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Abstract

 

Plasma cells comprise a population of terminally differentiated B cells that are dependent on the
transcriptional regulator B lymphocyte–induced maturation protein 1 (Blimp-1) for their develop-
ment. We have introduced a 

 

gfp

 

 reporter into the 

 

Blimp-1

 

 locus and shown that heterozygous
mice express the green fluorescent protein in all antibody-secreting cells (ASCs) in vivo and in
vitro. In vitro, these cells display considerable heterogeneity in surface phenotype, immunoglob-
ulin secretion rate, and 

 

Blimp-1

 

 expression levels. Importantly, analysis of in vivo ASCs induced
by immunization reveals a developmental pathway in which increasing levels of 

 

Blimp-1

 

 ex-
pression define developmental stages of plasma cell differentiation that have many phenotypic
and molecular correlates. Thus, maturation from transient plasmablast to long-lived ASCs in
bone marrow is predicated on quantitative increases in 

 

Blimp-1

 

 expression.

Key words: Prdm1 • B-lymphopoiesis • plasma cell • antibody secretion •
terminal differentiation • syndecan-1

 

Introduction

 

Plasma cells are the end point of B cell lineage differentia-
tion and are essential for protective immunity. The short-
lived antibody-secreting cells (ASCs) arise in extrafollicular
sites in response to primary immunization, persist for only a
few days, and produce antibody of relatively low affinity.
In contrast, long-lived ASCs produced in the T-dependent
germinal center pathway undergo affinity maturation and
reside primarily in the BM (1). Long-lived ASCs are main-
tained independently of antigen by intrinsic longevity, as
well as being replenished by the differentiation of memory
B cells (2). Despite several decades of research, the regula-
tion of plasma cell development is poorly understood. Al-
though there is general agreement that three stages of
plasma cells can be identified (plasmablast, short-lived, and
long-lived plasma cells), the developmental relationship be-
tween them is unclear as are the factors that may mediate
such maturation.

The B lymphocyte–induced maturation protein 1 (Blimp-1/
Prdm1) has been proposed to have a preeminent role in
regulating B cell terminal differentiation for the following
reasons. 

 

Blimp-1

 

 is expressed in ASCs from human and
mouse, but not in memory cells (3). Notably, ectopic ex-

pression of 

 

Blimp-1

 

 is sufficient to drive differentiation to a
ASC phenotype (4–7). Antisense approaches (8) or a domi-
nant-interfering Blimp-1 (9) are able to suppress exit from
the cell cycle, a change essential for full ASC differentia-
tion. In line with these studies, it has been recently demon-
strated that mice lacking Blimp-1 in B cells produce greatly
decreased levels of Ig and have a markedly reduced ASC
compartment (10). Clearly, 

 

Blimp-1

 

 expression is a key de-
terminant in plasma cell development.

Blimp-1 is a transcriptional repressor that binds to DNA
via conserved zinc finger motifs (11) and can interact with
corepressors such as Groucho, histone deacetylases (12, 13),
and the histone H3 methyltransferase, G9a (14). Blimp-1
repression is postulated to be essential for the extinction of

 

c-myc

 

 expression and the exit from the cell cycle character-
istic of terminal differentiation (15, 16). Blimp-1 directly
represses the promoter of the 

 

Pax5

 

 gene (17). Pax5 is re-
quired for the maintenance of B cell identity and represses
the expression of 

 

XBP-1

 

, itself an essential player in plasma
cell development (18, 19). Many other putative Blimp-1
repressed genes have been identified using microarray tech-
nology; however, most have not been validated in the absence
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of 

 

Blimp-1

 

 expression (20, 21). Collectively, these data sup-
port the notion of Blimp-1 expression being a master regu-
lator of plasma cell differentiation.

The study of plasma cells is hampered by their heteroge-
neity in lifespan, surface phenotype, location, and the ab-
sence of virtually all B lineage–associated markers, making
identification and isolation of ASCs a limiting step in their
characterization (1, 22–25). To overcome this difficulty,
we have generated a mouse model where 

 

gfp

 

 has been in-
troduced into the 

 

Blimp-1

 

 locus. We show that 

 

Blimp

 

gfp

 

provides, for the first time, a definitive methodology to
identify all plasma cells and reveals significant phenotypic
heterogeneity in the ASC compartment. Moreover, the
regulated expression of 

 

Blimp

 

gfp

 

 defines the ontogeny of B
cells from plasmablasts to long-lived plasma cells.

 

Materials and Methods

 

Generation of the Blimp

 

gfp

 

 Mice.

 

The pKW11 vector (obtained
from M. Busslinger, IMP, Vienna, Austria) consisting of a splice
acceptor, stop codons in all reading frames, an internal ribosome
entry site (IRES), 

 

eGFP

 

 cDNA, and a SV40 polyadenylation sig-
nal. The 

 

PGK-Neo

 

r

 

 gene allowed for the selection of embryonic
stem (ES) cells with an integrated targeting vector. Genomic
DNA sequences adjacent to exon 6 (5

 

�

 

 4 kb and 3

 

�

 

 3 kb) were
amplified from a 

 

Blimp-1

 

–containing BAC and cloned as homol-
ogy arms into pKW11 to produce the targeting vector. C57BL/6
ES cells were electroporated with linearized targeting vector, and
resistant clones were selected and screened by Southern hybrid-
ization to 5

 

�

 

 and 3

 

�

 

 genomic DNA probes. Four targeted clones
were injected into BALB/c blastocysts to obtain chimeric found-
ers. Germline transmission has been achieved with two clones.
Mice were bred and maintained at the Walter and Eliza Hall In-
stitute under Animal Ethics committee guidelines.

 

Genotyping.

 

Genomic DNA was digested with SpeI (3

 

�

 

 arm)
and hybridized to a 500-bp fragment of PCR-amplified genomic
DNA 3

 

�

 

 to the homology arms (see Fig. 1 A). C57BL/6 DNA
gave a band of 5.8 kb, whereas correctly targeted clones gave an
additional 4.5-kb band. PCR genotyping was performed us-
ing the primer combination: bl-1 5

 

�

 

-GGCAAGATCAAGTAT-
GAGTGC-3

 

�

 

, bl-2 5

 

�

 

-TGAGTAGTCACAGAGTACCCA-3

 

�

 

,
and bl-3 5

 

�

 

-GCGGAATTCATTTAATCACCCA-3

 

�

 

. PCR frag-
ments of 611 and 531 bp were indicative of wild-type and tar-
geted alleles, respectively.

 

Transplantation of Fetal Liver Cells. Blimp

 

gfp/

 

�

 

 (C57BL/6
Ly5.2) mice were intercrossed; fetal liver cells were isolated from
E14.5 embryos and genotyped by PCR; and 1–3 

 

�

 

 10

 

6

 

 fetal liver
cells were injected into lethally irradiated C57BL/6 

 

Rag1

 

���

 

 Ly5.1
congenic recipients (2 

 

�

 

 550 rad). Mice were analyzed after 8 wk.
Successful reconstitution was analyzed using a Ly5.2-specific mAb.

 

Flow Cytometry.

 

The mAbs against CD19 (1D3), B220 (RA3-
6B2), and Ly5.2 (ALI-4A2) were purified from hybridoma super-
natants on protein G–Sepharose columns (Amersham Biosciences)
and conjugated to biotin (Pierce Chemical Co.), allophycocyanin,
phycoerythrin (ProZyme), and Alexa Fluor 633 (Molecular
Probes) as recommended by the suppliers. Anti–syndecan-1
(Synd-1; 281-2), MHCII (M5/114.15.2), CD43 (S7), CD62L
(MEL-14), CD38 (90), CXCR4 (2B11), and CXCR5 (2G8) were
obtained from BD Biosciences. Cells were analyzed on an LSR
cytometer (BD Biosciences), and cell sorting was performed on
high-speed flow cytometers (Moflo; DakoCytomation and BD

Biosciences). In vivo cell proliferation was determined by bro-
modeoxyuridine (BrdU) incorporation. Mice were given an i.p.
injection of 0.2 mg BrdU in PBS on day 1 and placed on BrdU
drinking water (0.5 mg/ml in 2% glucose) for 4 d. GFP

 

�

 

 cell pop-
ulations were sorted and fixed before being analyzed for BrdU up-
take using an allophycocyanin-conjugated anti-BrdU mAb (BD
Biosciences), following the protocol supplied by the manufacturer.

 

ELISA and ELISPOT Assay.

 

Ig levels were measured using
ELISA as described previously (29). Antibodies were purchased
from Southern Biotechnology Associates, Inc. and streptavidin–
horseradish peroxidase or streptavidin–AP conjugates were ob-
tained from Sigma-Aldrich. ELISPOT assays were performed on
MultiScreen-HA filter plates (Millipore). Cells were incubated for
4 h at 37

 

�

 

C on precoated 96-well filter plates and developed with
AP substrate. Experiments were performed three times in triplicate.

 

In Vivo Induction of ASCs.

 

2 

 

�

 

g 

 

Escherichia coli

 

 LPS (Sigma-
Aldrich) was injected intravenously into 

 

Blimp

 

gfp/

 

�

 

 mice, and ani-
mals were analyzed daily for up to 7 d. Immunization was with a
single i.p. injection of 100 

 

�

 

g 4(hydroxy-3)-nitrophenyl acetyl
(NP) coupled to keyhole limpet hemocyanin (KLH) in the ratio
of 13:1 (26). The antigen was precipitated onto alum and washed
extensively before injection. Single cell suspensions from spleen
and BM were analyzed as described previously (26). IgG1 ASC
activity in 500 sorted GFP

 

�

 

 populations was determined using
NP-specific ELISPOT (26).

 

In Vitro Cell Culture.

 

Naive B cells were purified from
spleens by T cell complement depletion, Percoll gradient cen-
trifugation, and B220 magnetic bead purification (Miltenyi
Biotec) as described previously (29). Purified cells (95%
IgM

 

�

 

IgD

 

�

 

B220

 

�

 

) were cultured at 10

 

5

 

/ml with optimal concen-
trations of CD40L, 500 U/ml IL-4, and 2 ng/ml IL-5. 4 

 

�

 

 10

 

5

 

cells/ml were used for 20 

 

�

 

g/ml LPS stimulation. Cell mem-
branes expressing mouse CD40L were prepared from Sf21 cells
(42). Recombinant mouse IL-4 was obtained from R. Kastelein
(DNAX Research Institute, Palo Alto, CA), and IL-5 was pur-
chased from R&D Systems. Cell proliferation was assessed by
pulsing cultures for 2 h with 1 

 

�

 

Ci [methyl-

 

3

 

[H]thymidine (Am-
ersham Biosciences). Cells were harvested onto glass-fiber mats,
and incorporation was determined by scintillation counting.

 

Western Blotting.

 

An anti–Blimp-1 mAb was generated in rats
by immunization with a purified GST–Blimp-1 fusion protein
consisting of the 141 amino acids lying between the PR and pro-
line-rich domains of mouse Blimp-1 fused to the COOH termi-
nus of glutathione-

 

S

 

-transferase in the vector pGEX-KT. mAbs
were screened by Western blotting using B cell lines representing
B cell and plasma cell stages. Reactivity with an endogenous pro-
tein of the appropriate size for Blimp-1 (

 

�

 

95 kD) protein was
specifically detected for clone 6D3. Total protein extracts were
produced from equivalent numbers of cells, and Western blotting
was performed as described previously (43). Equal protein load-
ing was confirmed using goat anti-ICSBP (C-19) and 

 

�

 

-actin
(I-19) obtained from Santa Cruz Biotechnology, Inc.

 

RT-PCR Analysis.

 

In vitro–cultured B cells were sorted and
subjected to RT-PCR as described previously (44). PCR prod-
ucts were separated on agarose gels and visualized by ethidium
bromide staining. Primer sequences are available upon request.

 

Results

 

Generation of a Blimp

 

gfp

 

 Reporter Allele.

 

Gene targeting
of the 

 

Blimp-1

 

 locus resulted in the insertion of an 

 

IRES-
GFP

 

 cassette 3

 

�

 

 to exon 6 to produce the 

 

Blimp

 

gfp

 

 allele
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(Fig. 1 A). Homologous recombination in a C57BL/6-
derived ES cell line was confirmed by Southern hybridization
using flanking sequences (Fig. 1 B). This strategy resulted
in a truncated Blimp-1 protein (Blimp

 

trunc

 

) that lacked the
zinc finger motif domains encoded by exons 7–8 (Fig. 1
C). Most importantly, the targeting strategy also produced
a 

 

Blimp-1

 

 reporter allele as the GFP was expressed from the
bicistronic 

 

Blimp-IRES-GFP

 

 mRNA under the control of
endogenous 

 

Blimp-1

 

 regulatory elements.

Heterozygous 

 

Blimp

 

gfp/

 

�

 

 mice developed normally and
were indistinguishable from C57BL/6 mice in terms of
lymphoid cellularity, B cell differentiation, and serum Ig ti-
ters (unpublished data). In contrast, 

 

Blimp

 

gfp/gfp

 

 embryos die
in late gestation. However, Blimp-1–deficient hematopoie-
sis could be examined by fetal liver reconstitution of le-
thally irradiated 

 

Rag1

 

���

 

 Ly5.1

 

 recipients. The grossly nor-
mal reconstitution of lymphoid and myeloid lineages in
these chimeras indicated that Blimp-1 was not essential for
stem cell self-renewal or hematopoiesis in general (unpub-
lished data).

Analysis of lymphoid organs revealed that the vast major-
ity of cells expressed no GFP, whereas a minority expressed
detectable but low levels (Fig. 1 D). In contrast, high level
Blimp

 

gfp

 

 expression was restricted to a rare fraction of cells
in lymphoid tissues (from 0.1 to 0.5%), many of which also
expressed Synd-1, a commonly used marker of ASCs. High
level GFP fluorescence was absent from wild-type or lym-
phoid-deficient 

 

Rag2

 

���

 

Blimp

 

gfp/

 

�

 

 cells (Fig. 1 D). 

 

Blimp

 

gfp/gfp

 

reconstituted animals lacked a distinct GFP

 

hi

 

 compartment
and Synd-1 expression (unpublished data). Consistent with
a previously published paper (10), 

 

Blimp

 

gfp/gfp

 

 reconstituted
mice had severely reduced numbers of BM and splenic
plasma cells as measured by ELISPOT (unpublished data).

 

All Blimp

 

gfp

 

 High Cells Are ASCs.

 

To determine the
concordance between high 

 

Blimp

 

gfp

 

 expression in the het-
erozygous reporter mice and ASC function, we performed
Ig ELISPOT assays on sorted cell populations from spleen
and BM using GFP as the only sorting parameter. These
experiments showed that 

 

Blimp

 

gfp

 

-expressing cells repre-
sented a pure population of ASCs, as the GFP

 

�

 

 fraction
contained a high proportion of Ig-secreting cells, whereas
10

 

5

 

 GFP

 

�

 

 cells lacked ASC activity (Fig. 2 A). The GFP

 

�

 

population contained all Ig isotypes at the expected ratios
and, furthermore, the proportion of ASCs was similarly
high in both the Synd-1

 

�

 

GFP

 

�

 

 and Synd-1

 

�

 

GFP

 

�

 

 fraction
(Fig. 2 A). Therefore, the 

 

Blimp

 

gfp

 

 reporter allele allows the
single parameter identification of all ASC, with an enrich-
ment of 

 

�

 

10

 

5

 

-fold over nonexpressing cells.

 

Plasma Cells Are Functionally Heterogeneous.

 

Although
all GFP

 

�

 

 cells were ASCs, it was apparent that there was
heterogeneity in the Blimp

 

gfp

 

 fluorescence levels in lym-
phoid organs. Splenic ASCs were either GFP-intermediate
(GFP

 

int

 

) or GFP

 

hi

 

, whereas the BM ASCs were even higher
for GFP fluorescence. The heterogeneous 

 

Blimp-1 expres-
sion was also apparent at the mRNA level (Fig. 2 D).
These results suggested a differentiation process visualized
by increased Blimp-1 expression (Figs. 1 D and 2 B), a con-
cept supported by the progressive loss of B cell markers
(CD19, B220, and MHCII) from spleen GFPint compared
with BM GFPhi ASCs (Fig. 2 C).

The ability to identify distinct populations of ASCs based
on Blimp-1 expression levels enabled us to examine their
cell surface phenotype. Synd-1 expression is commonly
used to identify mouse ASCs, although there are reports of
Synd-1� ASCs (22). Analysis of Blimpgfp-expressing cells re-
vealed the existence of Synd-1� and Synd-1� ASC, with

Figure 1. Generation of Blimpgfp reporter mice. (A) The genomic locus of
Blimp-1, indicating the exons as boxes and introns as black lines. Coding
regions are in gray and nontranslated regions are white. SpeI sites used for
Southern hybridization along with the 3� probe are marked. Arrows indi-
cate direction of translation from initial methionine. The targeted allele
derived from the homologous recombination event is indicated. pA,
polyadenylation signal sequence; circles, frt sites; triangles, stop codon;
splice acc., splice acceptor. The targeted allele encodes a truncated Blimp-1
protein (Blimptrunc) lacking exons 7–8 and GFP from the same mRNA
transcript. (B) Southern hybridization of SpeI digested Blimpgfp/� and
C57BL/6 ES cell DNA. (C) Western blot analysis of wild-type and
Blimpgfp/� splenic B cells cultured for 4 d in LPS. The wild-type
and Blimptrunc proteins are indicated. �-actin and ICSBP-specific anti-
bodies were used as loading controls. (D) Flow cytometric analysis of
spleen and BM. A small population of GFP� cells was present specifically
in the Blimpgfp/� mice and lost in wild-type or Rag2���Blimpgfp/� mice.
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the majority of Synd-1� cells being GFPhi (Figs. 1 D and 2
C). RT-PCR analysis confirmed that the loss of Synd-1 ex-
pression occurred at the transcriptional level and was not
the result of shedding (Fig. 2 E). GFP� cells were also het-
erogeneous for other reported ASC markers examined, in-
cluding CD43, CD62L, and CD38 (Fig. 2 C). In contrast,
the chemokine receptors CXCR5 and CXCR4 were mod-
ulated as expected for an ASC population (Fig. 2 C). Thus,
plasma cells are a heterogeneous population defined by in-
creasing Blimp-1 expression.

Induction of Blimp-1 Expression by Polyclonal and Antigen-
specific Stimuli. Antibody secretion and Blimp-1 expression
are induced by antigen-specific and polyclonal stimuli (3–5,
8). We have used LPS to examine the kinetics and pheno-
type of ASCs induced in vivo. LPS injection increased the
numbers of GFP-expressing cells in the spleen from the
resting levels of 0.6 	 0.2% to a peak of 4.7 	 1.9% after

3 d (Fig. 3 A). Induced cells subsequently appeared in the
BM at day 4 and were ASCs as determined by ELISPOT
assay (Fig. 3 B and not depicted). The numbers of GFP�

ASCs in both locations rapidly declined, returning to rest-
ing values by day 7. Analysis of the surface phenotype of
the splenic ASCs suggested that induced Blimpgfp expression
occurred in GFPintB220�Synd-1� cells that subsequently
lost B220 and acquired a heterogeneous phenotype for
Synd-1 (Fig. 3 A). A very similar profile was observed in
the BM. As expected, a similar time course with Blimpgfp/gfp

mice revealed no induction of GFP� cells or increase in se-
rum IgM (unpublished data).

Next, we examined the development of ASCs in re-
sponse to a T cell–dependent antigen. Mice were immu-
nized intraperitoneally with the hapten NP coupled to the
protein carrier (NP-KLH; reference 26). At regular inter-
vals, spleen and BM were examined for the frequency of

Figure 2. All GFP� cells are ASC. (A, left) 105

GFP� or 200 GFP� cells from BM or spleen of
Blimpgfp/� mice were assayed for Ig
 secretion by
ELISPOT. Middle panel, GFP� cells were sorted from
the BM and spleen of Blimpgfp/� mice and subjected to
ELISPOT assay for the indicated isotype. (right)
GFP�Synd-1� and GFP�Synd-1� cells were sorted
from BM of Blimpgfp/� mice assayed for Ig
 secretion.
Mean number of ELISPOT per 200 cells 	SE is
shown. (B) Gated populations show the level of GFP
in splenic B220� B cells and GFP� ASC from spleen
(LPS induced and resting) and BM. GFP� cells left of
the dividing line were considered GFP intermediate
(GFPint) and those to the right were considered GFP
high (GFPhi). (C) Analysis of the surface phenotype of
gated cells from B. Mean fluorescence index is indi-
cated for each histogram. (D) Sorted GFPint and GFPhi

cells were sorted as for B and subjected to semi-quanti-
tative RT-PCR analysis. Serial fivefold dilutions of the
cDNA were analyzed. (E) BM GFP�Synd-1� and
GFP�Synd-1� cells were sorted and assayed for Synd-1
mRNA. HPRT was a loading control.



Kallies et al.971

GFP� cells and the presence of NP-specific ASCs. As ex-
pected, immunization resulted in a rapid and significant
increase in the proportion of GFP� cells in the spleen,
reaching a peak at day 7 and declining to near resting lev-
els by day 14 (Fig. 4, A and B). This matches the rise and
fall in the frequency of antigen-specific ASCs as measured

by ELISPOT (27) or histology (28). Interestingly, when
the GFP� population was fractionated into GFPint and
GFPhi, it was apparent that there was a rapid increase in
the GFPint population in the context of a relatively stable
GFPhi population (Fig. 4 C). Comparison of these popula-
tions revealed a high frequency of NP-specific IgG1 ASCs

Figure 3. In vivo induction of GFP� ASC. (A)
Blimpgfp/� mice were injected with 2 �g LPS and ana-
lyzed for Synd-1, GFP, and B220 at the indicated time
points. (top) Total splenic cells. (bottom) Gated GFP�

cells only. Gated regions are outlined by thick lines.
Percentages of GFP� cells are indicated. (B) Gated
GFP� cells from the same mice were analyzed for rela-
tive GFP fluorescence and B220 expression.

Figure 4. Development of distinct ASC populations after T
cell–dependent immunization. (A) Fluorescence levels of
GFP� cells in spleen, blood, and BM from representative
Blimpgfp/� mice at the indicated times after a single i.p. immu-
nization with NP-KLH in alum. (B) Percentage of GFP�

spleen and BM cells at the indicated time points after immuni-
zation. Each circle is an individual mouse. (C) Kinetics of the
appearance of GFPint and GFPhi populations in spleen. (D) Fre-
quency of anti-NP IgG1 ASC in GFPint and GFPhi populations
in spleen at day 7 (shaded) and day 14 (unshaded) after immu-
nization. Data are from sorted GFP� cells from three individuals
at day 7 and two at day 14.
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in the GFPint population, compared with the GFPhi popu-
lation, although the frequency in the GFPhi compartment
increased over time (Fig. 4 D). These data suggest that the
GFPint population is the rapidly expanding plasmablast
population localized in the splenic foci, whereas the GFPhi

ASCs appear to be the more stable, long-lived ASC com-
partment of the spleen. The frequency of Synd-1�GFP�

cells in blood changed little as a result of immunization,
averaging 0.043 	 0.026% (n � 19) over the 2-wk period.
Interestingly, although the ASC compartment of the BM

was exclusively GFPhi, we could only detect GFPint cells in
the blood (Fig. 4 A). These results agreed with the appear-
ance of GFPint ASCs in the BM after LPS injection and
suggest that the up-regulation of Blimp-1 expression in the
long-lived plasma cell compartment occurred after entry
to the BM.

To test our hypothesis that the GFPint cells were short-
lived, unimmunized mice were fed BrdU in the drinking
water for 4 d. Flow cytometric analysis confirmed that the
majority of GFPint cells had turned over, whereas very few
GFPhi cells in either spleen or BM were cycling (Fig. 5). It
is interesting to note that the frequency of GFP� cells in
BM did not change as a result of immunization, even
though the frequency of cycling splenic GFPint and GFPhi

cells increased markedly (Fig. 4, A and B, and not de-
picted). In summary, the induction of GFPint population by
both polyclonal and antigen-specific immunization, in the
context of a relatively stable population of long-lived
GFPhi cells, suggests a plasma cell maturation pathway re-
flected by levels of Blimp-1 expression and that the GFPint

cells are plasmablasts.
Blimpgfp Allows the Tracking of Plasma Cell Differentiation In

Vitro. The exquisite specificity of Blimpgfp as a marker for
ASCs in vivo suggested that the reporter would also be an
indicator of ASC differentiation in vitro. Purified small

Figure 5. GFPint cells are short-lived plasmablasts. Blimpgfp/� mice were
given a bolus of BrdU and fed BrdU in the drinking water for 4 d. Cells
were sorted for the indicated GFP levels from spleen and BM and fixed,
and the incorporation of BrdU for each sample was determined by flow
cytometry using a BrdU-specific antibody. Data are from two pooled in-
dividuals and are representative of three experiments.

Figure 6. Induction of ASC differentiation in vitro
requires Blimp-1. (A) Wild-type, Blimpgfp/�, and
Blimpgfp/gfp B cells were cultured in the presence of LPS
or the combination CD40L/IL-4/IL-5 for 4 d and ex-
amined for GFP expression. Percentages of GFP� cells
are shown. (B) Western blot analysis of splenic B cells
cultured in LPS and sorted according to GFP expression.
Wild-type cells (WT) are unsorted; (�) GFP�; (�)
GFP�. The Blimp-1 proteins and the membrane-
bound (�M) and secreted IgM (�S) are indicated. Detec-
tion of ICSBP was a loading control. White lines indi-
cate intervening lanes have been spliced out. (C) Cells
sorted as in B were subjected to RT-PCR analysis for
the indicated genes. Blimp-1 primers span exons 7–8
(not expressed from the targeted allele). Blimpgfp/gfp cells
do not initiate the ASC transcriptional cascade and remain
indistinguishable from the GFP� cells. HPRT was used
to normalize the relative cDNA input.
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resting splenic B cells were cultured with conditions
that mimic T cell help (CD40L/IL-4/IL-5) or microbial
stimuli (LPS) for 4 d and analyzed for ASC phenotype,
class switching, and Ig production (29). As expected, the
Blimpgfp/� cultures contained a population of GFP� cells
that were absent in the wild-type cultures (Fig. 6 A). Nota-
bly, Blimpgfp/gfp B cells did express some GFP, indicating
that the initial stages of the ASC pathway were induced;
however, no cells expressing high levels of GFP or Synd-1
were formed (Fig. 6 A and not depicted). Moreover,
Blimpgfp/gfp B cells, although normally capable of proliferat-
ing and class switching in response to exogenous stimuli,
secreted little antibody compared with Blimpgfp/� or wild-
type cultures (unpublished data). Western blotting of sorted
GFP� cells from Blimpgfp/� cultures confirmed that Blimp-1
expression correlated with high levels of Ig
 and the se-
creted form of IgH (�S) as compared with GFP� cells from
the same cultures. In contrast, although Blimptrunc expres-
sion was observed in deficient cells, they failed to up-regu-
late either Ig chain (Fig. 6 B).

Blimp-1 Is Required for the Induction of the Plasma Cell
Transcriptional Program. Blimp-1 has been shown to repress
transcription of several genes associated with the mature B
cell phenotype (21, 30). The Blimpgfp reporter enabled us
for the first time to isolate and characterize gene expression
in a purified population expressing endogenous Blimp-1.
Cells were sorted on the basis of GFP expression and sub-
jected to Western blotting and RT-PCR. Analysis of Blimp-1
mRNA levels confirmed the coincidence of Blimp-1 and
gfp expression in Blimpgfp/� cells and the lack of Blimp-1 ex-
ons 7–8 transcripts in Blimpgfp/gfp cells (Fig. 6 C). Interest-
ingly, the expression of Pax5 and several putative Pax5 tar-
get genes, including XBP-1 (18), J-chain (31), AID (32), and
CIITA (33), were deregulated in mutant cells. (Fig. 6 C). In
addition, IRF4, an essential transcriptional regulator of ASC
function, was not induced in Blimpgfp/gfp cells. Several che-
mokine receptors are differentially expressed between ma-
ture B cells and ASCs, including CXCR5 and CXCR4
(Fig. 2 C and reference 34). We have examined by RT-
PCR a panel of other receptors, including CCR7 and

Figure 7. Blimpgfp identifies a hetero-
geneous population of ASC in vitro. (A)
Blimpgfp/� B cells were stimulated with
LPS or CD40L/IL-4/IL-5 for 4 d and
examined for Synd-1 and GFP. Four
populations GFP�Synd-1� (fraction 1),
GFP�Synd-1� (fraction 2), GFP�Synd-1�

(fraction 3), and GFP�Synd-1� (fraction
4) cells were sorted and assayed as follows.
(B) Western blotting for Blimp-1 pro-
tein. ICSBP and �-actin were used as
loading controls. (C) Cell proliferation
rates. Sorted cells were pulsed with
3[H]thymidine for 2 h. (D) Ig secretion by
ELISPOT. Mean numbers of ELISPOT
per 100 cells are shown 	SE. (E) IgM
secretion. Sorted cells were recultured
for 4 h, and supernatants were analyzed by
ELISA. (F) Fractions 2 (GFP�/Synd-1�)
and 3 (GFP�/Synd-1�) were sorted
(left) and recultured for 22 h in LPS before
reanalysis (right). (G) RT-PCR analysis
of the indicated genes was performed on
the sorted groups. HPRT was used to
normalize the relative cDNA input.
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CCR9, neither of which were regulated normally in the
absence of Blimp-1 (Fig. 6 C and not depicted).

Heterogeneity of ASCs In Vitro. Having observed the
heterogeneity of plasma cells in vivo, we were interested to
see if this diversity also occurred in vitro. Examination of
the LPS-stimulated in vitro differentiation of Blimpgfp/� B
cells revealed this was indeed the case, as only �50% of the
GFP� cells were Synd-1�. In contrast, most (�85%) GFP�

cells were Synd-1� in CD40L/IL-4/IL-5 stimulated cul-
tures, demonstrating that this ASC heterogeneity can be
modified by extrinsic signals (Fig. 7 A).

To examine more closely this heterogeneity, we sorted
GFP�Synd-1� (fraction 1), GFP�Synd-1� (2), GFP�Synd-
1� (3), and GFP�Synd-1� (4) cells from LPS cultures (Fig.
7 A). As expected, GFP exactly coincided with Blimp-1
protein (Fig. 7 B), and ASC activity was restricted to the
GFP� fractions (Fig. 7 D). Interestingly, the rate of IgM se-
cretion was reproducibly lower in the Synd-1� fraction2
compared with those cells expressing Synd-1 (Fig. 7 E). It
has been reported that Blimp-1��� B cells are hyperprolifer-
ative in response to LPS (10); however, determination of
the cell proliferation rate of the sorted fractions revealed no
relationship between Blimp-1 expression and cell prolifera-
tion (Fig. 7 C). The negative effect of Blimp-1 on prolifer-
ation is reported to require the repression of c-myc (16, 35).
RT-PCR analysis of the three fractions indicated that c-myc
was only slightly down-regulated in the presence of Blimp-1,
arguing against an important role of this process in ASCs in
vitro (Fig. 7 G).

The phenotypic diversity in the sorted fractions was fur-
ther assayed by RT-PCR. Both GFP� populations dis-
played the hallmarks of ASC differentiation (decreased
Pax5, AID, CIITA and increased XBP-1, IRF-4, and
J-chain); however, the GFP�Synd-1� cells appeared less dif-
ferentiated, with residual Bcl6, Pax5, AID, and CIITA ex-
pression, as well as reduced IgM secretion (Fig. 7, E and G).
This conclusion was supported by cell sorting experiments
that indicated that, whereas GFP�Synd-1� cells were fully
differentiated and retained their phenotype after reculture,
GFP�Synd-1� cells were capable of self-renewal and differ-
entiation into the GFP�Synd-1� compartment (Fig. 7 F).
Finally, a small number of transcripts including Synd-1, bcl2,
bcl6, and most clearly CXCR2 were differentially expressed
between fractions 2 and 3, further highlighting the hetero-
geneity of the ASC phenotype (Fig. 7 G).

Discussion
Heterogeneity in the Plasma Cell Phenotype. The princi-

pal difficulties in analyzing ASCs are their rarity (0.5% of
lymphoid tissues) and that only the retrospective analysis of
Ig secretion itself defines the cell type. The Blimpgfp reporter
allele described here provides us with a simple and extremely
accurate methodology to identify all plasma cells in culture
and, most importantly, from lymphoid organs in vivo.

A significant finding to come from the analysis of the
Blimpgfp-expressing ASCs is the heterogeneity of their gener-

ation, phenotype and function. There have been papers
documenting heterogeneity in plasma cell phenotypes in
mice (22) and humans (24, 25) although in the absence of a
clear marker for ASCs, these studies are difficult to interpret.
Several antigen combinations are commonly used as indica-
tors of ASCs, including Synd-1, CD62L, CD43, CD38, and
loss of B220 and CD19. Our analysis of ASCs from resting,
immunized, and LPS-injected mice showed that, whereas
all of these markers were altered, no combination identified
all ASCs. For example, GFP� cells expressing a broad range
of B220 and Synd-1 can be found in the BM and spleen.
Moreover, the time course experiments after LPS injection
showed clearly that recently induced ASCs have a distinct
(B220�Synd-1int-high) phenotype that precedes the B220�

Synd-1 positive or negative state.
The heterogeneity was also apparent in the level of

Blimpgfp expression, with approximately equal numbers of
GFPint and GFPhi ASCs in the spleen and a predominance
of GFPhi cells in the BM (Fig. 2 B). We suggest that the
GFPint cells represent the more immature plasma cells that
will undergo further differentiation to GFPhi phenotype.
This model was supported by the pronounced induction of
GFPint cells by LPS injection or immunization (Figs. 3 and
4). These cells had not completely lost CD19 or B220 ex-
pression, were short lived, and secreted antibody, whereas
GFPhi cells that had more completely down-regulated these
markers were quiescent while also secreting Ig. We pro-
pose that these GFPint cells represent the plasmablast stage
of differentiation, a minority of which increase Blimp-1 ex-
pression and enter the long-lived ASC compartment. It is
also of note that, whereas blood ASCs are GFPint, the BM
ASCs are uniformly GFPhi, suggesting that the increased
Blimp-1 expression associated with long-lived BM ASCs
occurs after entry to the BM. Interestingly, the in vitro–
generated ASCs continue to proliferate and have a similar
fluorescence to the GFPint stage in vivo, suggesting that
these cells represent the plasmablast stage. Nothing is known
about the regulation of Blimp-1 expression levels in ASCs,
but it is an intriguing prospect that stromal cell or antigen
affinity determinants regulate entry into the long-lived
plasma cell state via increasing Blimp-1 expression.

The ability to differentiate B cells in vitro has enabled us
to examine the extrinsic regulation of ASC heterogeneity.
Perhaps most striking is the appearance of distinct Blimpgfp-
expressing populations after LPS stimulation that can be dis-
cerned based on the expression of Synd-1. GFP�Synd-1�

cells occur at a similar frequency to GFP�Synd-1� ASCs but
produce significantly less total Ig. The transcriptional profiles
of the two populations were similar, with GFP�Synd-1�

cells displaying a trend toward greater divergence from the
GFP� cells, including the down-regulation of Pax5 and
Bcl6, whereas the majority of chemokine receptors were co-
coordinately regulated; CXCR2 was specifically expressed
in the GFP�Synd-1� cells. CXCR2 is the receptor for IL-8
and is not known to play a role in ASC biology. We have
performed chemotaxis assays with recombinant IL-8, but, to
date, have not been able to show any specific migration to-
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ward this stimulus by GFP�Synd-1� ASCs (unpublished
data). A recent microarray paper has concluded that Blimp-1
activates distinct genetic programs in two B cell lines de-
pending on the mode of stimulation (20). A more extensive
analysis of the transcriptional profiles of the populations
identified here will further test this possibility.

ASC heterogeneity also depended on the type of stimuli
received, as the equal numbers of GFP�Synd-1� and
GFP�Synd-1� cells produced in LPS cultures contrasted
with the preponderance of GFP�Synd-1� ASCs after
CD40L and cytokine-driven differentiation. Previous in
vivo studies have suggested that Synd-1� ASCs exist and
are derived from Synd-1� precursors (22). Our results
showed that this was not the case in vitro, as sorted
GFP�Synd-1� cells maintained their expression profile for
several days after sorting, whereas GFP�Synd-1� cells were
capable of self-renewal as well as differentiation into Synd-
1� cells. We suggest that there are two distinct pathways to
GFP�Synd-1� cells, one that proceeds through the GFP�

Synd-1� intermediate and a second that is derived directly
from the GFP� population. The existence of these two
pathways was supported by the coincidence of their ap-
pearance during the time course of LPS induction (unpub-
lished data). Whether Synd-1� cells give rise to negative
cells in vivo is still to be determined, but the LPS injection
experiments are compatible with this scenario.

Molecular Role of Blimp-1. A hallmark of plasma cell dif-
ferentiation is the silencing of many of the genes associated
with the mature B cell phenotype, whereas Blimp-1 is acti-
vated by stimuli that induce an ASC fate (4). Blimp-1 func-
tions primarily as a transcriptional repressor (11, 16, 21)
that can recruit key players in gene silencing (12–14).
However, cDNA microarray analysis also identified a co-
hort of transcripts that are induced by Blimp-1 expression
(20, 21). Direct promoter analyses have suggested that
Blimp-1 represses Pax5 (17), c-myc (16), and CIITA (36).
This paper is the first to use the combination of a reporter
of Blimp-1 expression and Blimp-1–deficient cells to genet-
ically determine the requirement for Blimp-1 in the regula-
tion of a particular transcript.

A model of B cell terminal differentiation holds that ma-
ture B cells express the B cell maintenance factor Pax5 and
the oncogene Bcl6. Extrinsic signals such as cytokines or
antigen result in the degradation of Bcl6, a repressor of
Blimp-1. Blimp-1 activates differentiation to ASCs (30). In-
terestingly, Pax5 was expressed in all GFP� populations,
but was rapidly silenced in GFP� cells, supporting the no-
tion that Pax5 is repressed by Blimp-1 (17) and suggesting
that this repression may be the pivotal transcriptional event
in ASC differentiation. Indeed, as predicted by this model,
the Pax5-repressed genes XBP-1 (18) and J-chain (31) were
silent and the Pax5-activated genes AID (32) and CIITA
(33) were maintained in Blimp-1–deficient cells (Fig. 6 C).

Using several experimental systems, we and others have
demonstrated that very low levels of Ig were produced by
Blimp-1–deficient plasma cells (10). As Blimp-1 is not im-
plicated directly in Ig transcription, it is likely that its role

in inducing Ig production occurs via secondary proteins
such as Pax5, IRF4, and XBP-1. Pax5 regulates Ig produc-
tion by repressing IgH and Ig
 expression (for review see
reference 37), whereas IRF4 binds in the Ig
 3� and �2-4

enhancers and is essential for Ig production (38–40). As
Blimp-1–deficient B cells maintain Pax5 and lack IRF4,
the inability to activate appropriate Ig transcription levels
would limit the secretion rate and explain the inability of
XBP-1 alone to rescue Ig secretion by Blimp-1��� B cells as
XBP-1 functions after high level Ig production has been
initiated (10, 41). Together, these data suggest that the in-
ability of Blimpgfp/gfp cells to repress Pax5 and activate IRF4
is sufficient to explain the decreased Ig expression associ-
ated with the phenotype.

Blimp-1 Expression Levels Control the Plasma Cell Terminal
Differentiation Pathway. The Blimpgfp allele described here
allows the identification and characterization of all ASCs.
Our data suggest that Blimp-1 expression is induced in dis-
tinct phases; an intermediate expression level associated
with short-lived plasmablasts and a more differentiated,
long-lived, Blimp-1–high phenotype. Although a broad
heterogeneity of the plasma cell lineage is apparent at the
level of cell surface phenotype, Ig secretion, and transcrip-
tional profiles, these are significantly correlated with ex-
pression levels of Blimp-1. These data suggest a model of
cellular ontogeny where increasing Blimp-1 levels result in
progressive maturation of ASCs (Fig. 8). Short-lived plas-
mablasts in the spleen in vivo and in vitro, characterized by
low Blimp-1 levels, which have not completely extin-
guished the mature B cell expression profile, proliferate and
secrete Ig. In contrast, long-lived, noncycling plasma cells
in the spleen and BM are associated with higher Blimp-1
levels and have more completely down-regulated expres-

Figure 8. Schematic of plasma cell terminal differentiation based on in-
creasing Blimp-1 expression. Relative function or expression status of
several parameters is indicated on an arbitrary scale. Dotted lines indicate
hypothetical pathways. Analysis of Pax5, IRF4, and CIITA expression is
based in vitro evidence only. *, Synd-1 expression on plasma cells is hetero-
geneous and context specific (see Discussion).
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sion of B lineage proteins and genes, but retain some heter-
ogeneity for known plasma cell markers. Although it is not
yet possible to ascertain if a linear relationship between
Blimp-1 levels and cellular differentiation exists, the Blimpgfp

model provides us with the a valuable tool to resolve this
question.
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