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A chronic pro-inflammatory environment is a hallmark of retinal degenerative diseases
and neurological disorders that affect vision. Inflammatory responses during retinal
pathophysiology are orchestrated by microglial cells which constitute the resident
immune cell population. Following activation, microglia cells lose their ramified
protrusions, proliferate and rapidly migrate to the damaged areas and resolve tissue
damage. However, sustained presence of tissue stress primes microglia to become
overreactive and results in the excessive production of pro-inflammatory mediators
that favor retinal degenerative changes. Consequently, interventions aimed at overriding
microglial pro-inflammatory and pro-oxidative properties may attenuate photoreceptor
demise and preserve retinal integrity. We highlight the positive effects of ligands
for the translocator protein 18 kDa (TSPO) and the cytokine interferon beta (IFN-β)
in modulating microgliosis during retinal pathologies and discuss their plausible
mechanisms of action.
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INTRODUCTION

With approximately 55 distinct cell types, the retina is an extremely sophisticated and subtle
structure (Masland, 2001). It is highly susceptible to a variety of noxious insults including high
intensity light, hypoxia, oxidative stress and inherited mutations in retinal genes (Masuda et al.,
2017). This necessitates constant surveillance of the retina for the detection of neuropathological
signals. Microglia, the immunocompetent resident macrophages, are initially capable to fulfil this
function (Langmann, 2007). They are evenly distributed in the plexiform layers and are extensively
ramified during homeostatic conditions to enhance surveillance of their microenvironment
(Karlstetter et al., 2015). They possess a full assortment of immune surface proteins to sense
their environment for ‘‘on’’ and ‘‘off’’ signals (Karlstetter et al., 2015). Such surface proteins
include receptors for complement components, cytokines, chemokines and damage-associated
molecular patterns (DAMPs). Importantly, neuron–microglia interactions via such surface
receptors contribute to the maintenance of retinal homeostasis (Vecino et al., 2016). Examples
of reciprocal signals between neurons and microglia that mediate retinal homeostasis include
interactions between fractalkine CX3CL1—CX3CR1, CD200—CD200R and Sialic acids (on
neuronal glycocalyx)—Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11; Vecino
et al., 2016; Karlstetter et al., 2017). Moreover, microglial cells are continuously required for the
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maintenance of neuronal synaptic structure and
neurotransmission in the adult retina (Wang et al., 2016).

In the event of an insult, such as degeneration due to
genetic mutations in the retina, a local immune response
involving microglia and the complement system is mounted
(Karlstetter et al., 2014b). Microglia cells respond by retracting
their filopodia and upregulating cell surface molecules including
cytokine and chemokine receptors and major histocompatibility
markers (MHC class I and II; Jurgens and Johnson, 2012). In
addition, they shift their metabolism towards a Warburg-like
effect characterized by increased anaerobic glycolysis with
concomitant increase in lactate production (Tannahill et al.,
2015). This metabolic event is crucial for the local proliferation
that follows shortly. Biosynthetic pathways for nucleotide
synthesis, generation of amino acids for protein synthesis and
production of lipids for membrane formation, branch out
from glycolysis (Orihuela et al., 2016). Subsequently, microglia
proliferate and migrate to the damaged layers, releasing a host of
pro-inflammatory cytokines, chemokines, reactive oxygen (ROS)
and nitrogen species (RNS) as well as neuromodulatory factors to
promote the repair of stressed cells (Ferrer-Martín et al., 2015).
Moreover, their phagocytic capacity is significantly enhanced to
clear debris and cellular corpses at the local surroundings (Kohno
et al., 2013).

If the insult is minimal and the stress cue only transient,
tissue repair and return to homeostasis is rapidly achieved with
minimal alterations in retinal integrity (Chen and Xu, 2015).
However, if the insult persists, the initial ‘‘constructive’’
inflammatory response quickly turns destructive and is
characterized by overreactive neurotoxic microglia (Karlstetter
et al., 2014b). These overreactive resident macrophages
release large amounts of pro-inflammatory and cytotoxic
factors such as ROS, RNS, TNF-α and IL-1β (Scholz et al.,
2015a). Furthermore, overreactive amoeboid microglia cause
dysregulation of the complement system by up-regulating
the expression of complement activators C3, CFB, C1q and
C5AR1 and down-regulating complement inhibitors CFH, CFI,
CD46 and CD93 (Madeira et al., 2018). Subsequently, microglial
overactivation creates a proinflammatory environment
conducive for further recruitment of retinal microglia and
exogenous infiltrating monocytes (Zhao et al., 2015). This is
clearly demonstrated in studies using bright light to induce
retinal degeneration in mice, where microglia recruitment to the
outer retina is significantly inhibited in C5aR knockout mice
or in mice treated with immunoregulatory agents (Scholz et al.,
2015b; Song et al., 2017).

Paracrine factors from reactive accumulating subretinal
microglia can then trigger NLRP3 inflammasome activation
in the retinal pigment epithelium (RPE; Ambati et al., 2013;
Nebel et al., 2017). This is achieved in two stages; first,
pro-inflammatory factors such as TNF-α, IL-1α and nitric
oxide secreted by reactive microglia would prime RPE cells by
activating the NFkB pathway and inducing gene transcription
of NLRP3, pro-IL-1β and pro-IL-18; Second, increase in
extracellular ATPmediated by the reactivemicroglia and stressed
photoreceptors provides a second hit that causes potassium ions
(K+) efflux via purogenic P2X7ATP-gated ion channels resulting

in the assembly of NLRP3 inflammasome (Gao et al., 2015).
Successful assembly of the inflammasome triggers autocatalytic
activation of procaspase-1 into active caspase-1, culminating
in the conversion of pro-IL-1β and pro-IL-18 into bioactive
peptides (Gao et al., 2015). Inflammasome activation, together
with the activation of the complement cascade also shown to be
triggered by factors from reactive microglia, induces a chronic
inflammatory response and prominent structural alterations
in RPE (Madeira et al., 2018). This results in a decline in
RPE function as is observed in geographic atrophy (GA), a
late stage form of age related macular degeneration (AMD)
with concomitant drusen formation (Ambati and Fowler, 2012).
Notably, drusen components suppress microglia chemotaxis and
promote their retention in the subretinal space, resulting in a
vicious cycle of sustained inflammation (Ma et al., 2013). The
result is an accumulation of overly reactive microglia in the
subretinal space which execute neuronal cell death not only
via secretion of neurotoxic factors, but also via indiscriminate
phagocytosis of non-apoptotic photoreceptors (Zhao et al., 2015).
Furthermore, reactivemicroglia can induce loss of tight junctions
in RPE and enhance their secretion of pro-angiogenic factors,
possibly leading to the invasion of abnormal choroidal blood
vessels into the retina as seen in wet AMD patients (Ma et al.,
2009; Ambati et al., 2013).

There is also accumulating evidence that microglia mediated
inflammatory responses are linked to the deleterious effects
associated with diabetic retinopathy (DR; Xu and Chen, 2017;
Altmann and Schmidt, 2018). Indeed, increased numbers of
hypertrophic, amoeboid microglia cells were observed in the
outer retina and subretinal space in human DR patients
(Zeng et al., 2008). Similarly, hypertrophic, amoeboid microglia
localized to the photoreceptor layers of diabetic rats at
around 14–16 months where they were probably associated
with neuronal loss (Zeng et al., 2000). Hyperglycaemia can
induce retinal microglia activity either directly via oxidative
stress (Du et al., 2002) or indirectly via effects mediated by
stressed retinal cells (Portillo et al., 2017). Oxidative stress
in hyperglycemia is driven by a combination of accelerated
free radical production by mitochondria and the impairment
of antioxidant enzymes regeneration (Nishikawa et al., 2000;
Tomlinson and Gardiner, 2008). Hyperglycaemia induced
oxidative stress can then cause NF-κB translocation to the
nucleus and activate pro-inflammatory pathways in retinal
microglia (Du et al., 2002). In addition, CD40 activated
Müller cells in high glucose conditions can trigger secretion
of TNF-α and IL-1β in microglia and macrophages in a
P2X7 receptor dependent manner via release of extracellular
ATP (Portillo et al., 2017). Notably, pharmacological blockade
or global P2X7 receptor expression diminished the observed
upregulation of TNF-α and IL-1β in diabetic mice (Portillo
et al., 2017). Moreover, selective P2X7 antagonists prevent high
glucose mediated toxicity of cultured human retinal pericytes,
indicating that the P2X7 receptor pathway could be an attractive
pharmacological target for themanagement of DR (Platania et al.,
2017).

Therefore, inhibiting sustained-microglia mediated
inflammatory responses offers a promising therapeutic strategy
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FIGURE 1 | Endogenous and exogenous translocator protein 18 kDa (TSPO) ligands alleviate chronic microglia activation. In response to pathological signals from
dying photoreceptors, Müller cells upregulate the expression and secretion of the endogenous TSPO ligand Diazepine binding inhibitor (DBI) protein. Simultaneously,
microglia cells upregulate mitochondrial TSPO expression and take up the secreted DBI. Binding of DBI, its cleavage product triakontatetraneuropeptide (TTN) or the
synthetic ligand XBD173 limits the magnitude of inflammatory responses and influences transition of microglia towards a ramified neuroprotective phenotype.

to attenuate photoreceptor loss and potentially prevent or
delay vision deficits. This review article therefore focusses on
translocator protein 18 kDa (TSPO) ligands and IFN-β as
recent examples that have shown potent immunomodulatory
effects in mouse models of light-induced retinal degeneration
and laser-induced choroidal neovascularization (CNV). These
models recapitulate key biological processes involved in human
retinal pathologies such as retinitis pigmentosa (RP) and the
exudative form of AMD, respectively.

TRANSLOCATOR PROTEIN 18 kDa (TSPO)
LIGANDS AND NEUROSTEROIDS

Translocator protein 18 kDa (TSPO), previously referred to
as the peripheral benzodiazepine receptor (PBR), is a highly
conserved 5α-helical transmembrane protein located on the
outer mitochondrial membrane (OMM; Rupprecht et al., 2010).
TSPO has a high constitutive expression in steroidogenic tissues
such as adrenal glands, gonads and placenta, and very low

levels in the healthy brain (Batoko et al., 2015). However,
during an active neuropathological process, a strong increase
in TSPO protein that colocalizes predominantly with activated
microglia is observed in the brain and retina (Daugherty et al.,
2013). Simultaneously, Müller cells in the retina upregulate
the expression and secretion of the endogenous TSPO ligand,
Diazepam binding inhibitor (DBI) protein which is in-turn taken
up by microglia (Wang et al., 2014). Binding of DBI or its
cleavage product triakontatetraneuropeptide (TTN) to TSPO
effectively limits the magnitude of microglial inflammatory
responses and promotes their return to quiescence (Wang et al.,
2014; Figure 1).

Inspired by this endogenous immunomodulatory
mechanism, our laboratory tested the ability of a synthetic
and highly specific TSPO ligand, XBD173 (AC-5216, emapunil),
to influence microglial reactivity in the acute white light-
induced retinal degeneration mouse model (Scholz et al., 2015a).
Light has been suggested to contribute to the faster onset and
progression of human retinal degeneration such as AMD and
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RP (Heckenlively et al., 1991; Cruickshanks et al., 1993, 2001;
Hao et al., 2002; Fletcher et al., 2008). In rodents, exposure to
intense visible light results in a significant loss of photoreceptor
cells and thinning of the outer nuclear layer (Wenzel et al., 2000;
Scholz et al., 2015b). Visible light bleaches the visual pigment
rhodopsin, resulting in excessive phototransduction signaling
and nuclear translocation of the transcription factor AP-1
(Wenzel et al., 2000; Grimm and Remé, 2013). Induction of the
DNA binding activity of AP-1 after light insult ultimately results
in photoreceptor apoptosis (Wenzel et al., 2000, 2005). In line
with the earlier findings, pharmacological binding of TSPO with
XBD173 significantly alleviates microglial pro-inflammatory
responses with concomitant inhibition of photoreceptor
apoptosis and preservation of retinal structure (Scholz et al.,
2015a). However, the central mechanism by which TSPO
binding chemicals negatively regulate microglial inflammatory
responses remains largely unknown, but likely involves, at
least in part, enhanced steroidogenesis (Rupprecht et al., 2010;
Midzak et al., 2015).

Indeed, the most studied and well characterized physiological
role of TSPO relate to its modulation of steroidogenesis
(Midzak et al., 2015). A wealth of evidence implicates
TSPO as a translocator of cholesterol from the outer to
the inner mitochondrial membrane as a rate limiting step
for steroidogenesis (Papadopoulos et al., 2015). Using
aminoglutethimide to inhibit the enzymatic conversion of
cholesterol to pregnenolone, we have observed that therapeutic
effects of the TSPO ligand XBD173 were in-part dependent upon
pregnenolone synthesis (Karlstetter et al., 2014a). Similarly,
TTN was shown to significantly enhance pregnenolone derived
Dehydroepiandrosterone (DHEA) levels with a concomitant
attenuation of microglial inflammatory responses (Wang et al.,
2014). Outside the retina, pharmacological activation of TSPO
with DBI and other synthetic TSPO ligands has also been shown
to stimulate steroidogenesis in cell systems and animals (Boujrad
et al., 1993; Papadopoulos et al., 2015). Notably, DBI knockdown
in Leydig cells significantly suppressed hormone-induced
steroidogenesis but not adenylate cyclase nor cholesterol side
chain cleavage (P450SCC) enzyme activities (Boujrad et al.,
1993). Taken together, these findings strongly support the
concept that endogenous and exogenous TSPO ligands serve as
a pharmacological means to regulate steroidogenesis.

Once produced, steroid hormones rapidly resolve
neuroinflammatory process in an autocrine and paracrine
fashion (Vasconcelos et al., 2016). They bind and activate their
cytoplasmic and nuclear bound receptors, which in-turn blunt
the transcription of multiple inflammatory genes (Sever and
Glass, 2013). Indeed, the neuroprotective effects of steroid
hormones in the retina have been demonstrated in numerous
reports. Norgestrel, a synthetic progesterone, was shown to
exert powerful neuroprotection against retinal degeneration
in an acute light-induced retinal degeneration mouse model
and in the rd10 mouse model of RP (Doonan and Cotter,
2012). Norgestrel was shown to work, at least in part, via
increasing basic fibroblast growth factor (bFGF) levels and by
modulating photoreceptor-microglia crosstalk via upregulation
of fractalkine-CX3CR1 signaling (Doonan and Cotter, 2012;

Roche et al., 2017). Notably, norgestrel was shown in a
separate study to work directly on microglia, suppressing
expression of pro-inflammatory cytokines, chemokines and
nitric oxide and thereby abrogating the associated microglia-
driven photoreceptor demise (Roche et al., 2016). Moreover,
retinal damage in rats exposed to bright light was significantly
ameliorated by 17β-estradiol treatment via enhanced antioxidant
genes transcription and ROS inhibition (Zhu et al., 2015). In
summary, accumulating evidence highlights TSPO ligands
as promising pharmacological agents to modulate microglia
activation during retinal degenerative diseases.

INTERFERON-BETA SIGNALING

Interferon-beta (IFN-β) is a type I interferon that possesses
strong antiviral and immunomodulatory properties (Stetson and
Medzhitov, 2006). IFN-β is an established first-line drug for
the treatment of relapsing remitting Multiple Sclerosis (MS),
an autoimmune disease that causes demyelination and axon
degeneration in the CNS (Limmroth et al., 2011). IFN-β confers
neuroprotection in MS by potentiating microglia-mediated
phagocytosis of myelin debris with concomitant suppression
of neuroinflammatory responses and disease severity (Kocur
et al., 2015). Indeed, mice defective in myeloid IFN-β signaling
develop an exacerbated disease course and increased lethality
in experimental autoimmune encephalomyelitis (Prinz et al.,
2008). Based on this evidence, we postulated that IFN-β
may have beneficial immunomodulatory effects against chronic
inflammatory responses observed in neovascular AMD. To test
this hypothesis, we employed the laser-induced CNV mouse
model (Lambert et al., 2013). Briefly, laser photocoagulation
results in the rupture of Bruch’s membrane, leading to a rapid
recruitment of mononuclear phagocytes to the site of damage
(Ambati et al., 2013). Enhanced production of pro-inflammatory
and angiogenic factors induces the formation and growth of
new blood vessels from the choroid into the subretinal space,
mimicking features of exudative AMD (Lambert et al., 2013).
Using this mouse model, we demonstrated that IFN-β treatment
strongly inhibits microgliosis and enhances the morphological
transition of microglia towards a neuroprotective ramified
phenotype with less Iba-1 signal (Lückoff et al., 2016). IFN-β
treatment also resulted in a significant reduction in vascular
leakage and neoangiogenesis (Lückoff et al., 2016). In contrast,
global (Ifnar1–/–) as well as microglial specific conditional
depletion of IFN-β signaling (Cx3cr1CreER:Ifnar1fl/fl) in mice
resulted in exacerbated disease progression (Lückoff et al., 2016).
These findings implied that Ifnar1/IFN-β signaling, particularly
in retinal microglia, could be targeted to halt disease progression
in the laser-CNV model and potentially other degenerative
diseases of the retina. Similarly, IFN-β therapeutic effects in the
retina have been corroborated in a separate study using a rabbit
model, where local administration of IFN-β accelerated the repair
of retinal lesions produced by laser photocoagulation (Kimoto
et al., 2002).

However, despite enormous progress in our knowledge
of type-I IFNs signaling, the precise mechanism involved
in IFN-β immunomodulatory and anti-angiogenic effects
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FIGURE 2 | Regulation of microglia responses by IFN-β signaling. IFN-β initiates signaling via binding to the heterodimeric IFNα/β receptor (IFNAR). IFNAR ligation
triggers activation of the associated tyrosine kinases JAK1 and TYK2 which in-turn phosphorylate STAT1 and STAT2 transcription factors. STAT1 and STAT2 can
also recruit IRF-9 to form a trimolecular complex IFN-stimulated gene factor 3 (ISGF3). STAT homodimers or heterodimers activate the transcription of
interferon-stimulated genes (ISGs) including suppressor of cytokine signaling 1 (SOCS1) and SOCS3 as part of a negative feedback loop. SOCS1 and SOCS3 inhibit
JAK/STAT and IL-6 signaling thereby preventing excessive cytokine stimulation and dampening microglia activation.

remain poorly understood. This notwithstanding, we discuss
in the remainder of this section plausible mechanisms that
have been proposed to play a key role in IFN-β negative
regulation of neuroinflammatory responses and pathological
angiogenesis. It is well known that while IFN-β activates the
transcription of interferon responsive genes (ISGs) to establish
an antiviral cellular state, it also induces the expression of
negative regulators which restrain pro-inflammatory pathways
(Ivashkiv and Donlin, 2014). IFN-β induces the transcription
of suppressor of cytokine signaling 1 (SOCS1) and SOCS3 as
part of the negative feedback circuit aimed at preventing
excessive cytokine stimulation (Ivashkiv and Donlin, 2014).
SOCS1 and SOCS3 are then recruited to IFNAR receptors
where they inhibit JAK/STAT signaling (Yoshimura et al.,
2007). Consequently, several reports have highlighted the
ability of SOCS1 and SOCS3 to limit the magnitude of
inflammatory responses owing to their inhibition of STAT
activation (Nakagawa et al., 2002; Whitmarsh et al., 2011).
In contrast, SOCS3 deficiency in myeloid cells augments
retinal degeneration and accelerates inflammation induced
angiogenesis in an experimental autoimmune uveoretinitis
murine model (EAU; Chen et al., 2018). Of note, myeloid
cell-specific SOCS3-deficient retinas demonstrate higher levels
of pro-inflammatory cytokines IL-1β, TNF-α and IFN-γ
as well as angiogenic factors including VEGF-A (Chen
et al., 2018). Conversely, SOCS1 over-expression in transgenic
mice and rats ameliorates disease severity in the EAU
model by inhibiting chemokine expression and recruitment
of inflammatory cells into the retina (Yu et al., 2011).
Moreover, retinal cells overexpressing SOCS1 are protected
from staurosporine as well as H2O2-induced apoptosis (Yu

et al., 2011). Overall, compelling evidence implicates SOCS1 and
SOCS3 as irreplaceable regulators of type-I IFN signaling and
suggest, at least in-part, that IFN-β anti-inflammatory effects are
dependent upon these regulatory proteins (Duncan et al., 2017;
Figure 2).

IFN-β has also long been known to be a potent activator
of the PI3K–AKT–mTOR-signaling axis (Platanias, 2005; Burke
et al., 2014). Remarkably, findings from a recent study revealed
a striking reduction in Pi3K and Akt mRNA and protein levels
in neurons of Ifn–/– mice when compared to their wildtype
counterparts (Liu et al., 2017). The study further reported
suppression of active Pi3K/Akt signaling by demonstrating an
even more pronounced reduction in phosphorylated (p)Pi3K
and pAkt levels in Ifn–/– neurons compared with IFNβ-
competent neurons (Liu et al., 2017). Once activated, the
PI3/Akt/mTOR pathway has been shown in several studies to
inhibit microglia pro-inflammatory responses (Zhu et al., 2015;
Cianciulli et al., 2016). Conversely, pharmacological blockade
of PI3K/Akt/mTOR pathway significantly enhances levels of
the inflammatory cyclooxygenase-2 (COX-2) and its enzymatic
products prostaglandins PGE2 and PGD2 in primary microglial
cultures (de Oliveira et al., 2008, 2012). However, despite
mounting evidence, the contribution of this pathway to the
immunomodulatory effects of IFN-β on microglia during retinal
inflammation and disease warrants further studies.

CONCLUSION

There is strong evidence from murine models of experimental
retinal pathologies that microglia play a critical role in the
development and advancement of retinal degenerative disorders
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and pathological neoangiogenesis. Therefore, immune based
therapies such as TSPO ligands and IFN-β that counter
excessive microglia-mediated neuroinflammatory responses
and pathological angiogenesis may have an important role
in the future clinical management of retinal disorders such
as RP and AMD. However, prior to the clinical evaluation
of immunomodulatory therapies in retinal diseases, critical
questions regarding the exact molecular mechanisms of
each individual immunoregulatory compound need to be
answered.
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