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Muscular dystrophies are groups of inherited progressive diseases of the muscle caused by muta-
tions of diverse genes related to normal muscle function. Although there is no current effective 
treatment for these devastating diseases, various molecular strategies have been developed to re-
store the expressions of the associated defective proteins. In preclinical animal models, both vi-
ral and nonviral vectors have been shown to deliver recombinant versions of defective genes. An-
tisense oligonucleotides have been shown to modify the splicing mechanism of mesenger ribonucleic 
acid to produce an internally deleted but partially functional dystrophin in an experimental model 
of Duchenne muscular dystrophy. In addition, chemicals can induce readthrough of the premature 
stop codon in nonsense mutations of the dystrophin gene. On the basis of these preclinical data, sev-
eral experimental clinical trials are underway that aim to demonstrate efficacy in treating these de-
vastating diseases.
 J Clin Neurol 2010;6:111-116
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Introduction

Muscular dystrophies are groups of inherited diseases of the 
muscle that are characterized clinically by progressive muscle 
weakness, and pathologically by muscle degeneration. Over 
the last 20 years, most of the genetic defects have been identi-
fied through the progress of genetics in this field. Even though 
there is currently no effective treatment for these diseases, gene 
therapy will provide the most promising answers to the prob-
lem. Duchenne muscular dystrophy (DMD) is the most com-
mon and most devastating form of muscular dystrophy, and so 
the search for treatment for these conditions has focused main-
ly on this disease. 

Successful gene therapy and its development face difficul-
ties; challenging factors include the sizes and complexities of 
the causative genes. However, new molecular strategies have 
been established to restore the genetic defect over the past few 
years (Table 1). 

The present work reviews the theoretical background and 
recent progress in gene therapies for both DMD and other 
muscular dystrophies.

Gene Transfer

Plasmid vectors
Plasmid DNA is an extrachromosomal DNA molecule sepa-
rated from chromosomal DNA. It is capable of replicating in-
dependently and has been used as a nonviral vector for gene 
transfer. Plasmid DNA can be engineered to include a dystro-
phin expression insert, and it can be expanded and purified in 
large amounts. When naked plasmid DNA containing a dys-
trophin cDNA construct was injected into the muscles of an 
mdx mouse (an animal model of DMD), dystrophin expres-
sion was observed in some of the muscle fibers.1 However, 
low efficiency was a limitation of a gene transfer system using 
a naked plasmid. To increase the efficacy of gene transfer, 
several physical manipulations were employed. Researchers de-
monstrated that the efficacy of gene transfer with intramuscu-
lar administration was much increased by the application of 
an electrical field across muscle fibers.2,3 Physical damage to 
the muscle induced by application of an electrical field was a 
major limitation of this approach, and subsequent research 
reports described measures to reduce this physical damage.4,5 
One delivery method is in vivo electroporation, which report-



Gene Therapy for Muscular Dystrophies

112  J Clin Neurol 2010;6:111-116

edly increases the efficacy of gene transfer within muscles of 
an mdx mouse.6,7 In addition, the enzyme hyaluronidase, which 
can weaken the extracellular matrix of muscle fibers, could be 
used before electroporation, thus potentially further improving 
the efficacy of gene transfer and minimizing the physical dam-
age to muscle fibers.8,9 However, it appears that a therapeutic 
application for this approach in DMD patients is unlikely.

Another method is a pressurized isolated-limb perfusion ap-
proach, which reportedly achieve a much higher efficiency than 
direct intramuscular injection in animal models.10 Zhang et al.11 
temporarily blocked the circulation of a hindlimb in an mdx 
mouse with a preinjection of papaverine, and reperfused the 
limb with a large amount of plasmid DNA with a dystrophin 
gene insert. Cannulation of a large artery and the use of vaso-
active agents were limitations of this approach. As an alterna-
tive, Hagstrom et al.12 demonstrated that a pressurized isolat-
ed-limb perfusion approach using a peripheral vein could also 
be effective in mammalian animal models. However, the trans-
fection efficiency remained lower than that of viral vectors, even 
though it was markedly higher than that of intramuscular ad-
ministration. Despite this, the capability of plasmid vectors to 
contain full-length dystrophin cDNA, as well as their nonin-
fectious and nonimmunogenic properties, are major merits 
when compared to viral vectors.

In a phase I study, plasmid DNA containing a full-length dy-
strophin gene was injected into the radialis muscle in nine pa-
tients with either DMD or Becker muscular dystrophy (BMD).13 
Neither serious adverse effects nor antidystrophin immune re-
sponses were found in the study. Dystrophin was expressed 
in six of the nine patients, although at a low level. A clinical 
trial of the delivery of plasmid DNA containing a full-length 
dystrophin gene using a high-pressure intravascular delivery 
approach is currently being conducted by the Transgene and 
Mirus consortium.

Viral vectors
Over recent years, adenovirus and adenoassociated virus (AAV) 
have been used as viral vectors of gene therapy for DMD. Ad-
enovirus has double-stranded DNA (35 kb); adenoviral vec-
tors inserted with the full coding sequence of dystrophin showed 
efficient and functional expression of dystrophin in the mdx 
mouse.14 However, an acute inflammatory response and im-

mune reactions caused by their capsid proteins limit their use 
as the preferred viral vector for DMD.15

The AAV is a single-stranded DNA virus (4.7 kb) and re-
quires a helper virus such as adenovirus or herpesvirus for its 
replication. The major advantages of an AAV vector are its 
mild immune response16 and high efficiency in transducing 
skeletal muscles than other vectors. However, its genome is 
too small for the insertion of a large dystrophin gene. To over-
come this problem, dystrophin microgenes were produced by 
removal of most of the middle rod domain and portions of the 
amino- and carboxyl terminals of the dystrophin gene (Fig. 1). 
It was reported that minidystrophin and microdystrophin could 
improve the phenotype of muscular atrophy in an mdx mouse 
model.17,18 Intravenous delivery of the AAV also demonstrat-
ed widespread transduction of cardiac and skeletal muscles in 
an mdx mouse model.19

In limb-girdle muscular dystrophies (LGMD), gene transfer 
with AAV vectors was also investigated in LGMD2D (α-sarco-
glycanopathy).20 In that research, human α-sarcoglycan (α-SG) 
was delivered with an AAV vector via local intramuscular 
injection in α-SG-knockout mice. Strong and persistent ex-
pression of the α-SG gene and restoration of the dystrophin-
glycoprotein complex were observed without definite cyto-
toxicity.

The AAV vector is currently one of the most promising vi-
ral vectors; however, there remain additional problems to be 
solved. Although AAV vectors seem to induce a lower im-
mune reaction compared to adenovirus, there has been evi-
dence of an immune response against the myofibers transduced 
by these vectors.21 As a possible solution to this issue, Rivière 
et al.22 recently reported that the use of different serotypes 
for the subsequent injections of AAV vectors could sustain 
an efficient gene transfer in skeletal muscle. In addition, the 
titer of AAV in animal trials has been too high, so it is neces-
sary to reduce the dose of virus to be applied to humans. One 
approach is to use AAV serotypes that are more capable of 
crossing the vascular endothelium. Recent studies have re-
vealed increased efficiency of gene transfer to muscle fibers 
with the use of newly developed serotypes.23,24 Another way 
is the use of agents such as vascular endothelial growth fac-
tor, which can enhance the permeability of the microvascula-
ture to increase the extravasation of the virus.19

Table 1. Strategies of gene therapy for muscular dystrophies

Strategies Advantages Limitations
Gene transfer

Plasmid vectors Noninfectious Low efficiency
AAV vectors High efficiency Small genome for dystrophin, potential immune response

Exon skipping Minor adverse effects Repetitive administration, different AONs for each mutation type
Readthrough of stop codons Easy delivery Applicable to nonsense mutations only, possible adverse drug effects 
AAV: adenoassociated virus, AONs: antisense oligonucleotides.
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A successful clinical trial of gene transfer of α-SG genes 
with an AAV vector was recently performed in patients with 
LGMD2D.25 That study was a double-blind, randomized con-
trolled trial using an AAV vector containing α-SG genes in-
jected locally in the extensor digitorum brevis muscle. Sus-
tained expression of the α-SG gene and restoration of the 
dystrophin-glycoprotein complex were seen without any evi-
dence of adverse events. A phase I/II clinical trial for DMD 
using an AAV vector for intramuscular delivery of microdys-
trophin into the biceps has been underway in the USA since 
2006 (http://clinicaltrials.gov/ct2/show/NCT00428935, 
http://genetherapy.unc.edu/clinical.htm). AAV vectors are ex-
pected to be applied more to muscular dystrophies involving 
genes smaller than dystrophin.26

Exon Skipping Using  
Antisense Oligonucleotides

Deletion mutations in the dystrophin gene can induce either 
DMD or BMD, but the clinical phenotypes differ consider-
ably. In 1988, Monaco et al.27 proposed a “reading-frame hy-
pothesis”. According to this hypothesis, the difference be-
tween these phenotypes is associated with a loss of frame (out-
of-frame deletions) in DMD and a preservation of the reading 
frame (in-frame deletions) in BMD. About 65% of DMD cas-
es are caused by out-of-frame deletions, which can produce 
truncated, nonfunctional dystrophins. On the other hand, in-
frame deletions allow the expression of internally deleted but 

partially functional dystrophin proteins. Therefore, the DMD 
phenotype can be theoretically changed to the BMD pheno-
type by restoring the reading frames. The reading frame can 
be recovered by blocking a neighboring exon in out-of-frame 
deletions during pre-mRNA splicing (exon skipping, Fig. 2).28 
Mann et al.29 reported a blocking of exon 23 by using 2-O-me-
thyl antisense oligonucleotides (AONs) after local intramus-
cular injection in an mdx mouse. In their study, immunohis-
tochemical staining verified the restoration of dystrophin and 
γ-SG in the subsarcolemmal area. To demonstrate the effec-
tiveness of the systemic delivery, Alter et al.30 injected phos-
phorodiamidate morpholino (morpholino) AON into an mdx 
mouse to block exon 23. DMD mRNA of a size correspond-
ing to the skipping of exon 23 was found by the reverse tran-
scriptase-polymerase chain reaction in all skeletal muscles, 
and immunohistochemical staining revealed the restoration 
of dystrophin expression in skeletal muscles throughout the 
body, although the expression level differed considerably 
among muscles. Various kinds of AONs or antisense oligomers 
have been employed for this approach, including the phos-
phorodiamidate morpholino oligomers (PMOs), 2-O-methyl 
phosphorothioate (2OMe), and peptide-linked PMOs.29,31-33

The AON approach has some disadvantages. It needs reg-
ular repetitive administration, since the method modifies only 
the process of mRNA splicing. In addition, different AONs are 
needed for different gene deletions of dystrophin.

The clinical use of this approach was first reported by Ta-
keshima et al.34 in 2006, when they intravenously injected ph-

A ABD H1 1-3 H2 4-10 11-13 14-19 H3 20-24 H4 CR CT 11 kb

B ABD H1 1-3 19 H3 20-24 H4 CR CT 6.3 kb

C ABD H1 1-3 H2 24 H4 CR 3.6 kb

iABD

Fig. 1. Full-length and truncated dystro-
phin genes. A: Full-length dystrophin ge-
ne. B: Minidystrophin gene. C: Microdys-
trophin gene. ABD: N-terminal actin-bind-
ing domain, H1-H4: hinge regions, 1-24: 
spectrin-like repeats, iABD: internal ac-
tin-binding domain, CR: cysteine-rich re-
gion, CT: carboxy terminus. 

Fig. 2. Exon skipping using antisense 
oligonucleotides. A: An out-of-frame de-
letion of exons 45-54 causes a stop co-
don in exon 55 that arrests dystrophin pro-
duction in Duchenne muscular dystrophy. 
B: Skipping of exon 44 using antisense 
oligonucleotides restores the reading 
frame back “in-frame”, producing a partially 
functional dystrophin protein. AON: anti-
sense oligonucleotide.

43 43

43 43

44 44

44

Truncated, nonfunctional
dystropin

Deleted, but functional
dystrophin

Out-of-frame
→ stop-codon

In-frame
→ readthrough

AON

55 55

55 55

A  B  



Gene Therapy for Muscular Dystrophies

114  J Clin Neurol 2010;6:111-116

osphorothioate AON aiming at exon 19 into one DMD patient 
weekly for 4 weeks and observed the expression of dystro-
phin in a muscle biopsy. However, the clinical improvement 
was minimal. van Deutekom et al.35 recently reported the lo-
cal effects of 2OMe AON aiming at exon 51 in DMD patients, 
and the results were quite promising. A single dose of 0.8 mg 
of AON was injected into the tibialis anterior muscle in four 
patients with DMD. Dystrophin expression was observed in 
64-97% of myofibers along with specific skipping of exon 51 
in muscle biopsies performed 28 days after injection. Adverse 
effects were not detected. Current phase I/II trials in the Unit-
ed Kingdom are monitoring the local intramuscular effects 
of a PMO aiming at exon 51 in children with DMD (http://
clinicaltrials.gov/ct/gui/show/study/NCT00159250).

Readthrough of Stop-Codon  
Mutations

A small proportion of DMD patients (about 15%) exhibit non-
sense mutations. Aminoglycoside antibiotics have been known 
to suppress stop-codon recognition. High-dose gentamicin 
therapy was reported to cause readthrough of premature stop 
codons and allow the restoration of dystrophin expression in 
mdx mice.36 However, two human trials of intravenous genta-
micin have failed to show a definite benefit in patients with 
DMD and BMD.37,38

The readthrough efficiency of gentamicin was reported to 
vary markedly with different stop codons. The efficiency of 
translational readthrough is higher for UGA sequences than 
for UAG or UAA sequences. In addition, the nucleotide im-
mediately downstream of the stop codon significantly influ-
ences the readthrough efficiency, in the order C>U>A≥G.39

Whilst two clinical trials have not found any toxicity asso-
ciated with gentamicin, ototoxicity and nephrotoxicity are well-
known adverse effects associated with its long-term use. As a 
result, searches for new drugs that do not exhibit these adverse 
effects but have better readthrough efficiency have been ini-
tiated. One of those drugs, PTC124 (Ataluren, developed by 
PTC Therapeutics), can be taken orally and induces the read-
through of premature stop codons. Welch et al.40 reported that 
PTC124 restores dystrophin production in primary muscle 
cells from DMD patients and mdx mice. It also improves the 
function of striated muscle in mdx mice within 2-8 weeks of 
drug administration and decreases serum creatine kinase levels.

The stop-codon readthrough approach also has some disad-
vantages. As described previously, the readthrough efficiency 
of gentamicin varies with different stop codons, and chronic 
administration is associated with adverse effects. However, the 
readthrough efficiency of PTC124 does not seem vary with dif-
ferent stop-codons.

A phase I trial found good tolerability of PTC124 in 62 heal-
thy adult volunteers, with only some mild adverse effects, in-
cluding dizziness, headache, and gastrointestinal disturbances, 
being noted.41 Phase II clinical trials of PTC124 in patients 
with DMD and BMD are in currently in progress at multina-
tional centers (http://clinicaltrials.gov/ct2/show/NCT-
00264888, http://clinicaltrials.gov/ct2/show/NCT00592553).

Gene Modification for Cell Therapy

Cell therapy can be divided autologous or allogeneic. Even th-
ough genetic modification is not required in allogeneic cell th-
erapy, the need for immunosuppression is a limitation. On the 
other hand, autologous cell therapy requires gene modification 
to restore the genetic defects. Quenneville et al.42 demonstrat-
ed the restoration of dystrophin by the cotransfection (nucleo-
fection) of a plasmid vector containing the full-length human 
dystrophin gene and a phiC31 integrase in muscle precursor 
cells of mdx and severe combined immunodeficient (SCID) 
mice.

Lentivirus is currently one of the most promising viral vec-
tors for an effective transfection of autologous cells due to its 
ability to incorporate into host chromosomes in various divid-
ing cells. Lentiviral vectors expressing microdystrophin were 
reported to successfully transduce autologous satellite cells 
for transplantation into mdx mice.43 Nonmuscular-origin stem 
cells can also be used to restore dystrophin expression in mus-
cles. Blood-derived CD133+ cells could be transduced with 
lentiviral vectors carrying a construct designed for axon skip-
ping in dystrophic scid/mdx mice after intramuscular and in-
tra-arterial delivery.44 In addition, Sampaolesi et al.45 demonst-
rated the expression of dystrophin by the transduction of me-
soangioblasts with a lentiviral vector containing human mi-
crodystrophin in dystrophic dogs. Their study found that mu-
scle function and motility were also improved, together with 
the restoration of dystrophin.

In a phase I clinical study, autologous muscle-derived CD 
133+ stem cells were transplanted into eight patients with 
DMD. The muscle strength did not differ significantly between 
treated and untreated muscles across all patients, and no lo-
cal or systemic adverse events were noted.46

Conclusion

Several promising strategies in gene therapy for muscular 
dystrophies that are currently being explored in clinical trials 
are reviewed herein. These strategies include gene transfer 
using nonviral and viral vectors, oligonucleotide-mediated exon 
skipping, stop-codon readthrough approaches, and gene modi-
fication for cell therapy. There remain some limitations and 
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challenges to be resolved in all of these strategies. Within a few 
years the results of various clinical trials that are currently 
being undertaken will become available. It is highly anticipat-
ed that at least one or two of these strategies will prove effica-
cious and evolve into an effective gene therapy for patients with 
DMD, BMD, and other muscular dystrophies.
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