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A B S T R A C T   

Objective: This study aims to examine the trends in machine learning application to meningiomas 
between 2004 and 2023. 
Methods: Publication data were extracted from the Science Citation Index Expanded (SCI-E) 
within the Web of Science Core Collection (WOSCC). Using CiteSpace 6.2.R6, a comprehensive 
analysis of publications, authors, cited authors, countries, institutions, cited journals, references, 
and keywords was conducted on December 1, 2023. 
Results: The analysis included a total of 342 articles. Prior to 2007, no publications existed in this 
field, and the number remained modest until 2017. A significant increase occurred in publications 
from 2018 onwards. The majority of the top 10 authors hailed from Germany and China, with the 
USA also exerting substantial international influence, particularly in academic institutions. 
Journals from the IEEE series contributed significantly to the publications. "Deep learning," "brain 
tumor," and "classification" emerged as the primary keywords of focus among researchers. The 
developmental pattern in this field primarily involved a combination of interdisciplinary inte-
gration and the refinement of major disciplinary branches. 
Conclusion: Machine learning has demonstrated significant value in predicting early meningiomas 
and tailoring treatment plans. Key research focuses involve optimizing detection indicators and 
selecting superior machine learning algorithms. Future efforts should aim to develop high- 
performance algorithms to drive further innovation in this field.   

1. Introduction 

Meningiomas, comprising 20 % of all intracranial tumors, are the most common primary tumors of the central nervous system 
[1–3], with a prevalence rate of 98 cases per 100,000 individuals [4]. Clinical symptoms vary and may include headaches, vision 
problems, epileptic seizures, memory decline, muscle weakness, or other neurological dysfunctions, largely depending on the tumor’s 
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anatomical location [5–7]. Despite being predominantly benign, these tumors’ size and location can lead to significant health com-
plications [8]. Currently, the diagnosis of meningiomas relies on neuroimaging data [9–11]. Due to the often asymptomatic nature of 
the disease, observation is usually the preferred treatment approach [1,2,12]. However, many patients fail to adhere to regular medical 
check-ups, increasing the risk of malignant transformation [13–15]. This non-compliance can have severe implications, causing 
substantial distress and even leading to depression in many patients [16,17]. Therefore, accurately predicting the disease’s prognosis 
at an early stage is crucial in preventing the malignant transformation of meningiomas. In recent years, machine learning (ML) has 
played a crucial role in improving the accuracy, efficiency, and personalization of treatment plans for the early prediction and 
diagnosis of meningiomas [18–20]. Various learning algorithms, such as convolutional neural networks [21] and residual networks 
[22], have demonstrated high predictive accuracy. This reliability has been confirmed by high-level evidence studies, including 
authoritative multicenter randomized controlled trials (RCTs) [23] and systematic reviews [24]. However, these studies share a 
common limitation: they do not provide insights into the evolving trends in this field, including research focal points, interdisciplinary 
collaborations, and the geographical distribution of scientific output. Furthermore, their interpretations often involve subjective 
judgments and scoring by researchers. In contrast, bibliometric analysis (BA), which leverages theories and methodologies from both 
bibliometrics and informatics, offers a more profound and insightful perspective by objectively visualizing the quantity, quality, and 
impact of scientific literature [25–28]. To the best of our knowledge, there remains a notable absence of BA regarding the academic 
collaborative networks, developmental trajectories, and cutting-edge research in the application of ML to meningiomas. The objective 
of this study is to comprehensively search the Web of Science Core Collection (WoSCC) using CiteSpace for relevant literature spanning 
the past twenty years. The aim is to explore the frontiers and development trends of machine learning (ML) applications in menin-
giomas, with a focus on core authors, their collaboration networks, affiliated institutions, countries, and regions. This effort is intended 
to enhance clinical practitioners’ understanding of the latest research trends and technological advancements, thereby guiding their 
clinical practice and elevating the standards of diagnosis and treatment for meningiomas. Medical experts can collaborate with spe-
cialists in machine learning and bibliometrics to leverage ML techniques in addressing challenges in meningioma research, thereby 
fostering advancement and progress in this field. Additionally, this bibliometric analysis (BA) can serve as a reference and guide for 
future research endeavors in the field of meningiomas. 

2. Material and methods 

2.1. Data sources and search strategy 

All the data used in this study were obtained from the Web of Science Core Collection (WoSCC), a citation-based database. Unlike 
other databases, WoSCC offers a unique advantage in directly computing various bibliometric indicators (such as cited authors, cited 
journals, impact factors, countries, academic institutions, etc.) without the need for integration from multiple databases. This 
comprehensive display of core publication information makes WoSCC an authoritative and widely utilized dataset for bibliometric 
analysis [29,30]. Therefore, this study also relies on this database to enable comparison and verification with similar research 
outcomes. 

A comprehensive search strategy was devised for the period from December 1, 2004, to December 1, 2023, incorporating keywords 
related to "meningiomas" and "machine learning" (Table 1). The filtering strategy used for the search was illustrated (Fig. 1 and 
PRISMA_2020_flow_diagram_updated_SRs_v1). To ensure the data’s comprehensiveness, we imposed no restrictions on the country of 
publication, language, or study type. 

2.2. Analysis tool 

This study utilizes CiteSpace 6.2.R6 software as a tool for visualization analysis. Its advantage lies in its ability to identify research 
hotspots and frontier fields, as well as forecast the future development dynamics of specific areas. The process of conducting bib-
liometric analysis with CiteSpace 6.2.R6 typically involves several key steps: data collection, importing data into CiteSpace 6.2.R6, 
data analysis, and interpretation of analysis results. Specifically, we conducted a comprehensive search in the WoSCC database using 
the keywords detailed in Table 1. We exported the search results in the "download.txt" format supported by CiteSpace 6.2.R6, with the 
export data parameters set to "Full Record and Cited References." After filtering duplicate data through the CiteSpace 6.2.R6 tool, we 
set the time slice to "1 year" and the k value for the g-index to 50. Additionally, we employed the Pathfinder network scaling algorithm 
[31,32]. Finally, we adjusted the network diagrams and clusters to display results that facilitate efficient recognition of core infor-
mation by the reader. 

Table 1 
Topic search query (Web of Science Core Collection, December 1, 2004, to December 1, 2023).  

Set Results Search Query 

#1 18,785 TS=((meningioma) OR (meningeal neoplasms) OR (meningeal tumor)) 
#2 909,543 TS=((machine learning) OR (deep learning) OR (artificial intelligence) OR (machine intelligence) OR (neural network) OR (natural language 

processing) OR (hybrid intelligent system) OR (CNN) OR (LSTM) OR (RNN)) 
#3 378 #1 AND #2 
#4 342 #3 AND Article (Document Types) AND English (Languages)  
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3. Results 

3.1. Annual publications 

Fig. 2 illustrates the annual publication trends in ML applications in meningioma research. Before 2007, no publications existed in 
this domain, and the number remained modest until 2017. This trend significantly correlates with ML’s nascent stage as an academic 
discipline. Since 2018, there has been a marked increase in publications, attributed to advancements in ML’s computational capa-
bilities and algorithmic architectures’ refinement. These developments have enabled the medical sector to employ more sophisticated 
ML and deep learning techniques, revolutionizing imaging analysis technology and offering precise diagnostic tools. Recent studies 
underscore the feasibility of deep learning methods in addressing multiple clinical challenges in meningioma management. This 
highlights the complexity and varying invasiveness of tumors, necessitating advanced tools for accurate diagnosis and prognosis, thus 
increasing reliance on ML technologies [33,34]. 

3.2. Analysis of authors, countries, and institutions 

Fig. 3 and Table 2 display the authorship details of the 342 published works. Each node represents an author, with connecting lines 
indicating collaborative relationships between them. The top ten authors, listed in order of publication count, are: Stummer, Walter (5 
publications); Xu, Jianguo (5 publications); Musigmann, Manfred (5 publications); Brokinkel, Benjamin (5 publications); Akkurt, 
Burak Han (5 publications); Mannil, Manoj (4 publications); Zhang, Lei (4 publications); Heindel, Walter (4 publications); Sartoretti, 
Thomas (4 publications); Teng, Yuen (2 publications). It is noteworthy that the majority of these top ten authors come from Germany 

Fig. 1. Map illustrating the literature screening process for machine learning applied to meningiomas.  

Fig. 2. Map showing the annual publications related to machine learning applied to meningiomas.  
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and China. This trend aligns with the advanced research infrastructures and significant investments in technological and medical 
research of these nations. Furthermore, it reflects their focused attention on neuro-oncology, collaborative efforts in multicentric 
studies, the high incidence of meningiomas, and a robust base of technical expertise in these countries [33,35]. 

Fig. 3. Map displaying the authors associated with machine learning applied to meningiomas.  

Table 2 
Top 10 authors related to machine learning applied to meningiomas.  

Rank Author Frequency Year Country 

1 Stummer, Walter 5 2022 Germany 
2 Xu, Jianguo 5 2021 Peoples R China 
3 Musigmann, Manfred 5 2022 Germany 
4 Brokinkel, Benjamin 5 2022 Germany 
5 Akkurt, Burak Han 5 2022 Germany 
6 Mannil, Manoj 5 2022 Germany 
7 Zhang, Lei 4 2021 Peoples R China 
8 Heindel, Walter 4 2022 Germany 
9 Sartoretti, Thomas 4 2022 Switzerland 
10 Teng, Yuen 4 2021 Peoples R China  

Fig. 4. Map depicting the countries involved in machine learning applied to meningiomas.  
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Fig. 4 and Table 3 reveal the collaborative network of countries in this research domain, comprising 61 nodes and 129 connecting 
edges. The top ten countries by publication count are: People’s Republic of China (75 publications); USA (61 publications); India (60 
publications); Saudi Arabia (32 publications); Pakistan (31 publications); Germany (24 publications); South Korea (23 publications); 
Egypt (20 publications); England (16 publications); Turkey (14 publications). Countries with notable centrality (indicated by a purple 
ring) in this network are: USA (centrality score of 0.60); People’s Republic of China (0.24); Germany (0.23); Pakistan (0.21); India 
(0.16); Egypt (0.14); England (0.10). This demonstrates that in the application of ML to the field of meningioma, the USA and China are 
at the forefront globally. This underscores the heavy dependence of the ML field on a nation’s technological prowess, particularly the 
technological and talent resources of the USA, which accounts for its leading centrality score (0.60). 

Fig. 5 and Table 4 present the cooperative network of institutions, comprising 203 nodes and 314 connecting edges. The top ten 
institutions by publication count are: Egyptian Knowledge Bank (EKB) with 20 publications; Capital Medical University with 11 
publications; University of California System with 10 publications; Chinese Academy of Sciences with 9 publications; Fudan University 
with 9 publications; Sichuan University with 8 publications; Princess Nourah bint Abdulrahman University with 8 publications; 
Harvard University with 7 publications; Central South University with 7 publications; and University of California, San Francisco with 
7 publications. It is observed that institutions from the USA and China hold prominent positions among the top ten, and there exists a 
substantial network of collaboration between institutions across different countries. This interconnected network is poised to further 
catalyze the development of ML applications in studying meningiomas. 

3.3. Analysis of cited journals 

Fig. 6 and Table 5 illustrate the citation network of journals, encompassing 430 nodes and 1415 connecting edges. The top ten 
journals by citation count are PLOS ONE with 159 citations, IEEE ACCESS with 121 citations, LECT NOTES COMPUT SC with 106 
citations, COMPUT BIOL MED with 99 citations, NEURO-ONCOLOGY with 98 citations, IEEE T MED IMAGING with 91 citations, PROC 
CVPR IEEE with 89 citations, MED IMAGE ANAL with 88 citations, ARXIV with 87 citations, and SCI REP-UK with 87 citations. In 
addition, journals such as EUR J RADIOL (with a centrality score of 0.15), BIOMED SIGNAL PROCES (0.13), and AM J NEURORADIOL 
(0.13) demonstrated significant centrality (indicated by a purple ring). Notably, the IEEE series of journals recognized for their impact 
in the field of computer science are highly acknowledged in this domain, as reflected in their prominence in the citation network. 

Keywords Co-Occurrence and Citation Burst Analysis; Fig. 7 and Table 6 show a network graph of keywords comprising 313 nodes 
and 913 connecting edges. The top ten keywords, based on frequency, were deep learning (mentioned 85 times), brain tumor (74 
times), classification (66 times), segmentation (59 times), magnetic resonance imaging (49 times), machine learning (48 times), 
convolutional neural network (38 times), MRI (26 times), images (25 times), and system (23 times). Analyzing the frequency and 
centrality of these keywords, it becomes apparent that "deep learning,” "brain tumor,” and "classification" emerge as prominent themes 
in this field. Fig. 8 shows the top 20 keywords with the most robust citation bursts. The start and end of each burst are denoted as 
"beginning" and "end,” respectively. The increase in influence correlates with the escalation in the "strength" value. The light blue area 
represents the research period, whereas the red portion indicates the burst onset and climax. It is observed that the keyword with the 
highest burst strength is "tumors,” reaching 3.49. Additionally, in the early phase, keywords such as "high grade gliomas,” "magnetic 
resonance spectroscopy,” and "matrix metalloproteinase" garnered significant attention, indicating an early focus on clinical imaging 
data in medical research. During the mid-phase, keywords like "support vector machine,” "artificial neural network,” and "model" were 
more prominent, suggesting that researchers were exploring new ML algorithms. In the later phase, the frequency of keywords such as 
"image segmentation,” "resection,” and "management" increased, illustrating that researchers in the field of ML applications for me-
ningiomas have started to systematically assess clinical methods and progressively refine the management of clinical research pro-
tocols. Keywords Timeline; Fig. 9 depicts the evolution and interconnection of keywords over time arranged chronologically. This 
timeline extends from left to right, highlighting the emergence and disappearance of research keywords from 2004 to 2023. In 
addition, this illustration clusters various types of keywords. Ten clusters (labeled 0–9) are shown. Cluster #0, labeled as "pretrained 
model,” primarily focuses on topics like brain tumor classification, brain tumor, and efficient classification. Cluster #1, termed 
"diagnosis performance,” concentrates on deep neural network-based models, translocator protein, and traditional radiological 
findings. Cluster #2, marked as "non-linear feature space,” emphasizes classification analysis, new convolutional neural network 
architectures, and related topics. Cluster #3, identified as "clinical outcome,” revolves around clinical decision support systems, 

Table 3 
Top 10 frequency and centrality of countries related to machine learning applied to meningiomas.  

Rank Frequency Countries Rank Centrality Countries 

1 75 PEOPLES R CHINA 1 0.60 USA 
2 61 USA 2 0.24 PEOPLES R CHINA 
3 60 INDIA 3 0.23 GERMANY 
4 32 SAUDI ARABIA 4 0.21 PAKISTAN 
5 31 PAKISTAN 5 0.16 INDIA 
6 24 GERMANY 6 0.14 EGYPT 
7 23 SOUTH KOREA 7 0.10 ENGLAND 
8 20 EGYPT 8 0.10 FRANCE 
9 16 ENGLAND 9 0.09 U ARAB EMIRATES 
10 14 TURKEY 10 0.07 SINGAPORE  
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spectroscopic multiple analysis, and similar themes. Cluster #4, named "meningioma classification,” focuses on the diagnostic value, 
meningioma grade, statistical analysis, and associated areas. These clusters represented distinct but interconnected thematic areas 
within the field, illustrating the dynamic and multifaceted nature of research on ML applications in meningiomas. 

3.4. Cluster dependencies of Reference 

Fig. 10 illustrates cluster dependency relationships based on referenced literature. Areas coded with different colors represent 
various reference clusters, while arrows indicate developmental relationships between these clusters. Converging arrows signify the 
emergence of new disciplinary branches, while interlocking arrows reflect the integration of different disciplines. This occurs because 
the tail of the arrow represents the latest knowledge frontier, while the head indicates the source of foundational literature. 

In the application of ML to the field of meningiomas, disciplinary development shows a pattern characterized by a combination of 
interdisciplinary integration and the refinement of major disciplinary branches. For example, Cluster #2 represents both the fusion of 
two disciplines and the branching off into two others. Meanwhile, Cluster #3, demonstrating collaborative relationships among 
multiple disciplines, exemplifies the typical manifestation of multidisciplinary integration. This dynamic reflects a complex and 
evolving landscape in the field, where new insights and approaches emerge from the convergence and divergence of various academic 
disciplines, driven by advancements and applications of ML in meningioma research. 

4. Discussion 

CiteSpace was used for a bibliometric analysis covering the years 2004–2023 focusing on key aspects of applying ML to menin-
giomas. This analysis included core authors, their collaboration networks, affiliated institutions, countries, and regions. We have 
provided comprehensive data, highlighting focal points and trends in the domain of ML applied to meningiomas. 

Fig. 5. Map presenting the institutions engaged in machine learning applied to meningiomas.  

Table 4 
Top 10 publications of institutions related to machine learning applied to meningiomas.  

Rank Frequency Year Institutions 

1 20 2019 Egyptian Knowledge Bank (EKB) 
2 19 2019 Capital Medical University 
3 10 2018 University of California System 
4 9 2018 Chinese Academy of Sciences 
5 9 2019 Fudan University 
6 8 2021 Sichuan University 
7 8 2022 Princess Nourah bint Abdulrahman University 
8 7 2018 Harvard University 
9 7 2020 Central South University 
10 7 2018 University of California San Francisco  
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4.1. General information 

This study reveals that over the past 20 years, a total of 342 publications have been publicly available in the field of ML applied to 
meningiomas. The findings indicate that before 2007, no publications existed in this field, and the number remained modest until 
2017, correlating with the nascent stage of ML as an academic discipline. Since 2018, there has been a substantial increase in pub-
lications, attributed to enhanced computational capabilities in ML and the refinement of algorithmic architectures. These advance-
ments have enabled the medical sector to utilize more complex ML and deep learning technologies, revolutionizing imaging analysis 
techniques and providing more accurate and efficient diagnostic tools [18–22,36]. 

An analysis of authors, countries, and their affiliated institutions with a high number of publications reveals that most of the top ten 
authors are from Germany and China. Additionally, the influence of the USA and its academic institutions is prominent internationally. 
This underscores ML’s dependence on a country’s technological advancement and talent pool. Collaboration in multicenter studies, 
high incidence rates of meningiomas, and technical expertise are essential factors driving the application and development in this field. 

Through keyword network analysis, we have observed a high frequency of key terms such as deep learning, brain tumors, and 
classification. This prominence likely reflects the central position of these topics in current research. Such focused attention may stem 
from the successful application of deep learning techniques in medical image processing and diagnosis, as well as the medical and 
societal significance of brain tumors as a serious ailment. Moreover, the prominent ranking of certain keywords may also indicate 
ongoing interest among researchers in specific technologies (such as convolutional neural networks), imaging modalities (such as 
magnetic resonance imaging), and treatment approaches (such as surgical resection). The analysis of citation bursts provides insight 
into the developmental trajectory and professional trends of deep learning and machine learning in the diagnosis and treatment of 
brain tumors. From technological innovation to clinical practice, these findings reflect researchers’ attention and efforts at various 
stages, offering valuable guidance and insights for future research and clinical applications. 

By analyzing the timeline graph, we can discern the focus and developmental trends of different research domains during various 

Fig. 6. Map showcasing the cited journals relevant to machine learning applied to meningiomas.  

Table 5 
Top 10 frequency and centrality of cited journals related to machine learning applied to meningiomas.  

Rank Frequency Cited Journals Rank Centrality Cited Journals 

1 159 PLOS ONE 1 0.15 EUR J RADIOL 
2 121 IEEE ACCESS 2 0.13 BIOMED SIGNAL PROCES 
3 106 LECT NOTES COMPUT SC 3 0.13 AM J NEURORADIOL 
4 99 COMPUT BIOL MED 4 0.11 ACTA NEUROPATHOL 
5 98 NEURO-ONCOLOGY 5 0.11 RADIOLOGY 
6 91 IEEE T MED IMAGING 6 0.11 NAT COMMUN 
7 89 PROC CVPR IEEE 7 0.11 NEW ENGL J MED 
8 88 MED IMAGE ANAL 8 0.10 LECT NOTES COMPUT SC 
9 87 ARXIV 9 0.09 IEEE ACCESS 
10 87 SCI REP-UK 10 0.09 ACTA NEUROCHIR  
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time periods. For instance, in the early stages, researchers may have placed greater emphasis on pre-trained models and fundamental 
classification methods. However, as time progresses, research into diagnostic performance, nonlinear feature spaces, and clinical 
outcomes gradually increases, reflecting researchers’ deeper exploration and understanding of the field of brain tumor diagnosis and 
treatment. 

The analysis of interdependencies in referenced literature clusters reveals that the disciplinary development pattern in applying ML 
to meningiomas predominantly consists of a coexistence of interdisciplinary integration and the refinement of major disciplinary 
branches. This unique feature is likely to promote resource integration, cross-disciplinary idea exchange, and academic innovation 
within the field. 

In summary, as an emerging discipline, ML has shown immense value in early diagnosis, medical efficiency, and personalized 
treatment in the field of meningiomas, with a rapid increase in publications in recent years. Given the trends in annual publication 
numbers and the innovation of ML algorithms, significant progress is anticipated in the next 5–10 years, ultimately offering precision 
medical services to patients with meningiomas. 

4.2. Research hotspots 

Keywords encapsulate the core content and central themes within a specific research domain. Through methods like keyword co- 
occurrence analysis, keyword clustering, and citation burst analysis, one can monitor the development of various hot topics within a 
field. In the application of ML to meningiomas, two primary research hotspots have emerged: the selection of optimal detection in-
dicators and the determination of the best ML algorithms. 

Fig. 7. Map featuring the keywords associated with machine learning applied to meningiomas.  

Table 6 
Top 10 frequency and centrality of keywords related to machine learning applied to meningiomas.  

Rank Frequency Keywords Rank Centrality Keywords 

1 85 deep learning 1 0.22 classification 
2 74 brain tumor 2 0.19 artificial intelligence 
3 66 classification 3 0.16 segmentation 
4 59 segmentation 4 0.14 model 
5 49 magnetic resonance imaging 5 0.13 brain tumors 
6 48 machine learning 6 0.13 survival 
7 38 convolutional neural network 7 0.12 brain tumor 
8 26 mri 8 0.12 feature extraction 
9 25 images 9 0.12 features 
10 23 system 10 0.12 cancer  
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Fig. 8. Top 20 keywords exhibiting the strongest citation bursts.  

Fig. 9. Map illustrating the timeline of keywords related to machine learning applied to meningiomas.  
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4.3. Selection of optimal detection indicators 

Researchers have primarily focused on neuroimaging and related metrics to select the best detection indicators. For instance, 
Herrgott [37] discovered that tumor-specific deoxyribonucleic acid (DNA) methylation in patient blood could serve as an effective 
biomarker for noninvasive methods. Park [38] found that diffusion tensor imaging could accurately predict the grading and histo-
logical subtypes of meningiomas. Additionally, multiple studies [39–42] have shown that various magnetic resonance imaging (MRI) 
parameters can effectively diagnose the early stages of meningioma progression. Interestingly, Jelke [43] suggested that Raman 
spectroscopy could be a reliable supplementary tool for neuroimaging, particularly useful for distinguishing meningiomas from the 
dura mater during the perioperative period. 

4.4. Determination of the best machine learning algorithms 

With the diversification of algorithms in high-tech ML, researchers have explored various approaches. For instance, many studies 
have identified deep convolutional neural networks as having the best sensitivity for the diagnostic classification of meningiomas [19, 
21,44,45]. Zahoor [46] suggested advancements in traditional algorithms, including the addition of new deep-feature-enhancement 
spaces and integrated classifiers. Abdelaziz [22] reported that residual networks exhibit good performance. Teng [47] compared and 
evaluated common ML algorithms (such as F1 score, recall, accuracy, area under the ROC curve, calibration plot, and decision curve 
analysis) to determine the performance of models such as Logistic Regression (LR), XGBoost, AdaBoost, Support Vector Machine 
(SVM), K-Nearest Neighbors (KNN), and Random Forest (RF); Logistic Regression was used to obtain the best performance. Thus, with 
rapid technological advancements, new ML algorithms will continue to be developed, and their validation will likely remain a hot topic 
in this discipline in the coming years. 

5. Conclusion 

The application of ML in the early prediction of meningiomas and the development of individualized treatment plans has provided 
substantial value. Currently, the most prominent research hotspots are the selection of optimal detection indicators and determination 
of the best ML algorithms. In future, researchers will continue to develop high-performance algorithms to bring greater innovation to 
this field. This progressive approach promises to significantly enhance the accuracy and effectiveness of diagnostic and therapeutic 
strategies, and ultimately improve patient outcomes in meningioma management. 

5.1. Limitations 

This study has several limitations. First, it focuses primarily on the data available in the WOSCC database. CiteSpace cannot 
integrate data from different databases or perform citation analyses of sources outside the WOSCC. Secondly, although CiteSpace is 
valuable for detecting and visualizing emerging trends, it does not delve deeply into the fundamental mechanisms underlying ML 
applications in meningiomas. Therefore, this study did not provide a comprehensive understanding of the underlying processes. 

Fig. 10. Map illustrating the dependencies among clusters of references related to machine learning applied to meningiomas.  
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Despite these limitations, we used CiteSpace to highlight the latest research trends in the field of ML applications for meningiomas. 
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