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Abstract

Background: The accurate characterization of RNA transcripts and expression levels across species is critical for
understanding transcriptome evolution. As available RNA-seq data accumulate rapidly, there is a great demand for
tools that build gene annotations for cross-species RNA-seq analysis. However, prevailing methods of ortholog
annotation for RNA-seq analysis between closely-related species do not take inter-species variation in mappability
into consideration.

Results: Here we present XSAnno, a computational framework that integrates previous approaches with multiple
filters to improve the accuracy of inter-species transcriptome comparisons. The implementation of this approach in
comparing RNA-seq data of human, chimpanzee, and rhesus macaque brain transcriptomes has reduced the false
discovery of differentially expressed genes, while maintaining a low false negative rate.

Conclusion: The present study demonstrates the utility of the XSAnno pipeline in building ortholog annotations
and improving the accuracy of cross-species transcriptome comparisons.

Keywords: Comparative transcriptomics, Ortholog annotation, RNA-seq, Gene expression, Prefrontal cortex,
Evolution, Human evolution, Primate, Macaque, Chimpanzee

Background
The accurate characterization and quantification of or-
thologous transcripts across species are critical for un-
derstanding the evolution of gene expression and the
transcriptome–phenotype relationship. Previous compara-
tive studies have shown that the evolutionary changes in
gene expression play a key role in phenotypic changes be-
tween species, including the differences between human
and closely related non-human primates [1,2].
The development of sequencing technology, such as

RNA-seq, has provided significant advantages over previ-
ous microarray technology, for quantifying expression di-
vergence. RNA-seq does not rely on specific predesigned
probes or a priori knowledge of the transcriptome under
investigation, thereby theoretically allowing unbiased whole
transcriptome profiling of any species and performing
cross-species comparisons [3]. Furthermore, in contrast to

microarray, where even a single nucleotide mutation in
probe sequence may affect the efficiency of probe
hybridization, RNA-seq is more robust to sequence varia-
tions between species. However, comparing transcrip-
tomes of different species using RNA-seq is challenging.
One critical challenge is the lack of high-quality annota-
tion of orthologous genes. Although multiple databases,
such as Ensembl homologs [4], OrthoDB [5] and eggNOG
[6], provide a catalog of orthologs between species, none
of them provide coordinates of corresponding orthologous
regions on reference genomes, which makes it difficult to
employ them for RNA-seq analysis. Prevailing annotations
for cross-species RNA-seq analysis are based on sequence
conservation through either whole genome alignment or
local alignment, and have been previously implemented in
analyzing transcriptional differences between humans and
non-human primates [7-10].
Another challenge in cross-species transcriptome com-

parisons is the variation of short-read mappablity to or-
thologs among species. Although the leading short read
mapping algorithms all try to identify the best mapping
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position for each read, a read may still map equally well or
nearly equally well to multiple positions because of paralo-
gous sequences in the reference genome [11]. Further-
more, a previous study has shown that mappability varies
greatly between species and gene classes [12]. In RNA-seq
analysis, the quantification of gene expression will thus be
affected by the existence of paralogous sequences. The
problem becomes apparent when we perform differential
expression analysis between species. A gene may be falsely
identified as differentially expressed gene due to differ-
ences in mappability between species.
Here, we first analyzed the bias in estimating inter-

species difference in expression caused by inter-species
difference in mappability based on current annotations,
using a published dataset consisting of RNA-seq and
high-density exon array. We then created a pipeline
named XSAnno, which generated a model of orthologs
by combining whole genome alignment, local alignment
and multiple filters to remove regions with difference in
mappability (DIM) between species. The steps in our
computational pipeline are inspired by common practice
for annotating orthologous regions, but were modified
to suit the specific aim of comparative transcriptome
analysis. To assess our method, we performed RNA-seq
on dorsolateral prefrontal cortex (DFC) of 5 humans, 5
chimpanzees and 3 rhesus macaques and benchmarked
the performance of XSAnno on identifying differentially
expressed (DEX) genes between species, by comparing
with annotations used in previous studies [7-10]. Valid-
ation by ddPCR revealed that our approach greatly re-
duced the false positives, while keeping the number of
false negatives low.

Results and discussion
Differences in mappability between species skew gene
expression comparisons
To assess the effects of inter-species difference in mapp-
ability on estimating inter-species difference in expres-
sion using current annotations, we took advantage of a
published dataset including RNA-seq and high-density
human exon junction array data from cerebellum of hu-
man, chimpanzee and rhesus macaque [8]. The RNA-
seq data included a total of five lanes of 36 bp single-end
reads with two technical replicates for human and ma-
caque and one lane for chimpanzee (Additional file 1:
Table S1). The microarray data included 3 replicates of
human, chimpanzee and rhesus macaque cerebellum
samples (Additional file 1: Table S1). To avoid bias in
gene expression quantification, only microarray probes
that perfectly matched the genome sequences of all three
species were used. As microarray probes were designed
to uniquely detect a set of known genes, microarrays are
less biased by inter-species differences in mappability
than RNA-seq. Therefore, we tested the performance of

annotations generated by two most widely used ap-
proaches by comparing them with the microarray data.
One set of annotation was built based on Ensembl annota-
tion (V64) [4] through whole genome alignment as de-
scribed in the original study and other studies [7,9] (WGA
annotation, see Methods). The other set was originally
built in Blekhman et al. [10] and updated in Primate
Orthologous Exon Database (POED), which includes a
catalog of unique, non-overlapping, 1:1:1 orthologous
exons of human, chimpanzee and rhesus macaque inden-
tified through local alignment from Ensembl annotation.
In the WGA annotation, 11,420 human-chimpanzee

orthologs and 11,461 human-macaque orthologs were
shared with microarray. In POED annotation, 11,266 1:1:1
human-chimpanzee-macaque orthologs were shared with
microarray. To identify genes with difference in mappabil-
ity (DIM genes), we generated ten lanes of simulated
RNA-seq (s-RNA-seq) reads per species based on each set
of annotation, with the setting that all the transcripts were
equally expressed. DIM genes were identified by DESeq
[13] with FDR < 0.01, using s-RNA-seq data. We then
plotted the inter-species difference estimated by RNA-seq
data against inter-species difference estimated by micro-
array data (Figure 1). DIM genes in WGA annotation
showed larger inter-species difference than genes with
consistent mappability between species (consistent genes)
based on RNA-seq (human-chimpanzee p < 2.2 × 10−16,
human-macaque p < 2.2 × 10−16; see Methods). On the
contrary, DIM genes showed similar inter-species difference
to consistent genes based on microarray (human-chim-
panzee p = 0.90, human-macaque p = 0.94; see Methods;
Figure 1a, b). The difference between RNA-seq and
microarray suggested that variations in mappability af-
fected the estimation of inter-species difference. As
expected, POED annotation included fewer genes with
variant mappability between species, because it is a set
of orthologs shared by three species and built with
local alignment, which is more stringent in terms of
sequence conservation, compared with WGA anno-
tation (Figure 1c, d). We observed similar larger inter-
species difference of DIM genes estimated by RNA-seq
than by microarray using POED annotation (RNA-seq:
human-chimpanzee p = 0.005, human-macaque p = 0.09;
microarray: human-chimpanzee p = 0.88, human-macaque
p = 0.22; see Methods). Besides, more genes with no
s-RNA-seq reads aligned were identified using POED
annotation, suggesting shortened gene length during
the process of ortholog identification (Additional file 2:
Figure S1). The inter-species differences of these
genes were also more dispersed from 0 in RNA-seq
than in microarray (Figure 1), suggesting that the gene
expression cannot be well represented if the gene
model is truncated too much in the process of ortho-
log identification.
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Another problem with using only local alignment is
the loss of syntenic information of genome. In POED
annotation, we found some human orthologs in chim-
panzee or macaque with exons located in unreasonably
distant genomic regions. For example, in POED, the
length of RIN3 is around 130 kb in human, but ~
125 Mb in macaque, including an 125 Mb intron.

Outline of the XSAnno framework
To fit the aim of RNA-seq analysis, we developed the
XSAnno framework for annotating orthologous regions
for cross-species gene expression comparisons. XSAnno
integrates whole genome alignment, which preserved syn-
tenic information of genome and local alignment, which
removes exons that are not highly conserved in sequence
with multiple filters, which filters out exons and genes
with varied mappability between species (Figure 2):

(i) Our pipeline started with whole-genome alignment
(WGA), which preserves syntenic information of the
genome. We use UCSC liftOver tool [14], which

converts the genome coordinates between species
based on whole genome alignment. We select one
species (Sp1), usually the one with better annotation,
as reference species and lift the annotation to the
other species (Sp2). The lifted annotation on Sp2 is
then lifted back to the genome of Sp1. The parameters
of liftOver are carefully selected by bootstrapping
(Supplementary Methods & Additional file 2:
Figure S2). In the process, we filter out exons that
cannot be lifted from Sp1 to Sp2, exons cannot be
lifted back to the original genomic location of Sp1,
and transcripts without all exons lifted to the same
chromosome or strand.

(ii)We then perform local alignment (LA) to remove
exons that are not highly conserved in sequence and
exons that may cause ambiguity in RNA-seq read
mapping. We align the exons from step one of both
species to their reference genome and the reference
genome of the other species, respectively, using
BLAT [15]. Only exons with a unique conserved
ortholog but without highly conserved paralogs are

Figure 1 The effects of different mappabality between species on estimating inter-species gene expression differences. Inter-species
gene expression differences estimated by RNA-seq were plotted against inter-species differences estimated by microarray, using WGA annotation
(a, b) and POED annotation (c, d). The inter-species differences were calculated as log2 fold change of RPKM (RNA-seq) or intensity (microarray).
The rug plots along x and y axes show the distribution of interspecies differences estimated by microarray and RNA-seq, respectively. DIM genes
(red) and genes without simulated reads mapped (green) show larger inter-species variation in RNA-seq than in microarray. (a, c) Comparison
between human and chimpanzee (HC). (b, d) Comparison between human and rhesus macaque (HM).
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kept. Thresholds of inter- and intra-species percent
identity (PID, http://genome.ucsc.edu/FAQ/FAQblat.
html) and percentage of mapped length (PL) are chosen
to maximize the number of retained exons
(Supplementary Methods & Additional file 2: Figure S3).

(iii)Finally, we filter out DIM exons and genes. We
generate simulated RNA-seq data using simNGS
[16] (http://www.ebi.ac.uk/goldman-srv/simNGS/),
incorporating sequencing errors, and setting all
transcripts to be equally expressed. With this setting,
exons and genes with different mappability of
s-RNA-seq reads show statistically significant
differential expression and are therefore removed.
Besides, we remove genes that are truncated too
much (see Methods).

Generation of human-chimpanzee and human-macaque
annotations by XSAnno
As an example of comparisons between closely-related
species, our pipeline was first applied to generate human-
chimpanzee orthologous genes based on human gene an-
notation (Ensembl v64) [4], human reference genome
(hg19) [17], and chimpanzee reference genome (panTro2)

[18]. Starting with 54,127 genes (21,165 protein-coding
genes) in Ensembl human gene annotation, we identified
37,662 human-chimpanzee orthologous genes, including
16,774 protein-coding genes (Table 1 & Additional file 1:
Table S2). Higher conversion rates were observed for
protein-coding genes and lincRNAs, 79.3% and 73.7%, re-
spectively (Additional file 1: Table S2).
As expected, the application of XSAnno to human and

rhesus macaque, a pair with a more distant evolutionary
relationship, identified fewer orthologs. We identified
24,285 human-macaque orthologous genes, including
15,051 protein-coding genes (Table 1 & Additional file 1:
Table S2). Compared with human-chimpanzee ortho-
logs, the decrease in human-macaque orthologs mainly
occurred in non-protein-coding genes, particularly pseu-
dogenes (Table 1 & Additional file 1: Table S2) due to
the existence of highly conserved paralogs.
The XSAnno started with WGA annotation and filtered

exons and genes which were not highly conserved in se-
quence or different in mappability between species. The
XSAnno genes were shorter than WGA genes, as ex-
pected, but longer than POED genes (Additional file 2:
Figure S1).

Figure 2 The XSAnno pipeline. Pipeline for building ortholog annotation. Blue boxes denote exons and red crosses label the exons or
transcripts filtered out.

Table 1 Number of genes in the annotation

Species Annotation Name Protein coding Pseudogene Processed transcript lincRNA Others Total

Human-chimpanzee

WGA 19177 9348 5265 5173 7965 46928

WGA+LA 18272 6796 4831 4825 6257 40981

XSAnno 16774 6205 4296 4241 6146 37662

Human-macaque

WGA 18784 6668 4941 4837 6555 41785

WGA+LA 17344 2532 3926 3947 2477 30226

XSAnno 15051 2271 2900 2812 1251 24285

Human-chimpanzee-macaque POED 17105 2528 3756 3697 2842 29928
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Each filtering step filtered out genes with large vari-
ation in mappability between species (Additional file 2:
Figure S4). The genes filtered out displayed larger inter-
species variation compared with the remaining genes in
RNA-seq (WGA - >WGA+ LA: human-chimpanzee p =
6.1 × 10−3, human-macaque p = 3.0 × 10−4; WGA+ LA - >
XSAnno: human-chimpanzee p < 2.2 × 10−16, human-
macaque p = 0.14), but not in microarray (WGA - >
WGA+LA: human-chimpanzee p = 0.56, human-macaque
p = 0.78; WGA + LA - > XSAnno: human-chimpanzee
p =0.09, human-macaque p = 0.82; see Methods; Figure 3),
suggesting RNA-seq overestimated inter-species differ-
ences of these genes.

Testing the performance of XSAnno on differential
expression analyses
Since the above used published dataset consists of only
two technical replicates for human and macaque and no
replicates for chimpanzee, it lacks statistical power to
identify differentially expressed (DEX) genes. Furthermore,
the samples were sequenced as 36 bp single-end reads.

Therefore, we performed mRNA-seq (75 bp single-end
reads) of DFC tissue from 5 chimpanzee and 3 rhesus ma-
caques (Methods and Additional file 1: Table S3) and com-
pared with the complementary mRNA-seq dataset of 5
human DFC samples generated by the BrainSpan project
(www.brainspan.org) (Additional file 1: Table S3). The
resulting sequencing reads have been deposited to the Na-
tional Center for Biotechnology Information (NCBI) short-
read archive under the accession number PRJNA233428.
The XSAnno human-chimpanzee annotation covered

70.1% chimpanzee RNA-seq reads, which was lower than
77.1% in WGA annotation as expected, but greater than
59.1% in POED (Additional file 2: Figure S5). 90.0% of the
human-expressed XSAnno orthologs were also expressed
in chimpanzee. Similarly, the XSAnno annotation for hu-
man and macaque covered 62.9% macaque RNA-seq
reads, greater than 61.6% in POED (Additional file 2:
Figure S5). 90.0% of the human-expressed XSAnno ortho-
logs were also expressed in rhesus macaque. Besides,
WGA annotation annotates 95.3% and 96.7% junctions
identified by TopHat [19] in chimpanzee and macaque,

Figure 3 Assessment of filtering steps in XSAnno using published data. Comparison of inter-species difference estimated by RNA-seq and
inter-species difference estimated by microarray, using WGA annotation (a, b) and using WGA+LA annotation (c, d). Genes filtered out in step 2
(a, b) and step 3 (c, d) are labelled red. These genes display larger inter-species difference using RNA-seq data than using microarray data.
(a, c) Comparison between human and chimpanzee (HC). (b, d) Comparison between human and rhesus macaque (HM).
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respectively, indicating that the gene structures were pre-
served in the first step of ortholog identification in our
pipeline. The filters applied later reduced the coverage
of junctions, but still maintained majority of the junc-
tions, suggesting that our annotation can also be imple-
mented in analyzing alternative splicing (Additional file 2:
Figure S6).
To assess the filtering steps in XSAnno pipeline, we first

compared the inter-species difference of included genes
with that of excluded genes. The genes filtered out in each
step showed larger estimated inter-species variation than
that of genes remained (p < 2.2 × 10−16 in each filtering step
in both human-chimpanzee and human-macaque compar-
isons; see Methods; Additional file 2: Figure S7). To rule
out the possibility that our filters selectively removed dif-
ferentially expressed genes, we compared the inter-species
variation of exons from the same gene. Similar to the ex-
pression of genes, the expression of retained exons was less
variable between species than that of excluded exons from
the same gene (p < 2.2 × 10−16 in each filtering step in both
human-chimpanzee and human-macaque comparisons;
see Methods; Additional file 2: Figure S8).
Since our annotation was designed for cross-species ex-

pression comparison, we first assessed the performance of
each filtering step in our pipeline. The number of DEX
genes was dramatically reduced after filtering (Additional
file 2: Figure S9). For validation, we intersected the human-
chimpanzee DEX gene list and the human-macaque DEX
gene list to differentially expressed in human compared
with both chimpanzee and macaque (human DEX genes).
The top 10 human DEX genes found only in the WGA an-
notation, the top 10 human DEX genes in the WGA+LA
annotation but not in the XSAnno annotation, and the top
10 human DEX genes in the XSAnno annotation were
selected for validation by droplet digital PCR (ddPCR)
(Additional file 1: Table S4). As expected, our approach
performed better between species with closer evolution-
ary distance. In the comparison between human and
chimpanzee, the number of false positives reduced from
20 using WGA annotation to 2 using XSAnno annota-
tion, while the number of false negatives remained at 0
(Figure 4 & Additional file 1: Table S5). In the compari-
son between human and macaque, the number of false
positives reduced from 14 using WGA annotation to 2
using XSAnno annotation, while the number of false
negatives rose to 5 (Figure 4 & Additional file 1: Table S5).
Sequence analysis of the genes identified as human DEX
only in WGA or WGA+ LA annotation revealed the exist-
ence of highly conserved paralogs in one species but not
in the other, which explained the difference in mappability
between species (Additional file 1: Table S6). Among the
genes we validated, our pipeline reduced the false positives
and kept the false negative rate low, compared with WGA
and POED annotations (Figure 4).

Conclusions
We described a pipeline to build ortholog annotations
for comparative transcriptome analysis between closely-
related species. The XSAnno pipeline incorporates previ-
ous whole genome alignment and local alignment methods
with multiple filters to eliminate false positives caused by
differences in mappability. Even though our pipeline was
tested on human and non-human primate brain transcrip-
tome data, it is not limited to these species.
Our pipeline aims to generate annotation of a conser-

vative set of orthologs to avoid false positives in cross-
species analysis. Therefore, it excludes genes with high
rate of DNA changes and genes with highly conserved
paralogs. Although the level of conservation can be ad-
justed by tuning parameters in the pipeline to meet spe-
cific requirements of each study, separate approaches
would be necessary to study genes with large structure
changes and duplicated genes.
Compared to existing ortholog databases, the XSAnno

pipeline provides a more flexible way to identify or-
thologs between any pair of closely-related species. It
generates gene models that are specifically designed
for comparative transcriptome analysis. RNA-seq and
ddPCR validation suggest that our approach reduced
false positives in cross-species expression analysis,
while keeping the false negative rate low. The XSAnno
package and pre-processed ortholog annotations of se-
lected species are available in Additional file 3 and can
be downloaded at http://medicine.yale.edu/lab/sestan/
resources/index.aspx.

Figure 4 The performance of XSAnno in inter-species differential
gene expression analysis. Validation by ddPCR. The number of false
positives reduced, while the number of false negatives kept low
throughout XSAnno filtering steps. HP: comparison between human
and chimpanzee; HM: comparison between human and macaque.
FP: false positive; FN: false negative.
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Methods
Building ortholog annotations
Human-chimpanzee orthologs and human-macaque ortho-
logs were generated separately, based on human Ensembl
annotation (v64) [4], human genome (hg19) [17], chim-
panzee genome (panTro2) [18] and macaque genome
(rheMac2) [20]. The pair-wise alignment files were down-
loaded from UCSC genome browser (http://genome.ucsc.
edu/). Gene annotation of chimpanzee and macaque used
for comparison were also obtained from Ensembl (v64)
database (http://www.ensembl.org).

WGA annotation
To keep syntenic information, human exons from all
transcripts were lifted to genomic locations on refer-
ence genome of chimpanzee and macaque by liftOver
tool [14], using pair-wise alignment files downloaded
from UCSC genome browser. The liftOver parameter
“-minMatch” was set to 0.98 for chimpanzee and 0.913
for macaque, based on bootstrapping (Supplementary
Methods & Additional file 2: Figure S2). The lifted exons
on reference genome of chimpanzee and macaque were
then mapped back to human reference genome, using lift-
Over tool. During the reciprocal mapping, the following
exons/transcripts were excluded: (i) exons cannot be lifted
from human to the other species were filtered out;
(ii) exons cannot be lifted back to the original genomic lo-
cation of human genome were filtered out; (iii) transcripts
with exons mapped to different chromosomes or strands
were filtered out. The process can be completed in one
step by running AnnoConvert in our pipeline.

POED annotation
The orthologous exons of human, chimpanzee and ma-
caque were downloaded from Primate Orthologous Exon
Database (POED, Version 2; http://giladlab.uchicago.edu/
orthoExon/). To be consistent with other databases, we
converted genomic coordinates on chimpanzee genome
panTro3 to panTro2 by liftOver.

XSAnno annotation
Step1: The first step is the same as how we build WGA
annotation.
Step2: Exons from WGA annotation were aligned to

the reference genomes of both the same and the other
species by BLAT [15]. Percent identity (PID) and per-
centage of aligned length (PL) were calculated as mea-
sures of local alignment. The thresholds of inter-species
and intra-species PID and PL were chosen separately to
maximize the number of exons retained (Supplementary
Methods and Additional file 2: Figure S3). The inter-
species PID and PL were selected to filter out exons
without unique, highly conserved orthologs. For human
and chimpanzee, the inter-species PID and PL were both

set to 0.95. For human and macaque, the inter-species
PID and PL were both set to 0.9. Exons that were not
aligned to the same genomic location as WGA annota-
tion or were aligned to multiple genomic locations using
current cutoff were removed. The intra-species PID and
PL were selected to filter out exons with highly con-
served regions, which may cause ambiguity in mapping.
For both chimpanzee and macaque, the intra-species
PID was set to 0.97 and the intra-species PL was set to
0.95. Exons that were aligned to multiple genomic loca-
tions of their own reference genome at current cutoff were
filtered out. The process can be finished by running
BlatFilter combined with R [21] functions of threshold de-
termination and filtering.
Step3: To eliminate exons and genes with large inter-

species difference in mappability, we generated simu-
lated RNA-seq data with the setting that all transcripts
are equally expressed, using simNGS. To run simNGS in
parallel with Step Two, we generated simulated HiSeq
100 bp single-end reads based on WGA annotation and
then calculated expression only for exons in WGA + LA
annotation. Coverage of all transcripts was set to 10X.
Ten simulated RNA-seq fastq files were generated for
each species. The simulated reads were then mapped to
their own genome, using TopHat [19] without providing
junction annotation. The number of reads mapped to
each exon was counted and used for differential expres-
sion analysis with DESeq package [13] for R. Exons and
genes that are significantly different between species
(FDR < 0.01) were filtered out. Besides, we filtered out
genes with length smaller than one third of original
length and shorter than 1 kb.
The example scripts to generate simulated reads and

to filter exons and genes are available in our pipeline.

Analysis of published data
Affymetrix Human Exon Junction array data were down-
loaded from GSE15665. Gene expression was estimated
using probes perfectly conserved in nonhuman primates
and normalized by quantile normalization as described
in the original study.
RNA-seq data were downloaded from SRA023554.1.

RNAs were sequenced as 36 bp (human) and 35 bp (chim-
panzee and macaque) single-end reads by Illumina GAII.
Reads were aligned by TopHat, allowing 2 mismathes,
without providing transcriptome annotation. Read count
and RPKM of genes were calculated by RSEQTools [22].
Ten lanes of simulated RNA-seq data per species were

generated by simNGS, using different sets of annotations.
DIM genes were identified by DESeq with FDR < 0.01.
To compare inter-species differences of DIM genes with

that of genes with consistent cross-species mappability, we
performed the F test for equality of variances. In detail, if
mappability affects estimation of inter-species differences,
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we expect larger variance in inter-species differences of
DIM genes than in inter-species differences of consistent

genes. F ¼ S2D
S2D

(S2D and S2C represent the sample variances

of inter-species differences of DIM genes and consistent
genes, respectively). The F test was conducted using R
function var.test, with alternative hypothesis S2D > S2C .

RNA sequencing and data analysis
RNA extraction
Postmortem human brain specimens were obtained from
tissue collections at the Department of Neurobiology at
Yale University School of Medicine and the Clinical Brain
Disorders Branch of the National Institute of Mental
Health. Tissue was collected after obtaining parental or
next of kin consent and with approval by the institutional
review boards at the Yale University School of Medicine,
the National Institutes of Health, and at each institution
from which tissue specimens were obtained. Tissue was
handled in accordance with ethical guidelines and regula-
tions for the research use of human brain tissue set forth
by the NIH (http://bioethics.od.nih.gov/humantissue.html)
and the WMA Declaration of Helsinki (http://www.wma.
net/en/30publications/10policies/b3/index.html). Appropri-
ate informed consent was obtained and all available non-
identifying information was recorded for each specimen.
Specimens range in age from 21 to 40 years. The postmor-
tem interval (PMI) was defined as hours between time of
death and time when tissue samples were frozen.
All experiments using nonhuman primates were car-

ried out in accordance with a protocol approved by Yale
University’s Committee on Animal Research and NIH
guidelines.
DFC tissue samples were dissected from postmortem

adult chimpanzee and macaque brains using the criteria
previously described [23,24]. Human DFC RNA-seq data
were generated as a part of the BrainSpan project (www.
brainspan.org). Together, the RNA-seq dataset includes
DFC samples from 5 humans, 5 chimpanzees, and 3 ma-
caques. A bead mill homogenizer (Bullet Blender, Next
Advance) was used to lyse the pulverized DFC tissue
samples. Each pulverized tissue sample was transferred
to a chilled safe-lock microcentrifuge tube (Eppendorf ).
A mass of chilled stainless steel beads (Next Advance,
cat# SSB14B) equal to the mass of the tissue was added
to the tube. Two volumes of lysis buffer were added to
the tissue and beads. Samples were mixed in the Bullet
Blender for 1 min at a speed of six. Samples were visu-
ally inspected to confirm desired homogenization and
then incubated at 37°C for 5 min. The lysis buffer
was added up to 0.6 ml, and samples were mixed in
the Bullet Blender for 1 min. Total RNA was extracted
using RNeasy Plus Mini Kit (Qiagen) for mRNA-
sequencing. Each sample was subjected to a DNase

treatment (TURBO DNase, Ambion) as per manufac-
turers’ instructions.
Optical density values of extracted RNA were measured

using NanoDrop (Thermo Scientific) to confirm an A260:
A280 ratio above 1.9. RIN was determined for each sample
using Bioanalyzer RNA 6000 Nano Kit (Agilent), depend-
ing upon the total amount of RNA.

Library preparation for mRNA-sequencing
cDNA libraries were prepared using the mRNA-Seq
Sample Kit (Illumina) as per the manufacturer’s instruc-
tions with some modifications. Briefly, polyA RNA was
purified from 1 to 5 μg of total RNA using (dT) beads.
Quaint-IT RiboGreen RNA Assay Kit (Invitrogen) was
used to quantitate purified mRNA with the NanoDrop
3300. Following mRNA quantitation, 2.5 μl spike-in mas-
ter mixes, containing five different types of RNA mole-
cules at varying amount (2.5 × 10−7 to 2.5 × 10−14 mol),
were added per 100 ng of mRNA [25]. The spike-in RNAs
were synthesized by External RNA Control Consortium
(ERCC) consortium by in vitro transcription of de novo
DNA sequences or of DNA derived from the B. subtilis or
the deep-sea vent microbe M. jannaschii genomes and
were a generous gift of Mark Salit at the National Institute
of Standards and Technology (NIST). These were used
both to track the brain regions, species and to normalize
expression levels across experiments. Each sample was
tagged by adding a pair of spike-in RNAs unique to the re-
gion from which the sample was taken. Also, an additional
three common spike-ins were added for controlling se-
quencing error rates, which is not influenced by SNP
existence (Additional file 1: Table S7). Spike-in sequences
are available at http://archive.gersteinlab.org/proj/brainseq/
spike_in/spike_in.fa. The mixture of mRNA and spike-in
RNAs were subjected to fragmentation, reverse transcrip-
tion, end repair, 3′– end adenylation, and adapter ligation
to generate libraries of short cDNA molecules. The librar-
ies were size selected at 200 – 250 bp by gel excision,
followed by PCR amplification and column purification.
The final product was assessed for its size distribution and
concentration using Bioanalyzer DNA 1000 Kit.

Sequencing
We used Illumina’s Genome Analyzer IIx (GAIIx) for
mRNA-sequencing by loading one sample per lane. For
mRNA-sequencing, the library was diluted to 10 nM in
EB buffer and then denatured using the Illumina protocol.
The denatured libraries were diluted to 12 pM, followed
by cluster generation on a single-end Genome Analyzer
IIx (GAIIx) flow cell (v4) using an Illumina cBOT, accord-
ing to the manufacturer's instructions. The Illumina GAIIx
flow cell was run for 75 cycles using a single-read recipe
(v4 sequencing kits) according to the manufacturer’s
instructions.
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Mapping of mRNA-seq reads
We chose TopHat to map RNA-seq reads due to its abil-
ity to map junction reads without depending on annota-
tion. The reference genomes used were the same as
those for ortholog identification. Only uniquely mapped
reads with at most 2 mismatches were included to calcu-
late exon/gene read number and reads per kilobase per
million (RPKM) [26].

Testing the effects of filters
To test the effects of each filtering step, we first com-
pared the inter-species variation of genes remained with
the ones filtered out in each filtering step. The inter-
species log2-fold-change (log 2FC = log 2(RPKMsp1 + 1) −
log 2(RPKMsp2 + 1)); sp1 and sp2 stand for Species 1 and
Species 2, respectively) were calculated for each gene,
using WGA annotation, WGA+LA annotation, and
XSAnno annotation, respectively. To test the effects of
local alignment, we compared the distribution of inter-
species log2FC of genes remained in WGA+LA annota-
tion from WGA annotation with that of genes excluded in
WGA+LA annotation. Similarly, the distribution of inter-
species log2FC of genes remained in XSAnno annotation
was compared with the distribution of genes filtered out
in XSAnno annotation from WGA+LA annotation. We
conducted the F test for equality of variances as used in
analyzing the published dataset.
To compare the inter-species variation of included

exons with excluded exons from the same transcripts,
we summarized the inter-species variation of in and out
exons by calculating the mean inter-species log2FC. In
other words, for a specific gene, exonFCin = mean
(log2FCin); exonFCout = mean (log2FCout). For each
gene, the difference between exons included and ex-
cluded was then calculated as In-Out = |exonFCin| - |
exonFCout|. We then performed the paired Wilcoxon
signed-rank test with alternative hypothesis |exonFCin| <
|exonFCout| to test whether inter-species difference of
in-exons are smaller than that of out-exons.

Differential expression analysis
Differential expression analysis were performed between
human and chimpanzee and between human and ma-
caque, respectively, with DESeq [13] package for R.
Genes were identified as DEX, if FDR < 0.01.
The list of human-chimpanzee DEX genes were then

intersected with the list of human-macaque DEX genes.
Genes with the same direction of change (up or down)
in human comparing with other two species were se-
lected as human DEX genes.

Validation by droplet digital PCR
Thirty genes in the human DEX gene list were selected
for validation, including 10 most significant human DEX

genes only in WGA annotation, 10 most significant hu-
man DEX genes in WGA+LA annotation but not in
XSAnno annotation, and 10 most significant human DEX
genes in XSAnno annotation (Table S4).
We employed droplet digital PCR (ddPCR) to reliably

quantify gene expression. An aliquot of the total RNA that
was previously extracted from 3 randomly selected brains
per species was used for secondary validation through
ddPCR analysis. One μg of total RNA was used for cDNA
synthesis using SuperScript III First-strand synthesis Super-
mix (Invitrogen) and subsequently diluted with nuclease-
free water. Custom gene-specific primers and probe for
each gene of interest were designed using NCBI/Primer-
BLAST (http://www.ncbi.nlm.nih.gov/tools/primer-blast/)
and PrimerQuest tool (IDT). In detail, primer pairs were
designed in genomic regions that are orthologous (or
identical, if the gene is conserved highly across three spe-
cies), as well as to be separated by at least one intron on
the corresponding genomics DNA with a targeted ampli-
con size at 70 bp to 200 bp. We also allowed primers to
amplify mRNA splice variants that are annotated in
RefSeq, while did not allow them to contain known SNPs.
The probe was designed by PrimerQuest tool (IDT) by ap-
plying the above pre-designed PCR primers. We opted to
design identical probe sequence for each species, but if the
target region is less conserved across three species, we had
to design slightly different probes for each species. IDT’s
proprietary ZEN internal quencher was applied on top
of a 3′ quencher (IBFQ) and a 5′ fluorophore (FAM or
HEX) probe labeling. ddPCR was carried out using the
Bio-Rad QX100 system. After each PCR reaction mixture,
consisting of ddPCR master mix and custom primers/
probe set, was partitioned into 15,000–20,000 droplets,
parallel PCR amplification was carried out. Endpoint PCR
signals were quantified and Poisson statistics was applied
to yield target copy number quantification of the sample.
Two color PCR reaction was utilized for the normalization
of gene expression by the housekeeping gene TBP. Table
S8 in Additional file 1 provides sequences of primers and
probes used for the validation.
Gene expression was calculated as the ratio of target

genes to the housekeeping gene TBP. Wilcoxon signed-
rank tests were performed to identify differentially
expressed genes between human and chimpanzee and
between human and macaque, separately. Genes were
considered as DEX if p ≤ 0.1.

Additional files

Additional file 1: Table S1. Sample information of published data.
Table S2. Gene number in different annotations. Table S3. Sample
Information of our RNA-seq data. Table S4. List of genes for validation.
Table S5. RNA-seq and ddPCR results of genes for validation.
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Table S6. Paralogs of genes selected for validation. Table S7. Spike-in
RNAs. Table S8 List of PCR primers and probes used for ddPCR validation.

Additional file 2: Methods: Determination of liftOver parameters
and Determination of BLAT parameters. Figure S1. Distribution of
gene length. Figure S2. Determination of liftOver parameters.
Figure S3. Determination of BLAT parameters. Figure S4. Distribution of
inter-species difference in mappability. Figure S5 Percentage of reads
covered by different annotations. Figure S6. Percentage of junction reads
covered by different annotations. Figure S7. The performance of filters
on estimating inter-species differences of genes. Figure S8. The performance
of filters on estimating inter-species differences of exons. Figure S9. The
number of differentially expressed genes.
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