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The Janzen–Connell hypothesis is a well-known explanation for
why tropical forests have large numbers of tree species. A funda-
mental prediction of the hypothesis is that the probability of adult
recruitment is less in regions of high conspecific adult density, a
pattern mediated by density-dependent mortality in juvenile
life stages. Although there is strong evidence in many tree spe-
cies that seeds, seedlings, and saplings suffer conspecific density-
dependent mortality, no study has shown that adult tree recruit-
ment is negatively density dependent. Density-dependent adult
recruitment is necessary for the Janzen–Connell mechanism to reg-
ulate tree populations. Here, we report density-dependent adult
recruitment in the population of Handroanthus guayacan, a wind-
dispersed Neotropical canopy tree species. We use data from high-
resolution remote sensing to track individual trees with proven
capacity to flower in a lowland moist forest landscape in Panama
and analyze these data in a Bayesian framework similar to cap-
ture–recapture analysis. We independently quantify probabilities
of adult tree recruitment and detection and show that adult recruit-
ment is negatively density dependent. The annualized probability
of adult recruitment was 3.03% · year−1. Despite the detection of
negative density dependence in adult recruitment, it was insuffi-
cient to stabilize the adult population of H. guayacan, which in-
creased significantly in size over the decade of observation.

Bayesian state–space | density dependence | Janzen Connell | population
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The Janzen–Connell hypothesis is a well-known explanation
for why tropical forests have high tree species richness (1, 2).

It is based on the assumption that tree species suffer sufficiently
high density-dependent mortality of seeds, seedlings, and sap-
lings near reproductive adults that no species is likely to replace
itself in the same location in the next generation. There is strong
empirical evidence that most seeds disperse close to parent trees,
where seeds and seedlings suffer high density-dependent mor-
tality from predators and pathogens (3–7). Other studies have
shown that animal dispersers can move seeds to areas of low
conspecific density and that seed survival increases in these areas
(8). Two investigations have mapped spatial distributions of
conspecific adults and shown that negative density dependence
among the earliest tree life stages is strongest where conspecific
adults are common (9, 10).
However, density dependence among the earliest life stages in

tree communities is usually extremely local, detectable to a dis-
tance typically of only a few meters beyond the radius of the
parent tree crown (7, 11). Most of this density dependence is
among locally dispersed progeny of single maternal parents (12).
Density-dependent mortality restricted to these within-sibling
cohorts beneath single mother trees reduces individual tree fe-
cundity but cannot by itself regulate the size of the adult pop-
ulation, because an individual that replaces its maternal parent
has no net impact on the size of the adult population. Although
the prediction of density-dependent seed and seedling mortality
has been strongly supported, no study has shown that per capita
recruitment of new adult trees decreases with conspecific

adult density, a central prediction of the hypothesis and re-
quirement for the Janzen–Connell mechanism to regulate tree
populations (1).
There are at least two reasons why it has not been possible to

directly test whether adult tree recruitment is density dependent.
First, characterizing adult recruitment requires long-term obser-
vations of individuals to discover when a tree becomes repro-
ductive for the first time (13). Second, adult densities for most tree
species in species-rich tropical forests are <1 individual · ha−1, and
populations of adult trees have low demographic rates (14, 15).
These facts require searching impractically large areas to identify
adult recruits. For example, if the rate of adult recruitment for a
given species is 2% · y−1 and adult density is 1 individual · ha−1, a
50-ha sample of forest will contain just 1 recruit · y−1 on average.
Because juvenile densities for most species can be orders of
magnitude greater than the densities of conspecific adults and
most juvenile trees do not survive to adulthood, finding new
adult recruits is a needle-in-a-haystack problem. These impedi-
ments require a new approach to measure the vital rates of adult
tree populations.
Here, we report on a method to quantify demographic rates in

tree populations using time series remote sensing, and we apply
this method to Handroanthus guayacan, a wind-dispersed Neo-
tropical canopy tree species (16–19). Our approach takes ad-
vantage of conspicuous and highly synchronous annual flowering
in this species to track individuals through time (Fig. 1) (17). We
previously showed that the annual probability of adult mortality
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tionately kill individuals in locations where they are common.
This mechanism, called the Janzen–Connell hypothesis, has
been proposed as a determinant of the large number of species
in tropical forests. A critical but untested assumption of the
hypothesis is that density-dependent mortality among juvenile
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in this species is 0.2% · y−1 (17). Here, we follow 989 individual
trees in the adult population of H. guayacan distributed over the
entirety of the 15.4-km2 area of Barro Colorado Island, Panama
(BCI). Because every tree in this sample has shown capacity to
flower and is, therefore, a member of the adult population, our
sample defines the subset of proven survivors that have persisted
over many years through earlier life stages to reach a position in
the forest canopy as a member of the adult population (20). We
develop models in a Bayesian framework similar to capture–
recapture analysis to analyze these observations in reverse time
(21–24). These models allow us to quantify the annual proba-
bility of adult recruitment and to identify new recruits to the
adult population. We used this reverse time, retrospective
analysis over a 10-y observation period to answer two questions.
(i) Is the per capita number of newly recruited adult trees a
negative function of the density of conspecific adults at the be-
ginning of the study (negative density dependence)? (ii) If so,

does the density-dependent adult recruitment stabilize the size of
the adult population when combined with our previous estimate
(17) of the mortality rate?
We tested for negative density dependence in adult re-

cruitment by fitting the model R= aAb, where R is the number of
adult recruits per unit area and A is the number of conspecific
adults in the same unit area at the beginning of the study.
Whenever the coefficient b is <1, a given increase in the
number of adults A results in a less than proportional increase
in number of recruits R, and R is negatively density dependent.
We quantified this relationship within square cells of 1–100 ha
by sequentially stepping the length of cell sides in increments
of 100 m.

Results and Discussion
Density-Dependent Adult Recruitment. Adult recruitment was
negatively density dependent (Figs. 2 and 3). The estimate of b

A B C

Fig. 1. Sampling adult H. guayacan using high-resolution satellite data. The image shows a 1 × 2-km subset of BCI on March 29, 2002 (A) and March 21, 2004
(B). C shows the spatial distribution of 84 adult H. guayacan identified within this 2-km2 area overlaid on a lidar digital terrain model. The white boxes il-
lustrate one tree that was observed flowering in 2004 but not in 2002. It either was an adult that was not flowering in 2002 or had not yet recruited to the
adult population. (Scale bar: 500 m.)
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within 1-ha cells was 0.25 (SE = 0.06, 95% CI = 0.14–0.37). The
strength of this density dependence diminished as cell size in-
creased and was significantly <1 for cell side lengths ≤700 m,
which corresponds to an area of 49 ha (SI Appendix, Table S1).
This finding indicates that conspecific density dependence is not
limited just to very small neighborhoods around single maternal
parents but can significantly influence adult recruitment over
much larger areas. The annualized rate of adult recruitment
was 3.03% · y−1 (SE = 0.43, 95% CI = 2.27–3.96) (Fig. 4). We
identified 186 adult recruits during the 10-y study using poste-
rior prediction, corresponding to a mean density of 0.012 adult
recruits · ha−1 · y−1 (SE = 0.001, 95% CI = 0.009–0.014). The
smallness of this number underscores the challenge of quanti-
fying adult recruitment in low-density tree populations.
The negative density dependence observed in our data shows

that the per capita probability of adult recruitment is less in
regions of high conspecific adult density and greater in regions of
low conspecific adult density. This is true despite the fact that the
absolute number of adult recruits increased with conspecific
adult density (Fig. 2), a finding similarly reported for the seed to
seedling transition (6). However, this negative density dependence
in adult recruitment was not sufficiently strong to stabilize the size
of the adult population during the 10-y study period. We combined
the posterior distribution of the probability of adult recruitment
with an estimate of the mortality rate obtained from a forward-time
analysis of these data (17) to quantify the realized population
growth rate using the equation λ= eðr−mÞ, where r is the proba-
bility of adult recruitment estimated by this study and m is our
previous estimate of the annual adult mortality rate (17). The
annualized population growth rate is 1.03 (SE < 0.01, 95% CI =
1.02–1.04). This annualized rate indicates that the adult pop-
ulation of H. guayacan increased in abundance by 3% · y−1 over
the 10-y observation interval.
Estimates of adult recruitment are from 989 individuals de-

tected for the first time after the first sampling occasion using
high-resolution remote sensing (Materials and Methods). These

989 trees were detected 2,579 times in 5,008 observation at-
tempts in 11 sampling occasions. There were 426 observation
attempts that resulted in missing data due to cloud cover or in-
complete spatial coverage of remote sensing data. The remaining
2,003 observation attempts resulted in no detections, because
individuals were not flowering. Probabilities of adult recruitment
and detection varied through time (SI Appendix, Tables S2
and S3).

Population Density and Size.We detected 1,006 individual adult H.
guayacan throughout the 15.4-km2 landscape, corresponding to a
mean density of 0.65 individuals · ha−1. The mean conspecific
adult density within edge-corrected 1-ha neighborhoods centered
on each adult H. guayacan was 2.7 individuals · ha−1, a value 4.1
times larger than the landscape mean density (range = 0–19.0
individuals · ha−1). This indicates that the population is spatially
aggregated and that the range in conspecific adult density is
about one order of magnitude.
We quantified the size of the adult population using parameter-

expanded data augmentation (PXDA) (Materials and Methods).
This analysis allows us to estimate the total number of individuals
in the adult population of H. guayacan throughout the 15.4-km2

landscape, including individuals never detected by remote sens-
ing. Our analysis indicates that the adult population contained

A

B

Fig. 3. Spatial distribution of the number of adults at the beginning of the
study (A) and the number of adult recruits over the subsequent 10 y (B) in the
population of H. guayacan on BCI. Cells are 100 × 100 m. (Scale bar: 1 km.)

Fig. 2. The relationship between adult density and adult recruit density in
H. guayacan. The axes are on a logarithmic scale (base 10). The dashed gray
line is the one-to-one (density-independent) relationship. The slope of the
relationship between adult density and adult recruit density is 0.25 and
significantly <1. This indicates that adult recruitment is negatively density
dependent.
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1,075 individuals (SE = 10, 95% CI = 1,058–1,095) during the
10-y study period. The sample of 1,006 trees, therefore, contains
93.6% of the adult population of this species on BCI (SE = 0.8,
95% CI = 91.9–95.1%). We located 123 trees in the field without
prior knowledge of whether they had been detected by remote
sensing data. These 123 trees define an independent sample
against which we can evaluate trees detected remotely. Of these
123 trees, there were 109 (88.6%) individuals detected by remote
sensing data and 14 (11.4%) that were not. There was no sig-
nificant difference in diameter or height between the individuals
that were detected and those that were not (P = 0.193 and P =
0.766, respectively) (SI Appendix, Table S4). Combined with the
large percentage of the adult population in our sample, we
conclude that the 1,006 adult H. guayacan obtained using re-
motely sensed data are unbiased and nearly a complete census.

Conclusion. The findings reported here add to an emerging con-
sensus that time series observations from high-resolution remote
sensing contain information about demographic rates in tree
populations (17, 25, 26). Extracting vital rates from these data
requires models that can accommodate variable detection and
missing observations (17). This analysis brings together estimates
of mortality, recruitment, and the realized population growth
rate, and it shows that adult recruitment is negatively density
dependent.
The method is applicable to many other canopy tree species,

including those with asynchronous reproduction or other phe-
nology syndromes (27). Taking advantage of conspicuous phe-
nology will increase detection probabilities and is likely to reduce
commission errors, but capture–recapture methods can be

applied to any sample of individuals that can be detected re-
peatedly (28), for example, using imaging spectroscopy (29, 30)
or measurements from low-altitude drones.

Materials and Methods
Our study is based on a time series of 11 sampling occasions from high-
resolution satellite remote sensing and 1 sampling occasion from airborne
remote sensing during a 10-y interval. Data acquisitions were timed to ob-
serve the annual flowering event of adult H. guayacan, which is highly
synchronous (31). We used these observations to produce a detection history
for each individual tree. This history is a time series record of whether a
given tree was detected or not on each sampling occasion (17). Some adult
trees were not detected due to cloud cover, due to incomplete coverage of
remote sensing data, or because they did not flower at the time of data
acquisition. From these detection histories, it is possible to independently
quantify probabilities of adult recruitment and detection (21) and whether
adult recruitment is negatively density dependent.

Quantifying Adult Recruitment. Consider a tree that is observed or not on
three sampling occasions, each of which is an acquisition date of high-
resolution remote sensing (Fig. 1). Between two sampling occasions when
the individual is observed flowering, we know it is a living member of the
adult population. There is uncertainty before the date of the first observa-
tion, because we do not know whether the tree was an adult that was not
flowering or had not yet recruited to the adult population. Using these data
to quantify adult recruitment requires a statistical framework that can
handle intermittent detection and missing data. Here, we use the Bayesian
state–space model, which decomposes observations of flowering trees into
components that represent the partially observable true states (whether a
given tree has recruited to the adult population) and the detections given
the true states (24).

The detection history is a series of zeros and ones that describes the ob-
servations for each individual. A tree that was observed on the third occasion
of a three-occasion study but not before the third occasion has detection
history x = [0, 0, 1], and a tree that was observed on the first and third oc-
casions has detection history x = [1, 0, 1]. Let γ be the probability of transi-
tion between sampling occasions, and let p be the detection probability
given that the individual is a member of the adult population. The transition
probability, γ, is called the seniority probability (21). It describes the proba-
bility that an adult member of the population at time t + 1 was also a
member of the adult population at time t. We assume that a member of the
adult population cannot transition out of the adult population, except by
death. The complement to the seniority rate, 1− γ, is the probability of adult
recruitment. To quantify recruitment, we write a complete data likelihood
that describes the series of observations in reverse order conditioned on the
last detection. For the tree that was observed on the first and third occa-
sions, the likelihood is proportional to

L= γ2 × ð1−p2Þ× γ1 ×p1. [1]

Because this likelihood is computed in reverse time, it eliminates the need to
deal with probabilities of tree survival. Given that the individual was detected
on the third occasion, the expression says that this individual was an adult on
the second occasion ðγ2Þ and was not detected ð1−p2Þ. It was also an adult
on the first occasion ðγ1Þ and detected on the first occasion with probability
p1. We distinguish between observed states, denoted by the vector x, and
true states, indicated by the vector z. The true states are only partially ob-
servable and describe whether a given individual is a living member of the
adult population. Our knowledge about the true states for this individual is
certain, and its true state history is z = [1, 1, 1]. Now consider an individual
observed for the first time on the third sampling occasion and not observed
before the third occasion, which shows the partially observable nature of
the true states

L= ½γ2 × ð1−p2Þ× γ1 × ð1−p1Þ�+   ½γ2 × ð1−p2Þ× ð1− γ1Þ�+ ½ð1− γ2Þ�. [2]

This likelihood exhaustively describes the three possibilities that could pro-
duce the detection history x = [0, 0, 1]. It was an adult that was not detected
on the first and second occasions ½γ2 × ð1−p2Þ× γ1 × ð1−p1Þ�, corresponding
to true state history z = [1, 1, 1]; it was an adult that was not detected on the
second sampling occasion and recruited between the second and first oc-
casions ½γ2 × ð1−p2Þ× ð1− γ1Þ�, corresponding to true state history z = [0, 1, 1];
or it recruited between the third and second occasions ½ð1− γ2Þ� and has true
state history z = [0, 0, 1]. Each of these terms is a hypothesis about the true
states and recruitment history for this individual.

Fig. 4. Posterior distributions of (Top) mortality, (Middle) recruitment, and
(Bottom) the realized population growth rate for adult H. guayacan on BCI.
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Model Specification. Following the notation in ref. 32, the indicator ui,t de-
scribes whether individual i was detected (ui,t = 1) or was not detected but
known to be a member of the adult population (ui,t = 0) on sample date t
and not observed for the last time on sample date t. The expression below
excludes the date of the last observation for each individual, because the
reverse time analysis is conditioned on the last detection under the Cor-
mack–Jolly–Seber framework (21, 22). The time-dependent probability of
detection, pt, is proportional to

∏
n

i=1
∏
1

t=ti−1
p
Iðui,t=  1Þ
t ð1−ptÞIðui,t=  0Þ. [3]

Here, n is the number of individuals, ti is the sampling occasion corre-
sponding to the last detection for individual i, and I is the indicator function,
which takes a value of one if its argument is true and zero otherwise. The
second product iterates from the index immediately before the last de-
tection for individual i to the first sampling occasion.

The indicator wi,t describes whether individual i was a member of the
adult population over the interval t + 1 to t (wi,t = 1) or recruited during this
interval (wi,t = 0). The likelihood for the probabilities of seniority is
proportional to

∏
n

i=1
∏
1

t=ti−1
γ
Iðwi,t   =  1Þ
t ð1− γtÞIðwi,t=  0Þ. [4]

Combining the detection and seniority probabilities and adopting conjugate
beta priors, the time-dependent likelihood function is proportional to

pðx, zjγ,pÞ∝ ∏
n

i=1
∏
1

t=ti−1
p
Iðui,t=1Þ
t ð1  −ptÞIðui,t=0Þ ∏

n

i=1
∏
1

t=ti−1
γ
Iðwi,t=1Þ
t ð1− γtÞIðwi,t=0Þ

× ∏
1

t=T−1
Beta

�
pt

��αp1 , αp2

�
∏
1

t=T−1
Beta

�
γt
��αg1 , αg2

�
.

[5]

Quantifying the Annualized Probability of Adult Recruitment. We report the
annualized probability of recruitment over the entire time series. This
number is

1− exp

2
4ln

�
∏T

t=1γt

�

=

10

3
5. [6]

The product is computed over all T transition intervals. The denominator is
the length of the study in years. The time-varying (not annualized) estimates
of recruitment are provided in SI Appendix, Table S2, and the time-varying
estimates of detection are in SI Appendix, Table S3.

Handling Missing Data.Missing observations happen when individuals cannot
be detected. In our data, this occurs because of cloud cover and incomplete
spatial coverage. Previously, we described missing data methods under the
Bayesian state–space model applied to capture–recapture data (17). Here,
we assume that individuals are missing at random, and we impute missing
observations within the Markov-chain Monte Carlo framework using a
generative model (33, 34). When a given observation is missing, we simulate
it using the estimate of the probability of detection from the current iter-
ation of the Gibbs sampler for that sampling occasion conditioned on the
true state for individual i. Imputing missing data contributes additional in-
formation to the analysis by allowing detection histories that contain miss-
ing observations to be retained in the analysis. These detection histories
would otherwise be omitted. In the SI Appendix, we provide code that
shows the statistical models on simulated and real data.

Quantifying the Size of the Adult Population. We used PXDA to quantify the
size of the adult population of H. guayacan (34–36). The method was de-
veloped by casting the problem as an analysis of occupancy. In occupancy
modeling, sites are observed on some sequence of occasions. Individuals are
either detected or not on each occasion. One can develop a binomial model,
where the number of successes is the number of occasions when individuals
were detected, the number of trials is the total number of occasions, and the
binomial probability ψ is the occupancy rate.

When occupancy models are applied to sites, all sites that can be occupied
are known, and unoccupied sites are observed. However, in the capture–
recapture framework, we do not have a priori knowledge of the number
of trees that were never detected. This number can be estimated by

augmenting the real data with all-zero observation histories, called struc-
tural zeros (35). For each of these all-zero histories, we compute the prob-
ability that it represents a real individual exposed to sampling that was
never detected:

ψð1−dÞT
ψð1−dÞT + ð1−ψÞ. [7]

This states that the probability of an all-zero observation history is equal to
the probability that the all-zero history represents a real individual exposed

to sampling that was never detected ½ψð1−dÞT � normalized by the proba-
bility that it is a real individual exposed to sampling that was never detected
plus the probability that the all-zero history does not represent a real indi-
vidual ð1−ψÞ. Normally, the detection probability is denoted p. However, we
denote it d to avoid confusion with the detection probability estimated in
the analysis of adult recruitment, because these are not the same quantity.
The superscript denotes the number of sampling occasions for which an
individual was exposed to sampling. This number is straightforward to
compute as the number of occasions when the individual was a member of
the adult population less missing observations. The best estimate of this
number is the conditional posterior distribution of simulated state histories
from the Bayesian state–space model (the true state vector z). Before the
first observation, we use simulated state histories from the recruitment
analysis described above. After the last observation, we use simulated state
histories from a forward-time analysis of the data described in ref. 17. Be-
cause these state histories predict whether an individual was living or dead
on each sampling occasion, they allow us to integrate over the uncertainty in
the number of sampling occasions for each individual. A previous analysis
showed that this model produces unbiased estimates of population size (35).

Field Validation.We located 274 adult trees that were distributed throughout
the BCI forest (SI Appendix, Fig. S1). These investigations were conducted in
March and April 2007 and July and August 2011. We measured stem di-
ameter (centimeters) at breast height for 160 trees. We measured height,
using a handheld laser range finder, for 137 trees. There were 123 adult
trees that we located without prior knowledge of whether they had been
detected by remote sensing data. We knew that these trees were re-
productive, because we observed them flowering. These 123 trees define an
independent sample against which we evaluated trees that were detected
remotely (17). We compared the mean stem diameter and height between
trees that were detected and trees that were not using dummy-variables
regression.

Model Fitting. We developed code in R to fit the Bayesian state–space model
and PXDA analysis described above and distributed this code to 500 nodes
on a research computing cluster at Brown University using a simple Bash
script. The Markov chain on each node was independently initialized. We
computed each chain for 10,000 iterations. We discarded the first 5,000 it-
erations from each chain and thinned by 25. This resulted in 200 iterations
per chain and a total of 100,000 posterior samples. The raw data and code
are available in SI Appendix.

Testing the Hypothesis of Density-Dependent Adult Recruitment. To test the
hypothesis that adult recruitment is negatively density dependent, we need
to know the number of adult trees at the beginning of the study and the
number of adult recruits over the subsequent 10 y within regions of varying
conspecific adult density. We used posterior predictive distributions of the
recruitment history for each tree to quantify both of these numbers within
square cells of 100-m side length (Fig. 3). For each of the 100,000 posterior
samples, we have a prediction for each tree that indicates whether it
recruited to the adult population during the 10-y study. We used these
predictions coupled with the geographic coordinates for each tree to count
the number of adult recruits in each 1-ha grid cell where recruitment oc-
curred and repeated this process for all 100,000 posterior samples. To de-
termine whether adult recruitment is density dependent, we quantified the

relationship R= aAb, where R is the median edge-corrected density of adult
recruits over all 100,000 posterior samples in each grid cell, A is edge-
corrected adult density at the beginning of the study, and a and b are fit-
ted coefficients. To compute adult density at the beginning of the study, we
subtracted the posterior median number of adult recruits from the total
number of adult H. guayacan in each grid cell. When the parameter b is <1, a
given change in A results in a less than proportional increase in R. Thus,
testing whether b is significantly <1 is a test of the hypothesis that adult
recruitment is negatively density dependent.
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To determine how the strength of negative density dependence changed
with the size of grid cells, we quantified the relationship R= aAb within grid
cells of 100-, 200-, 300-, 400-, 500-, 600-, 700-, 800-, 900-, and 1000-m side
length. These correspond to 1, 4, 9, 16, 25, 36, 49, 64, 81, and 100 ha, re-
spectively. Within each grid cell, we computed the posterior median recruit
density and corresponding adult density at the beginning of the study as
described above, and we used these data to determine how the strength of
negative density dependence changed as the sample area increased. The

digital terrain model shown as a background in Fig. 1C was produced using
airborne lidar acquired by ref. 37.
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