiquitination and degradation (33‑37). Furthermore, RPL11 
suppresses c‑Myc activity through a negative feedback 
pathway (38), which inhibits the transcription of downstream 
genes regulating cell growth, proliferation, metabolism, 
apoptosis, differentiation and ribosomal biosynthesis (39), 
whereas c‑Myc can transcriptionally activate RPL11 (40). 
In addition, miR‑150 and miR‑383 suppresses 5S rRNA in 
esophageal squamous cell carcinoma cells, which strength‑
ening RPL11‑c‑Myc interaction and reducing c‑Myc‑induced 
proliferation (41). C‑myc regulates the epithelial mesenchymal 
transition (EMT) of various tumor cells (42‑47), which allows 
the cells to detach from the primary tumors, extravasate and 
metastasize to distant organs (48). 

The present study found that RRS1 regulated the inva‑
sion and metastasis of breast cancer cells through the 
RPL11‑c‑Myc‑SNAIL axis. RRS1 knockdown disrupted ribo‑
somal biosynthesis and prevented the export of RPL11 from 
the nucleus. The accumulation of RPL11 in the nucleoplasm 
inhibited c‑Myc‑dependent transcription of EMT‑related 
genes. The findings revealed a new role of RRS1 in regulating 
breast cancer cell invasion and metastasis and demonstrate its 
potential as a therapeutic target.

Materials and methods

Cell line authentication. The breast cancer cell lines BT549, 
MDA‑MB‑231, MDA‑MB‑468, HMEC and MCF‑7 was 
purchased from Procell Life Science & Technology Co., Ltd. 
in March, 2021. The cell line was verified in March, 2021 and 
the follow‑up experiments were performed in the same month. 
Briefly, DNA was extracted from 1x106 cells using Chelex100 
and 20 STR sites and sex loci were identified using the 21 
CELL ID System (Procell Life Science & Technology Co., 
Ltd.), including D19S433, D5S818, D21S11, D18S51, D6S1043, 
D3S1358, D13S317, D7S820, D16S539, CSF1PO, PentaD, 
vWA, D8S1179, TPOX, PentaE, TH01, D12S391, D2S1338, 
D1656 and Amelogenin1. The PCR products were analyzed 
with the ABI3130x1 genetic analyzer and Gene Mapper IDX 
software (Applied Biosystems; Thermo Fisher Scientific, Inc.) 
and compared with the ATCC, DSMZ, JCRB and Cellosaurus 
databases. BT549, MDA‑MB‑231, MDA‑MB‑468 are Triple 
negative breast cancer breast cancer. MCF‑7 is Luminal 
A breast cancer. 293T cells were from the collection of our 
research group.

Cell culture and transfection. All the cell lines were cultured in 
Dulbecco's modified Eagle's medium (DMEM) supplemented 
with 10% FBS (Shanghai ExCell Biology, Inc.) and 1% peni‑
cillin and streptomycin solution at 37˚C. On reaching 20‑30% 

confluency, the cells were transduced with the GV493‑GFP 
lentivirus RNAi expression system (Shanghai GeneChem Co., 
Ltd.) expressing RPL11‑shRNA or scrambled shRNA with 
Hitrans A&P (Shanghai GeneChem Co., Ltd.). The multi‑
plicity of infection (MOI) was 10. The virus was transfected 
with serum‑free medium for 10 h at 37˚C. The medium was 
changed and replaced with complete medium and subsequent 
experiments were carried out after culturing for 48 h at 37˚C. 
The siRNAs and scrambled sequence for siRNAs were synthe‑
sized by Sangon Biotech Co., Ltd. The target sequences for 
RPL11 were as follows: Forward 5'‑GGU GCU GGA GUA UGA 
GUU ATT‑3' and reverse 5'‑UAA CUC AUA CUC CCG CAC 
CTT‑3'. The cell was transfected with siRNA using RNAFit 
(Hanbio Biotechnology Co., Ltd.) at 37˚C according to the 
manufacturer's protocol.

Western blotting. Total protein was extracted from cells using 
RIPA buffer (Shandong Sparkjade Scientific Instruments 
Co., Ltd.) and quantified using a BCA kit (Beijing Solarbio 
Science & Technology Co., Ltd.). Then 30 µg of protein per 
sample was resolved by 10% SDS‑PAGE and blotted onto 
PVDF membranes. After blocking with 5% BSA (Beijing 
Solarbio Science & Technology Co., Ltd., A8020) for 2 h at 
room temperature, the membranes were incubated overnight 
with primary antibodies against RRS1 (1:1,000; Abcam; 
cat. no. ab188161), c‑Myc (1:1,000; Abcam; cat. no. ab32072), 
NPM1 (1:1,000; Proteintech; cat. no. 60096‑1‑Ig), Lamin 
B1 (1:1,000; Proteintech; cat. no. 12987‑1‑AP), N‑cadherin 
(1:1,000; Proteintech; cat. no. 22018‑1‑AP), E‑cadherin 
(1:1,000; Proteintech; cat. no. 20874‑1‑AP), c‑Myc (1:1,000; 
Proteintech; cat. no. 67447‑1‑Ig), RPL11 (1:1,000; Proteintech; 
cat. no. 16277‑1‑AP), Vimentin (1:1,000; Proteintech; 
cat. no. 10366‑1‑AP), RPL23 (1:1,000; ABclona; cat. no. A4292) 
and Snail (1:1,000; ABclona; cat. no. A11794) at 4˚C, followed 
by the secondary antibodies at room temperature (1:3,000, 
Bioss; cat. nos. bs‑40296G‑HRP and bs‑40295G‑HRP) 
for 1 h. The positive bands were visualized using enhanced 
chemiluminescence (ECL) kit and the bands were measured 
using ImageJ (v1.53, National Institutes of Health). 

Cell proliferation assay. BT549 cells were seeded into 96‑well 
plates at the density of 2,000 cells/well. After 1, 2, 3, 4, 5 days 
of incubation at 37˚C, 10 µl of CCK8 solution (Beijing 
Solarbio Science & Technology Co., Ltd.) solution was added 
to each well and the cells were incubated for 2 h at 37˚C. The 
absorbance at 450 nm was measured using a microplate reader.

Reverse transcription‑quantitative (RT‑q) PCR analysis. 
Total RNA was extracted by adding 1 ml of TRIzol® Reagent 
(Thermo Fisher Scientific, Inc.) per 2x106 cells and using 
M‑MLV Reverse Transcriptase (HiScript® III All‑in‑one RT 
SuperMix kit, Vazyme Biotech Co., Ltd.) reverse transcrip‑
tion 1 µg. qPCR was performed using the ChamQ Universal 
SYBR qPCR Master Mix (Vazyme Biotech Co., Ltd.) on ABI 
QuantStudio 3 (Applied Biosystems; Thermo Fisher Scientific, 
Inc.). The PCR amplification conditions were: Pre‑denaturing 
at 95˚C for 30 sec, followed by 45 cycles of denaturing at 95˚C 
for 30 sec, annealing at 60˚C for 30 sec and the melting curve 
was the system default. The relative gene expression levels 
were normalized to GAPDH. The primer sequences were as 
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follows: RRS1 Forward: 5'‑CCC TAC CGG ACA CCA GAG 
TAA‑3', Reverse: 5'‑CCG AAA AGG GGT TGA AAC TTC C‑3'; 
GAPDH Forward: 5'‑AGA AGG CTG GGG CTC ATT TG‑3', 
Reverse: 5'‑AGG GGC CAT CCA CAG TCT TC‑3'. The above 
experiments followed the manufacturer's protocol. The relative 
expression levels were calculated using the 2‑∆∆Cq method (49).

Transwell and invasion assay. Transwell units were used to 
measure the migration and invasion capacity of BT549 cells 
in vitro. BT549 cells were seeded into the upper compart‑
ment of Transwell inserts (Corning, Inc.) at the density of 
10,000 cells/well in serum‑free media. For the invasion assay, 
the inserts were coated with Matrigel (35 µl per Transwell 
unit; diluted 1:8 with serum‑free DMEM) at 4˚C and incubated 
at 37˚C for 2 h to gel the Matrigel. The lower compartments 
were filled with complete media. After 48 h of culture, the 
cells remaining on the upper surface of the membranes were 
removed with a cotton swab and those that migrated/invaded 
through the membranes were fixed with 4% paraformaldehyde 
for 10 min at room temperature and then stained with 0.1% 
hexamethylpararosaniline for 10 min at room temperature. 
Then three fields of view were randomly selected under an 
inverted microscope, images captured at x100 and x200 
magnification, with counting and data analyzed from the x100 
image. Migration assay is used to detect the ability of cells to 
metastasize and invasion assay is used to detect the ability of 
cells to lyse the cell matrix.

Scratch test. The cells were seeded into a 6‑well plate at the 
density of 2x105 cells/well and cultured until 90% confluent. 
Three lines were scratched on the monolayers with a 200 µl 
sterile pipette tip and were cultivated in serum‑free medium. 
The scratched area was measured using ImageJ (v1.53, 
National Institutes of Health) at 0, 12, 24 and 48 h and the 
migration rate was calculated as (scratch area at 0 h‑scratch 
area at 12, 24, 48 h)/scratch area at 0 h x100%. 

Co‑immunoprecipitation (Co‑IP). Co‑IP was performed 
with anti‑c‑Myc (1:1,000; Proteintech; cat. no. 67447‑1‑Ig) 
and anti‑RPL11 (1:1,000; Proteintech; cat. no. 16277‑1‑AP) 
antibodies using the Classic Magnetic Protrin A/G IP/Co‑IP 
kit (Epizyme, Inc.) according to the manufacturer's protocol. 
The kit contained Protein A/G magnetic beads, lysis/wash 
buffer, SDS‑PAGE protein loading buffer (5X), elution buffer, 
neutralization buffer. Lysis/wash buffer and PMSF (1:100, 
Solarbio, P0100) were added at a ratio of 30 µl per 1.0x105 cells, 
mixed well and incubated on ice for 30 min (mixing several 
times during this period); collected by centrifugation (4˚C; 
12,000 x g; 10 min) with supernatant placed on ice for later 
use. Then 500 µl of the prepared sample was added to a 
1.5 ml EP tube, followed by 4 µg antibody and incubated 
on a flip mixer (4˚C overnight) to form antigen‑antibody 
complexes. Magnetic bead suspension (25 µl) was placed 
into a 1.5 ml EP tube and 500 µl of lysis/wash buffer added, 
the magnetic beads were resuspended by gently pipetting 
and then let stand on a magnetic stand for 1 min. When the 
magnetic beads were adsorbed to the sidewall of the EP tube, 
the supernatant was aspirated and this step repeated twice. 
The antigen‑antibody complex was added to the pretreated 
magnetic beads and incubated on an inversion mixer (4˚C 

overnight). Then it was stood on the magnetic stand for 
1 min, until the magnetic beads were adsorbed on the side 
wall of the EP tube. The supernatant was aspirated and 
discarded and what remained in the centrifuge tube was the 
antigen‑antibody‑magnetic bead complex. Lysis/rinse buffer 
(500 µl) was added to the antigen‑antibody‑magnetic bead 
complex, the magnetic beads resuspended by gently pipetting 
and agitation and then allowed to stand on the magnetic stand 
for 1 min until the magnetic beads were adsorbed to the side‑
wall of the centrifuge tube. The supernatant was aspirated 
and discarded and this step repeated twice. An appropriate 
amount of 5XSDS‑PAGE loading buffer was added to the 
antigen‑antibody‑magnetic bead complex, mixed well and 
heated at 100˚C for 10 min. Following cooling, the EP tube 
was placed on a magnetic stand for 1 min. After the magnetic 
beads were adsorbed on the side wall of the EP tube, the 
supernatant was collected and detected by SDS‑PAGE. The 
immuno‑precipitates were detected by western blotting as 
described above.

Luciferase activity assay. The dual‑luciferase reporter gene 
detected the relationship between the transcription factor 
c‑Myc and the Snail promoter and the 3'untranslated regions 
(UTRs) 2,000 bp upstream of the Snail transcription start 
site. The RPL11 and c‑Myc overexpression plasmids and the 
luciferase SNAIL‑pro reporter plasmid and Renilla luciferase 
plasmid were designed and constructed by Sangon Biotech 
Co., Ltd. LipoFiter 3.0 (Hanbio Biotechnology Co., Ltd.) was 
used for transfection according to the manufacturer's protocol. 
The BT549 cells were co‑transfected with these constructs and 
lysed 48 h after transfection. Luciferase activity was measured 
using a luciferase detection kits (TransGen Biotech Co., Ltd.; 
cat. no. FR201‑01) on a SpectraMax i3x Microplate Reader 
(Molecular Devices, LLC). The method of normalization was 
firefly luciferase activity comparison with Renilla luciferase 
activity. 

Immunofluorescence. BT549 cells were seeded onto a round 
coverslip (Biosharp; cat. no. BS‑14‑RC) at the density of 
2,000 cells/well. After 24 h, the cells were fixed with 4% 
paraformaldehyde for 10 min, permeabilized for with 2% 
Triton X‑100 10 min, blocked in 10% goat serum (Wuhan 
Boster Biological Technology, Ltd.; cat. no. AR0009) for 
30 min (the above steps were carried out at room tempera‑
ture) and then incubated overnight with anti‑RRS1 (1:200, 
Abcam; cat. no. ab188161), anti‑RPL11 (1:200, Proteintech; 
cat. no. 16277‑1‑AP), anti‑c‑Myc (1:50, Thermo, MA5‑12080), 
anti‑NPM (1:200, Proteintech; cat. no. 60096‑1‑Ig), anti‑Lamin 
B1 (1:200, Proteintech 12987‑1‑AP) and anti‑Fibrillarin/U3 
RNP (1:200, ABclona; cat. no. A0850) at 4˚C. Subsequently, 
the cells were incubated with the appropriate fluorescent 
secondary antibody (1:200, ABclona; cat. no. AS039 and 
AS011) for 1 h at room temperature. Nuclei were stained using 
DAPI (Beijing Solarbio Science & Technology Co., Ltd.; 
cat. no. C0065) for 10 min at room temperature according to 
the manufacturer's protocol. The stained cells were viewed 
with a laser‑scanning confocal microscope (Leica Stellaris 5; 
Leica Microsystems GmbH), 3 fields of view were randomly 
selected, observed and images captured at x200 and x630 
magnification.
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Cellular fractionation. BT549 cells were harvested and 6x106 
cells were resuspended in 500 µl hypotonic buffer. After 
10 min incubation on ice, they were centrifuged at 500 x g for 
10 min at 4˚C, and the supernatant containing the cytoplasmic 
fraction aspirated. The precipitate was resuspended in 300 µl 
S1 buffer, layered on 300 µl S2 buffer and centrifuged at 4˚C, 
1,500 x g for 5 min. The precipitated nuclear fraction was 
resuspended in 300 µl S2 buffer, sonicated for 30 sec with 
60 sec intervals for 5 cycles at 4˚C, 25 kHz, 60 W, layered on 
300 µl S3 buffer and centrifuged at 4˚C, 3,000 x g for 10 min. 
The nucleoplasmic fraction in the supernatant was separated 
and the precipitated nucleolar fraction was resuspended in 
RIPA buffer. Protease inhibitor cocktail was added throughout. 

Reagent composition: 
Hypotonic buffer: 10 mM HEPES (pH 7.9), 10 mM KCl, 
1.5 mM MgCl2, 0.5 mM DTT
S1 buffer: 0.25 M sucrose, 10 mM MgCl2

S2 buffer: 0.35 M sucrose, 0.5 mM MgCl2

S3 buffer: 0.88 M sucrose, 0.05 mM MgCl2

Statistical analyses. The data was analyzed using the SPSS 
v13.0 program (SPSS, Inc.). All data was expressed as 
mean ± standard deviation (SD) and statistical significance 
was determined through one‑way ANOVA analysis with 
Bonferroni post hoc test. P<0.05 was considered to indicate 
a statistically significant difference. Each experiment was 
repeated three times.

Results

RRS1 is upregulated in breast cancer cell lines. Tumor cells 
have a significantly higher rate of ribosome biosynthesis 
compared to normal cells in order to sustain rapid prolif‑
eration, which coincides with increased levels of RRS1. 
Consistent with this, we found that the expression of RRS1 
mRNA and protein were significantly higher in four breast 
cancer cell lines (MDA‑MB‑231, BT549, MDA‑MB‑468 
and MCF‑7) compared to normal mammary epithelial cells 
(HMEC; Fig. 1A) and the highest levels were detected in 
the BT549 cells (Fig. 1B and C). Fibrillarin/U3 RNP as a 
nucleolar marker can accurately locate the nucleolus, immu‑
nofluorescence assay using in BT549 cells indicated that RRS1 
was mainly located in the nucleus and nucleolus, followed by 
the cytoplasm (Fig. 1D). The sub‑cellular localization of RRS1 
was consistent with its role in ribosome biosynthesis. 

RRS1 knockdown inhibited the proliferation, invasion and 
metastasis of BT549 cells. To determine the biological 
relevance of RRS1 in breast cancer progression, the present 
study knocked down RRS1 in BT‑549 cells using an sh‑RNA 
construct (Fig. 2A) and the knockdown efficiency was validated 
by the reduced protein and mRNA levels of RRS1 (Fig. 2B‑D). 
RRS1 knockdown significantly decreased cell proliferation 
rates (Fig. 2E), as well as the migration and invasion abilities 
in vitro (Fig. 2F‑K). Similarly, in the triple‑negative breast 
cancer cell line MDA‑MB‑231, knocking down RRS1 also 
inhibited its invasion and metastasis ability (Fig. S1). Taken 
together, RRS1 is a key factor promoting the malignant pheno‑
type of breast cancer cells.

RRS1 knockdown disrupted the ribosome assembly by 
altering the cellular localization of RPL11. RRS1 recruits 
RPL11 to the nucleolus during the synthesis of large ribosomal 
subunits, which are then exported to the cytoplasm for further 
maturation. Cytoplasmic and nuclear proteins were analyzed 
to determine whether RRS1 affected the cellular localization 
of RPL11 and it was found that knocking down RRS1 did 
not alter the levels of RPL11 in the cytoplasmic or nuclear 
fractions (Fig. 3A and B). By contrast, RRS1 knockdown 
significantly decreased RPL11 levels in the nucleolus and 
increased that it in nucleoplasm (Fig. 3C). Rea1 disengages the 
Rsa4 and Rpf2/RRS1 complex from Pre‑60S, which converts 
5S RNP to the correct configuration and exports it out of the 
nucleus. Deletion of RRS1 can inhibit the interaction between 
Rea1 and Rsa4 (50). Consistent with this, the present study 
found that the knockdown of RRS1 significantly decreased 
the interaction of RPL23 (a marker protein of Pre‑60S) with 
RPL11 and RPL5 (Fig. 3D). Taken together, RRS1 disrupted 
ribosomal assembly by preventing the incorporation of RPL11 
into the Pre‑60S subunit, which in turn led to its dissociation 
into the nucleoplasm. The dissociation of RPL11 from the 
ribosomal complex allows it to bind to c‑Myc and inhibit its 
transactivation (41). There is also evidence that RRS1 knockout 
inhibits the nuclear export of RPL11 and increases its accu‑
mulation in the nucleus (30). Consistent with these previous 
observations, the present study found that RRS1 knockdown 
significantly enhanced the interaction between RPL11 and 
c‑Myc (Fig. 3E and F). Furthermore, the absence of RRS1 
also increased the c‑Myc accumulation in the nucleus, with a 
concomitant decrease in its cytoplasmic levels (Fig. 3A and B). 
These findings suggested that knocking down RRS1 enhances 
the interaction between RPL11 and c‑Myc.

RPL11 inhibits c‑Myc‑driven SNAIL transcription. A 
previous study showed that c‑Myc could promote the EMT, 
invasion and metastasis of tumor cells by activating the 
mesenchymal transcription factor SNAIL (51). As RPL11 
inhibits c‑Myc transactivation (38), the present study next 
examined whether RPL11 also affected c‑Myc‑dependent 
SNAIL transcription using the luciferase reporter assay. As 
shown in Fig. 4, while overexpression of c‑Myc increased 
luciferase activity in 293T cells, the expression of RPL11 
inhibited the function of c‑Myc and reduced the increase in 
luciferase activity (Fig. 4). This indicated that RPL11 reduces 
SNAIL transcription by inhibiting c‑Myc activity and may 
therefore block the EMT process. 

RPL11 inhibits EMT during RRS1 knockdown. EMT is a 
dynamic process in which serves an important role in tumor 
invasion and metastasis. Consistent with our hypothesis, RRS1 
knockdown increased the expression of the epithelial marker 
E‑cadherin (Fig. 5) and Cytokeratin (Fig. S2) and reduced that 
of the mesenchymal markers such as SNAIL, N‑cadherin and 
vimentin in BT549 cell (Fig. 5). Simultaneous knockdown 
of RRS1 and RPL11 restored the levels of the mesenchymal 
markers and downregulated E‑cadherin (Fig. 5). Similar 
results were obtained in the MDA‑MB‑231 cell line (Fig. S3). 
Taken together, RRS1 may promotes EMT of breast cancer 
cells through the RPL11‑c‑Myc axis, which in turn promotes 
tumor invasion and metastasis. 
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Discussion

Breast cancer has a high mortality rate due to its metastatic 
nature (52). The clinical outcomes of surgery, radiotherapy, 
chemotherapy, endocrine therapy and targeted therapy are 
sub‑optimal and the survival rate of breast cancer patients 

remains poor (53). The aim of the present study was to deter‑
mine the role and underlying mechanism of RRS1 in the 
invasion and metastasis of breast cancer cells.

Increased ribosome biosynthesis is a prerequisite for 
sustaining the high proliferation rates of tumor cells (54,55). 
RRS1 is a regulator of ribosome biosynthesis and shows high 

Figure 1. Expression and localization of RRS1 in breast cancer cells. (A) and (B) protein expression of RRS1 in normal human breast epithelial cells and breast 
cancer cell lines. (C) The mRNA content of RRS1 in normal human breast epithelial cells and breast cancer cell lines as detected by quantitative PCR. (D) The 
localization of RRS1 in BT549 cells as detected by immunofluorescence. ****P<0.0001. RRS1, regulator of ribosome synthesis 1.



WANG et al:  DOWNREGULATED RRS1 INHIBITS INVASION AND METASTASIS OF BT549 VIA RPL11‑c‑Myc‑SNAIL AXIS6

expression levels in multiple tumors (14,24‑28,30). Likewise, 
the present study also detected significantly higher levels of 
RRS1 in the breast cancer cell lines compared to normal 
breast epithelial cells. Knocking down RRS1 inhibited the 
invasion, migration and proliferation of BT549 cells, indi‑
cating that RRS1 functions as an oncogene in breast cancer. 
From a previous study, miRNA‑148a inhibits proliferation, 
migration and invasion by downregulating the expression 
of RRS1 and promotes the apoptosis of cervical cancer 
cells (23). RRS1 forms a complex with Rpf2, which recruits 
5S RNP onto the Pre‑60S subunit. RPL5 also interacts 
with Rsa4, which integrates the 5S RNP onto Pre‑60S (56). 
Subsequently, Rea1, an AAA+ (ATPases associated with 
various cellular activities) family member, interacts with 
the ubiquitin‑like (UBL) domain of Rsa4 and releases Rsa4 
in an ATP‑dependent manner, which is followed by the 
release of the Rpf2/RRS1 complex (50,57,58). This rotates 
the conformation of 5S RNP, which fixes it on Pre‑60S 
and is necessary for Pre‑60S export. RRS1 ensures correct 
binding of the Rsa4 UBL domain with Rea1 (50). In the 
absence of RRS1 therefore, Pre‑60S maturation is blocked 

and it is released from the nucleolus to the nucleoplasm and 
cannot be exported to the cytoplasm (18,50). The present 
study found that while RRS1 knockdown did not affect the 
total content of RPL11, it shifted the localization of RPL11 
from the nucleolus to the nucleoplasm. Consistent with 
this, RPL23 also accumulated in the nucleus after RRS1 
knockdown. In addition, deletion of RRS1 is known to 
inhibit the incorporation of RPL11 and RPL5 into Pre‑60S, 
thereby affecting Pre‑60S assembly (18). Taken together, 
RRS1 depletion prevents the incorporation of 5S RNP into 
Pre‑60S, which hinders the nuclear export of pre ribosomes 
and inhibits ribosome biosynthesis.

C‑Myc is a pro‑survival protein (59), which is often 
overexpressed in tumor cells (60,61). RPL11 can regu‑
late the expression of c‑Myc at both mRNA and protein 
levels (38,62). Dai et al (38) found that RPL11 could bind 
to the Myc box II (MB II) of c‑Myc at c‑Myc target gene 
promoter and inhibit the histone H4 acetylation at c‑Myc 
target nucleolin gene promoter and recruitment of c‑Myc 
coactivator TRRAP, finally reducing the transcription of the 
c‑Myc downstream target gene. In addition, RPL11 can bind 

Figure 2. The function of RRS1 in breast cancer cells. (A) The lentivirus transfection efficiency of BT549 cells was observed by fluorescence microscope. 
(B and C) Western blotting detected the expression of RRS1 protein. (D) RRS1 mRNA was detected by quantitative PCR. (E) CCK‑8 was used to detect 
the proliferation of BT549. (F and G) Knockdown of the expression of RRS1 in BT549 cells and the migration of cells was detected by scratch test. 
(H and I) Transwell experiment were used to detect cell migration. (J and K) Invasion experiment was used to detect cell invasion, **P<0.01, ***P<0.001. RRS1, 
regulator of ribosome synthesis 1; Con, control; sh, short interfering. 
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to 3'‑UTR at c‑Myc mRNA, recruit microRNA‑induced 
silencing complex (miRISC) assembled by mir‑24 and 
combine with Ago2 promote the interaction of miRISC 
and 3'‑UTR, leading to c‑Myc mRNA degradation (63). 
RPL11 and RPL5 can also suppress c‑Myc expression in 
a synergistic manner (62). The present study found that 
RRS1 knockdown increased the interaction between RPL11 
and c‑Myc and inhibited the transactivation of SNAIL by 
c‑Myc. Similarly, knocking down RRS1 reduced the levels 
of SNAIL, N‑cadherin and VIM proteins and increased that 
of E‑cadherin. Knockdown of RPL11 reversed the inhibi‑
tory effect of RRS1 deletion. Thus, RRS1 regulated the 
function of c‑Myc and EMT of breast cancer cells through 
RPL11.

To summarize, the present study showed that RRS1 
may promote the EMT and metastasis of breast cancer 
cells by regulating ribosome assembly and biosynthesis. 
Depletion of RRS1 prevented nuclear export of the Pre‑60s 
subunit and increased the accumulation of RPL11 in the 

Figure 3. RRS1 affects the localization of RPL11 in the nucleus and the interaction between RPL11 and c‑Myc. Cytoplasmic proteins and nuclear proteins 
were isolated after knocking down of RRS1 to detect the changes of RPL11 and c‑Myc in (A) cytoplasm and (B) nucleus. Cytoplasmic protein and nuclear 
protein used GAPDH and NPM as reference, respectively. (C) The changes of RPL11 in each cell component after knocking down of RRS1. GAPDH is used 
as cytoplasmic control, Lamin B is used as nucleoplasmic control and NPM as nucleolar control. (D) Co‑IP was performed using anti‑RPL23 antibody and the 
effect of silencing RRS1 on Pre‑60S assembly detected. (E and F) Co‑IP was conducted using anti‑RPL11 antibody or anti‑c‑Myc antibody to detect the effect 
of knockdown RRS1 on the interaction between RPL11 and c‑Myc, **P<0.01, ***P<0.001. RRS1, regulator of ribosome synthesis 1; RPL11, ribosome protein 
L11; NPM, nucleophosmin; Co‑IP, Co‑immunoprecipitation.

Figure 4. RPL11 inhibits c‑Myc‑dependent the activation of SNAIL promoter. 
Treated 293T cells were transfected with plasmids for luciferase assays to 
determine the reporter activity, **P<0.001. RPL11, ribosome protein L11. 
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nucleoplasm. This enhanced the interaction between RPL11 
and c‑Myc and decreased the transcription of the c‑Myc 
target SNAIL, eventually inhibiting EMT (Fig. 6). Therefore, 
the RPL11‑c‑Myc‑SNAIL axis may as a potential therapeutic 
target in breast cancer. However, it remains to expound the 
effect of RRS1 on the RPL11‑c‑Myc‑SNAIL axis and its role 
in breast cancer.
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