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I N T R O D U C T I O N

Rate-equilibrium free energy relationship (REFER) 
analysis is a methodology originally developed to char-
acterize the energetics of simple chemical reactions 
(Marcus, 1968; Grunwald, 1985). Recently, this ap-
proach has been successfully applied to glean insight 
into the dynamics of protein conformational changes, 
such as the opening conformational transitions of  
ligand-gated ion channels (e.g., Grosman et al., 2000; 
Cymes et al., 2002; Chakrapani and Auerbach, 2005). 
Using this methodology, the relative timing of move-
ments of different structural regions of the channel 
protein can be deduced (Zhou et al., 2005; Auerbach, 
2007). So far, REFER analysis has been applied to re-
versible systems that are known to be at thermody-
namic equilibrium.

For the majority of ion channels, gating is assumed to 
be an equilibrium process, in contrast to transporters 
that use an external source of energy to complete their 
catalytic cycles. As a consequence, ion channel biophysi-
cists generally do not encounter irreversible or non-
equilibrium mechanisms. However, some channel and 
transporter mechanisms have lately been found to inter-
sect, suggesting that evolutionary divergence from com-
mon ancestors has given rise to related families of 
channels and transporters (Gadsby et al., 2006; Miller, 
2006; Chen and Hwang, 2008; Csanády and Mindell, 
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2008; Gadsby, 2009). Channels with transporter-like fea-
tures and transporters with channel-like features are 
more abundant than previously envisaged. One such 
example is CFTR, a chloride ion channel that belongs 
to the ABC transporter superfamily (Riordan et al., 
1989). Transport function of ABC proteins is linked to 
ATP hydrolysis and is hence a nonequilibrium process 
(Higgins, 2001; Oldham et al., 2008). Likewise, gating 
of the CFTR channel pore has been linked to ATP 
hydrolysis (Gunderson and Kopito, 1994; Hwang et al., 
1994) and has been found to violate microscopic revers-
ibility (Gunderson and Kopito, 1995; Ishihara and 
Welsh, 1997; Zeltwanger et al., 1999), implying a non-
equilibrium mechanism. Members of the Clc channel/
transporter superfamily provide another example; Clc 
chloride channels appear to have evolved from ances-
tral transporters, and violations of microscopic revers-
ibility in Clc channel gating (Richard and Miller, 1990; 
Pusch et al., 1995; Chen and Miller, 1996; Chen et al., 
2003; Miller, 2006; Chen and Hwang, 2008; Lísal and 
Maduke, 2008) suggest that these channels have also  
retained vestiges of their ancestors’ nonequilibrium 
conformational cycles.

The success of REFER studies on ligand-gated ion 
channels has encouraged its recent application to CFTR 
channel gating (Scott-Ward et al., 2007; Aleksandrov 
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open transition (Zhou et al., 2005; Auerbach, 2007). To what ex-
tent are the results presented here (Eqs. 5–20) applicable to 
such situations? Note that Eqs. 10 and 11, although derived here 
using classical simple energy barriers (Fig. 2 B and Eqs. 5–9), 
can be equivalently written as δ δln ln ( )k Ko eq C O= ⋅ −Φ1 1  and 
δ δln ln ( )k Kc eq O O= −( ) ⋅ −1 2 1 2Φ , where Keq(C-O1) and Keq(O1-O2) are 
the equilibrium constants for steps C-O1 and O1-O2, respectively 
(although the system is not at equilibrium, these constants do 
exist). Thus, Eqs. 10 and 11—and all the equations that follow 
(Eqs. 12–20)—really only require that for both steps the loga-
rithm of the forward rate constant be approximately linearly 
related to the logarithm of the equilibrium constant. The conclu-
sions of this study therefore rely only on this typically observed 
empirical relationship, not on the actual physical interpretation 
of the  value.

The REFER plots for Scheme 2 in Fig. 1 B, shown in Fig. 3, were 
calculated using Eqs. 14–16 (or Eqs. 10–12 in Fig. 3, E and F), for 
GO1 values ranging from 2 to +2 RT (in 0.2-RT increments). 
Linear regression (Fig. 3, solid lines) across either the entire set 
(Fig. 3, A–D) or a restricted set (Fig. 3, E and F, solid symbols) of 
these data points was used to obtain slope factors.

R E S U LT S  A N D  D I S C U S S I O N

This study compares a cyclic mechanism (Fig. 1 B, 
Scheme 2) with a two-state equilibrium mechanism 
(Fig. 1 A, Scheme 1). It must be emphasized that, mech-
anistically, three states are minimally required for a 
nonequilibrium reaction cycle. Although, kinetically, 
two-state cyclic models can be constructed assuming two 
states connected by two distinct pathways, such models 
are necessarily simplifications that, for kinetic reasons, 
neglect intermediate state(s) along one or both of those 
pathways. (e.g., kinetically, Scheme 2 also behaves as a 
two-state system because the short-lived O2 state can be 
lumped into state C.) Here, Scheme 1 is assumed to be 
a true mechanistic two-state model.

et al., 2009). Although CFTR is indisputably an ABC 
protein, whether CFTR gating is a nonequilibrium pro-
cess is still heavily debated, and some earlier studies 
were argued to provide evidence for its equilibrium 
nature (Aleksandrov and Riordan, 1998; Aleksandrov 
et al., 2000). Most recently, linear REFER plots and 
complementary REFER slopes for opening and closure 
of CFTR have been interpreted to provide further sup-
port for this notion, and to rule out a nonequilibrium 
mechanism (Aleksandrov et al., 2009).

At a time when the channel–transporter boundary is 
broadening, it might be useful to researchers working 
at the margin between these two families of transport 
proteins to examine some of the basic thermodynamic 
features of nonequilibrium schemes. By deriving the 
analytical form of the Brønsted plots for the simplest cy-
clic gating mechanism, a three-state model, this paper 
examines whether (1) a mechanism can be identified as 
equilibrium or nonequilibrium from the characteristics 
of REFER plots, and (2) whether information on the 
transition-state structures can be obtained from REFER 
plots for gating mechanisms that are known to be oblig-
atory cycles.

M AT E R I A L S  A N D  M E T H O D S

Reaction rates are assumed to conform to transition-state theory. 
Thus, a rate k is obtained as

 
k = ⋅A  e 

-
G
RT

∆ ‡

,
  (1)

where G‡ reflects the height of the free energy barrier (the tran-
sition-state T‡, for the C to O transition; see Fig. 2 A). Classical 
REFER analysis is based on the assumption that the energetic per-
turbation of the transition state is a linear combination of the en-
ergetic perturbations of the ground states (Marcus, 1968; 
Grunwald, 1985). Thus, if a structural perturbation changes the 
free energy of the open ground state (relative to the closed 
ground state) by GO, then the free energy of the transition state 
will change by GO (Fig. 2 A, dashed line). As a consequence, 
the logarithms of the forward and backward rate constants  
(kCO and kOC; Fig. 1 A) will change by GO/(RT) and 
(1)GO/(RT), respectively, whereas the logarithm of the 
equilibrium constant changes by GO/(RT). REFER plots 
(Brønsted plots) are log-log plots of forward or backward rates as 
a function of the equilibrium constant for a series of structural 
perturbations typically introduced into a single region of a pro-
tein. For Scheme 1 in Fig. 1 A, the slopes of these plots will be  
and 1, respectively, allowing experimental determination of 
. Based on the above simple picture, a high  value (close to 1) 
indicates that in the transition state, the perturbed region of the 
protein is already near its open-state conformation, whereas a  
value close to 0 is an indication that the region is still closed-like 
in the transition state.

For simplicity, this study assumes the above simple barrier 
model and classical interpretation of the  value. In reality, en-
ergy landscapes for ion channel gating transitions are likely 
more complex, but recent work has shown that for such reac-
tions, experimental  values still reflect the temporal sequence 
in which different regions of the protein move during a closed–

Figure 1. A simple equilibrium and simple nonequilibrium gat-
ing scheme. (A) Simple equilibrium gating scheme (Scheme 1) 
with opening (ko) and closing rates (kc) reflecting forward and 
backward passage across the same free energy barrier. (B) Simple 
nonequilibrium gating scheme (Scheme 2). Because transition 
O2→C is fast compared with transition O1→O2, channel closing 
rate is determined by the rate of the latter transition (k2).
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Eq. 3 that Kapp = ko/kc, i.e., ln Kapp = lnko  lnkc. For any 
functions f1, f2, and F = f1  f2, it necessarily follows that

 
∂ −

∂
=

( )
,
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Therefore, by necessity,
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In other words, the slopes of the REFER plots for open-
ing (o,app) and closure (c,app) will always follow the 
“complementarity” described above for Scheme 1 (i.e., 
c,app = o,app  1), whether or not a gating scheme 
contains irreversible steps. Ultimately, the relationship in 
Eq. 4 is a reflection of the fact that every ion channel—
regardless of the mechanism that operates its gates—
spends complementary fractions of time open versus 
closed. Demonstration that this relationship holds there-
fore cannot be interpreted as providing evidence to sup-
port an equilibrium mechanism of gating of the CFTR 
channel (compare with Aleksandrov et al., 2009).

Does an equilibrium mechanism guarantee linearity  
of REFER plots?
Experimental REFER plots for ligand-gated ion channels 
have so far been found to be mostly linear (e.g., Grosman 
et al., 2000; Chakrapani et al., 2004, but, compare with 
Mitra et al., 2005). But is this linearity attributable to the 
known equilibrium nature of their gating mechanisms? 
There is certainly no theoretical requirement for REFER 
plots to be linear for equilibrium schemes, and the origi-
nal theory, which assumed barrier functions to be simple 
intersecting parabolas (Marcus, 1968), predicts REFER 
plots to be quadratic (the predicted negative curvature is 
known as the Hammond effect). The linearity assumption 
is a first-order approximation, assumed to be valid for 
small perturbations.

Recent studies have concluded that the opening/
closing transition of the nicotinic acetylcholine receptor 
channel reflects sequential passage through a series of 
short-lived intermediate states, too brief to be detected in 
patch clamp recordings (Auerbach, 2005; Zhou et al., 
2005). Such transition-state ensembles are best described 
by broad flat energy barriers that contain multiple shallow 
wells. Passage across such barriers requires first reaching 
the high-energy plateau, and then leaving the plateau in 
the forward direction after a random walk across the series 
of shallow wells. Thus, several successful attempts to reach 
the high-energy plateau are typically required to traverse 
it. Mathematical description of such reversible systems 
predicts REFER plots with substantial curvature, in fact 
more than has been observed experimentally (Zhou et al., 
2005). Thus, linearity of the majority of REFER plots 

Can a reversible, equilibrium scheme be inferred  
from complementarity of REFER slopes for opening  
and closure?
For the simple reversible Scheme 1 in Fig. 1 A, the slopes 
of the Brønsted plots for opening (o) and closure (c) 
are “complementary” to each other in the sense that 
c = o  1 (see Materials and methods). But is this fea-
ture unique to reversible schemes? Let us consider an 
arbitrary gating scheme that may or may not include 
irreversible steps. Suppose the current of a single chan-
nel is recorded for some length of time T, during which 
the channel produces n openings and closures of dura-
tion to1, tc1,...ton, tcn, respectively. Mean open time (o) 
and mean closed time (c) and open probability (Po) 
are then obtained as
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the previous equation can be rewritten as
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This simple relationship between mean open times, 
mean closed times, and open probability (Eq. 2) is 
fundamentally true for any gating scheme, reversible or 
irreversible, and therefore, in contrast to published sug-
gestions (Aleksandrov and Riordan, 1998; Aleksandrov  
et al., 2009), provides no evidence concerning the mech-
anism of CFTR channel gating.

What is the corollary of Eq. 2 for REFER analysis? Us-
ing mean opening and closing rates, defined as the in-
verses of the mean closed and open times (ko = 1/c, 
kc = 1/o), Eq. 2 can be rewritten as

 Po
o

o c

=
+
k

k k
.   (3)

Let us formally define Kapp = Po/(1Po). If the pro-
cess is reversible, then Kapp is the apparent equilibrium 
constant between the set of open states and the set of 
closed states; if the process is far from equilibrium, and 
hence effectively irreversible, then Kapp has no physical 
meaning. Nonetheless, for both cases it follows from 
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O1→C, O2→O1, and C→O2 are neglected because evi-
dence suggests that they are much slower than the for-
ward rates, at least for rates O1→C and C→O2 (e.g., 
Vergani et al., 2005; Csanády et al., 2006). At saturating 
[ATP], the closed interburst states are lumped into a 
single, fully liganded state (C).

The free-energy landscape for such a mechanism is 
somewhat unusual (Fig. 2 B). During each open→close 
burst cycle, one molecule of ATP is converted to ADP 
plus phosphate and, therefore, the system does not 
return to the same G level it experienced before open-
ing (compare states C* vs. C in Fig. 2 B). Also, opening 
followed by closure reflects transitions across two dis-
tinct G barriers, G‡

1 and G‡
2 (Fig. 2 B). Because 

rate O2→C is fast compared with rate O1→O2, closure is 
rate-limited by transition across the barrier O1→O2 
(rate k2). Therefore, the rates of opening to, and clos-
ing from, a burst can be written as

 
ko

G
RTA e=

−
++

1

1∆

,
  (5)

 
kc

G
RTA e=

−
++

2

2∆

,
 (6)

and the apparent equilibrium constant is

Kapp

G G
RTA

A
e=

−
−++ ++

1

2

1 2∆ ∆
.

Suppose a perturbation alters the free energies of the 
open ground states O1 and O2 (relative to the free en-
ergy of the preceding closed state) by GO1 and GO2, 
and that the conventional REFER assumption holds, 
i.e., that the consequent changes in barrier heights are 
linear combinations of the free energy changes of the 
ground states that the barriers separate (Fig. 2 B, dashed 

observed to date is not a consequence of the reversible, 
equilibrium nature of the underlying mechanisms.

Can an equilibrium mechanism be inferred from linear 
REFER plots?
Although much recent effort has been devoted to bet-
ter understanding REFER data for ion channel gating, 
these efforts have focused on reversible, equilibrium 
mechanisms. As a first step to examine what can be 
learned about nonequilibrium mechanisms using this 
methodology, this section derives the REFER relation-
ships for the simplest possible cyclic scheme, a three-
state model (Fig. 1 B, Scheme 2).

Of note, Scheme 2 represents a simplified version of 
the cyclic gating scheme used by several groups to de-
scribe open burst/closed interburst cycles of the CFTR 
chloride channel (for review see Gadsby et al., 2006 and 
Hwang and Sheppard, 2009), in contrast to a Scheme 
1–like equilibrium suggested by others (Aleksandrov 
and Riordan, 1998; Aleksandrov et al., 2000, 2007, 
2009). Apart from its unique regulatory domain, CFTR 
conforms to typical ABC protein architecture, compris-
ing two transmembrane domains (which in CFTR form 
the channel pore), and two intracellular nucleotide 
binding domains (NBDs; NBD1 and NBD2). Upon ATP 
binding, ABC NBDs form tight dimers, rapid disruption 
of which requires prior hydrolysis of at least one of the 
two ATP molecules buried at the dimer interface 
(Moody et al., 2002; Smith et al., 2002; Janas et al., 2003; 
Verdon et al., 2003). For CFTR, there is strong evidence 
that NBD dimer formation and dissociation are tightly 
coupled to pore opening and closure (Vergani et al., 
2005). Thus, in Scheme 2, transition C→O1 represents 
formation of the NBD1-NBD2 heterodimer, transition 
O1→O2 represents hydrolysis of ATP at the NBD2 cata-
lytic site, and transition O2→C represents rapid dissoci-
ation of the NBD dimer after ATP hydrolysis. Although 
ultimately all three steps are reversible, reverse rates 

Figure 2. Free energy landscapes for a sim-
ple equilibrium and a simple nonequilibrium 
gating scheme. (A) Free-energy landscape for 
the mechanism in Scheme 1; the reversible, 
equilibrium transition C↔T‡↔O is shown 
without (solid line) and after (dashed line) a 
structural perturbation. T‡ denotes the transi-
tion state. (B) Free-energy landscape for an 
observable closed→open→closed transition 
based on the mechanism in Scheme 2; land-
scapes without (solid line) and after (dashed 
line) a structural perturbation are shown. T‡

1 
and T‡

2 denote the transition states for the 
C→O1 and the O1→O2 transition, respec-
tively. T‡

3, the transition state for step O2→C, 
reflects a low energetic barrier compared with 
T‡

2, and has therefore little effect on closing 
rate (dotted lines). Irreversibility is a consequence of unequal barrier heights for exiting each of the ground states in the forward versus 
backward direction. Notation C* emphasizes that after each closure, the entire system has changed relative to the pre-open situation 
(e.g., 1 ATP has been converted to ADP+P), even though the channel protein itself has adopted its pre-open conformation (C).
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In this case, Eqs. 10–12 become

 ln ’ ln ,k ko O o
OG

G
RT

δ δ∆ ∆ Φ1
1

1( ) = −   (14)

 ln ’ ln ,k k ac O c
OG

G
RT

δ δ∆ ∆ Φ1
1

21 1( ) = − −( ) −( )  
 (15) and

   (16)

ln ’ ln .K K aapp O app
OG

G
RT

δ δ∆ ∆ Φ Φ1
1

1 21 1( ) = − − −( ) −( )( )
 

From Eqs. 14–16, it is clear that in this case the Brøn-
sted plots will be linear, with slopes

 Φ Φ
Φ Φo,app =

− − −
1

1 21 1( )( )a
  (17) and

 Φ
Φ

Φ Φc,app =
− −

− − −
( )( )

( )( )
.

1 1
1 1

2

1 2

a
a

  (18)

From Eqs. 17 and 18, it is easy to see that the obligate 
complementarity c,app = o,app  1 obviously applies. 
The panels in Fig. 3 (A–D) show calculated REFER plots 
for Scheme 2 under the assumption given in Eq. 13; in 
A and B, a = 1 (i.e., GO1 = GO2), and in C and D, 
a = 0.25. The plots were constructed for GO1 values 
ranging from 2 to +2 RT (in 0.2-RT increments) using 
Eqs. 14–16, and fitted by linear regression (solid lines). 
The fitted slopes in each case returned the values pre-
dicted by Eqs. 17 and 18.

Thus, Scheme 2 with the assumption in Eq. 13 pro-
vides an example of a nonequilibrium scheme that 
generates linear REFER plots. Because a single counter-
example is sufficient to invalidate a hypothesis, we can 
conclude that the nature (equilibrium vs. nonequi-
librium) of the underlying mechanism cannot be in-
ferred from linearity of the REFER plots (compare with  
Aleksandrov et al., 2009).

In the more general case, the energetic perturbations 
of the O1 and O2 ground states, caused by mutations of 
a given residue, need not be proportional to each other 
(Eq. 13 does not necessarily apply). However, if at least 
some kind of correlation exists between GO2 and 
GO1, described by some arbitrary nonlinear function 
δ δ∆ ∆G g GO O2 1= ( ) , then for small perturbations the first-
order approximation

 δ δ∆ ∆G g GO O2 10≈ ( )’   (19)

will still be applicable. Thus, the REFER plots will be 
close-to-linear in some range around lnKapp’ = lnKapp, 

line). Then the perturbed barrier height for opening 
will be ∆ Φ ∆G GO1 1 1

+
+

+ δ , and that for closure
 

∆ ∆ Φ ∆ Φ ∆
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G G G G
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(Fig. 2 B). Correspondingly, the modified opening 
and closing rates and apparent equilibrium constant 
will become
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RTA e
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1 1 1∆ Φ ∆δ   (7)
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RTA e
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 Kapp

G G
RT

G G

RTA
A

e e
O O

’ .=
−

−
−

− +( )+ −( )++ ++

1

2

1 11 2 1 1 2 2 2∆ ∆ ∆ Φ Φ ∆ Φδ δ
  (9)

Thus, for the general case, the logarithms of the above 
parameters can be written as

 ln ’ ln ,k ko o
OG

RT
= − δ∆ Φ1

1
  (10)

 ln ’ ln ,k kc c
O OG G

RT
= −

−( )
−( )δ δ∆ ∆

Φ1 2
2 1   (11) 

and

   (12)

ln ’ ln .K Kapp app
O OG

RT
G

RT
= − − +( ) − −( )δ δ∆ Φ Φ

∆
Φ1

1 2
2

21 1
 

To construct REFER plots, a series of perturbations 
are introduced into a single region of the protein (e.g., 
a series of mutations of a given amino acid residue), 
which will result in a series of different GO1 and GO2 
values. The resulting lnko’ and lnkc’ values are then plot-
ted as a function of lnKapp’. From Eqs. 10–12, it is clear 
that the slopes of these REFER plots will depend on the 
relative extent by which mutations of a given residue 
destabilize the O1 and O2 ground states.

Let us first consider the simple (but not unrealistic) 
situation in which the energetic perturbations of the O1 
and O2 ground states, caused by mutations of a given 
residue, are proportional to each other, i.e.,

 δ δ∆ ∆G GO O2 1= ⋅a .   (13)
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What can be learned about the transition-state structures 
for a cyclic scheme?
Inspecting Eq. 17, one might hope that the observable 
REFER slope o,app might carry some information on 
the two transition-state structures of Scheme 2, i.e., on 
1 and 2. Expressing 1 from Eq. 17 yields

 
Φ

Φ
Φ

Φ1 21
1 1=

−
− −o,app

o,app

( )( ).a   (20)

Because neither 2 nor a are known, the REFER 
slopes will provide no information on the true transi-
tion states for all but two limiting cases. One limiting 
situation is if the observed REFER slope for opening is 
unity (o,app = 1); this implies (Eq. 17) that either 2 = 1 

with slopes given by Eqs. 17 and 18, with the substitu-
tion a = g(0). Whether deviations from linearity can be 
experimentally observed in such situations will depend 
on the curvature of the REFER plots and on the experi-
mentally testable range of Kapp’. Fig. 3 (E and F) shows 
calculated REFER plots for opening (Fig. 3 E) and 
closure (Fig. 3 F) for Scheme 2, assuming the entirely 
arbitrary nonlinear relationship δ δ∆ ∆G eO

GO
2 0 25 11= −( ). . 

Although these plots are substantially nonlinear, the 
curvatures are little apparent for an 10-fold range of 
Kapp’ values (for logKapp’ between 0.5 and +0.5; 
solid symbols). Note, because g(0) = 0.25 in this case, 
linear regressions through the data points of this re-
stricted range returned slope values identical to those 
in Fig. 3 (C and D).

Figure 3. Calculated REFER plots for 
Scheme 2. Unperturbed opening and closing 
rates were ko = 4.348 s1 and kc = 4.545 s1,  
and -values were 1 = 0.5 and 2 = 0.5.  
(A–D) REFER plots for opening (A and C) 
and closure (B and D) under the assumption 
of Eq. 13. In A and B, a = 1, and in panels 
C and D, a = 0.25. Values for logko and logkc 
were calculated for GO1 ranging from 2 
to +2 RT (in 0.2-RT increments) using Eqs. 
14 and 15, and plotted as a function of log-
Kapp calculated using Eq. 16. Solid lines are 
linear regressions to the plots, and fitted slope 
values are printed in each panel. (E and F) 
REFER plots for opening (E) and closure (F), 
assuming the arbitrary nonlinear relationship 
δ δ∆ ∆G eO

GO
2 0 25 11= −( ). . Values for logko 

and logkc were calculated for GO1 rang-
ing from 2 to +2 RT (in 0.2-RT increments) 
using Eqs. 10 and 11, and plotted as a func-
tion of logKapp calculated using Eq. 12. Solid 
symbols correspond to GO1 values of 0.6 
RT, 0.4 RT, 0.2 RT, 0, +0.2 RT, +0.4 RT, 
and +0.6 RT. Solid lines are linear regressions 
through this restricted set of data points, and 
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log-log plots are shown instead of the natural 
logarithms used in Eqs. 14–16. This trans-
formation affects neither the slopes nor the 
shapes of the plots.)
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or a = 1 (in both cases the energetic perturbation of 
the O1→O2 transition state equals that of the O1 
ground state), whereas the value of 1 remains unde-
fined. The other limiting situation is o,app = 0; this 
implies (Eq. 17) that 1 = 0 (in the C→O1 transition 
state, the conformation of the studied residue still 
resembles its conformation in the C ground state), 
whereas 2 remains undefined.

Conclusions
The above simple examples clearly demonstrate that 
the characteristics of REFER plots do not carry informa-
tion on reversibility or irreversibility of the underlying 
gating mechanism, given that both reversible and irre-
versible mechanisms can result in either linear or non-
linear REFER plots, whereas the complementarity (in 
the sense defined by Eq. 4) is a trivial feature true for 
any mechanism. Additionally, only very limited informa-
tion about the transition-state structures can be ob-
tained by REFER analysis for gating schemes that are 
known to be irreversible.
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