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Effective and precise classification of glioma patients for their disease risks is critical to improving early
diagnosis and patient survival. In the recent past, a significant amount of multi-omics data derived from
cancer patients has emerged. However, a robust framework for integrating multi-omics data types to effi-
ciently and precisely subgroup glioma patients and predict survival prognosis is still lacking. In addition,
effective therapeutic targets for treating glioma patients with poor prognoses are in dire need. To begin to
resolve this difficulty, we developed i-Modern, an integrated Multi-omics deep learning network method,
and optimized a sophisticated computational model in gliomas that can accurately stratify patients based
on their prognosis. We built a survival-associated predictive framework integrating transcription profile,
miRNA expression, somatic mutations, copy number variation (CNV), DNA methylation, and protein
expression. This framework achieved promising performance in distinguishing high-risk glioma patients
from those with good prognoses. Furthermore, we constructed multiple fully connected neural networks
that are trained on prioritized multi-omics signatures or even only potential single-omics signatures,
based on our customized scoring system. Together, the landmark multi-omics signatures we identified
may serve as potential therapeutic targets in gliomas.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Glioma is currently one of the most common types of primary
brain cancer and the incidence has continued to increase world-
wide since the 1970s [1,2]. However, the main treatment strategy
for gliomas is surgery with chemotherapy and radiation therapy,
which remains particularly challenging because gliomas can be
hard to reach and remove completely[3,4]. Given the high level
of heterogeneity in gliomas along with the complex biological
molecular markers, the median overall survival for glioma patients
with the current standard of medical treatment is<3 years [5,6].
Therefore, developing computational methods to discover novel
therapeutic targets is urgently needed in the community.

To understand the heterogeneity among gliomas, many efforts
have been made to identify glioma molecular subtypes [7–12].
Multiple novel molecular subtypes are identified based on various
data sources like histopathology, gene expression profiles, and dri-
ver genes [7–12]. However, these works explore the molecular
subtypes without taking survival prognosis into account, making
the identified subtypes difficult to translate into clinical practice.
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Indeed, survival time is a key factor when classifying glioma
patients into valuable subtypes with differential prognoses. More-
over, it remains challenging in discovering effective therapeutic
targets for gliomas especially high-risk glioma subtypes in the
community. Therefore, computational methods to robustly classify
glioma patients into survival-associated subtypes and discover
potential therapeutic targets are urgently needed.

With the advance of artificial intelligence and high-
performance computing, machine learning technologies are play-
ing a more and more active role in computational biology and gain-
ing significant success in biological fields [13–17]. For example,
deep learning has been applied to find genetic variants, DNA
methylation, and image analysis, and made substantial break-
throughs in these fields [13–17]. The application of deep learning
to multi-omics data is a promising area. However, existing meth-
ods are often limited due to the following reasons: 1. Unsupervised
learning with low interpretability in predicted results or classifier
labels; 2. Most multi-omics methods focused on 2–3 data types
with limited scope, given the increasing amount of data types
becoming available for a given sample or patient.

To address the outstanding issues in gliomas, for the first time,
we devised a sophisticated deep learning computational frame-
work (i-Modern, an integrated Multi-omics deep learning network
method) on a comprehensive multi-omics dataset in gliomas,
including mRNA profile, miRNA expression, DNA methylation,
somatic mutation, RPPA protein expression, and copy number vari-
ation profiles. Considering multi-omics are high-dimensional fea-
tures, we adopted and optimized one autoencoder framework to
remodel multi-omics data using complex functions in the network
and extracted low-dimensional informative features from the
model [18,19]. We classified glioma patients into two subgroups
with significant differences in survival prognosis based on
survival-associated low-dimensional features from the bottleneck
in the autoencoder [18,19]. These two subgroups represent two
distinguished survival prognosis states in glioma patient popula-
tions, namely the high-risk subgroup and low-risk subgroup. After
extracting potential multi-omics features associated with glioma
subgroups, we selected the top ranked multi-omics features as
landmark signatures. These potential signatures empower us to
better understand glioma development and progression from the
multi-omics perspective. Furthermore, we trained and optimized
multiple fully connected neural networks, and these specified net-
works are proved to be robust and effective in subgrouping glioma
patients compared with other benchmark prediction models based
on multi-omics signatures or single-type omics signatures. Lastly,
given that fully connected neural networks achieve robust predic-
tions in subgrouping glioma patients, we evaluated and ranked all
potential multi-omics signatures based on the intrinsic informa-
tion in the neural networks, and some of the landmark signatures
we prioritized may serve as putative therapeutic targets in
gliomas.
2. Methods

2.1. Datasets employed in this study

In this study, we used a comprehensive TCGA LGG cohort as of
March 2022. We obtained multi-omics glioma datasets, including
RNA sequencing data (TPM normalized gene expression quantifica-
tion), protein expression data (Reverse Phase Protein Array RPPA),
miRNA-seq expression data (reads per million for miRNA mapping
to miRbase 20), DNA methylation data (Infinium HumanMethyla-
tion450 BeadChip), copy number variation data (Affymetrix SNP
Array 6.0) and somatic mutation data (DNA sequencing). For copy
number variation data, we calculated a gene-level copy number
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value as the average copy number of the genomic region of a gene;
for the DNA methylation, we mapped CpG islands within 1500
base pairs (bp) ahead of transcriptional start sites (TSS) and aver-
aged their values as the methylation value of a gene; for somatic
mutation data, we transformed the data into a matrix, where each
row is one specific mutation of a gene, each column is a patient
sample pair and each cell includes 0/1 elements, where 1 indicates
the patient sample pair has this mutation while 0 indicates not.
The data processed above and clinical patient information down-
load were implemented by TCGA-Assembler 2 [20]. When dealing
with missing values, two steps were performed. we removed the
samples where more than 20% of features are missing and we
removed the features that have zero value in more than 20% of
patients and then we filled out the missing expression values via
impute package according to the comparable criteria in other
research [21–23].

2.2. Generation of low-dimensional transformed features using a deep
learning framework

We treated each type of omics data such as RNA-seq as a matrix,
where rows represent samples and each column represents the
expression of each gene. The same data preprocessing could be
applied to the other types of omics, including somatic mutation
profiles where each column represents one specific mutation of
each gene, protein expression profiles where each column repre-
sents the expression of each protein, copy number variation where
each column represents CNV of each gene, DNA methylation pro-
files where each column represents methylation expression of each
gene, and miRNA profiles where each column represents the
expression of each miRNA. We concatenated and stacked each type
of normalized matrices and generated one integrated matrix which
could represent high-dimensional multi-omics features for each
patient. After that, we took the integrated matrices as input in
the autoencoder.

An autoencoder is one type of artificial neural networks and it is
proven to learn efficient representation from a mass of features in
an unsupervised manner and achieve dimensionality reduction
effectively [18,19]. Here, we took advantage of the autoencoder
to transform high-dimensional multi-omics information into low-
dimensional features.

2.3. The architecture of the autoencoder

We developed one autoencoder for automatic feature extrac-
tion. Briefly speaking, being normalized and scaled, the integrated
multi-omics matrix is taken as an input. In the autoencoder, sev-
eral hyperparameters and parameters needed to be optimized for
the best fit during the training process, including the number of
neural net layers, dropout rate and the number of neurons of each
layer, batch size, etc. The best hyperparameter and parameter com-
bination was validated via 5-fold cross-validation. To get the best
combination of hyperparameters in the high-dimensional hyper-
parameter space effectively, Bayesian optimization was adopted
in the training process. Finally, the best autoencoder was obtained
based on the integrated matrix data. The optimized autoencoder
consists of three dense neural net layers (1000, 100, and 1000
nodes separately) with one batch normalization layer and two
dropout layers placed between the dense neural net layers
[24,25]. To note, the hyperparameter space for the unit number
of the bottleneck layer was [50, 100, 200, 400] and we finally chose
100 units in the layer according to loss comparison in validation
datasets during autoencoder training and optimization. The activa-
tion function was tanh from the space [tanh, relu, leaky relu, and
sigmoid] in those densely connected layers, and for obtaining bet-
ter local minima of parameters, adam was adopted as a gradient
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descent optimizer [26]. The loss function of the autoencoder was
mean squared error (MSE) and the autoencoder was trained for a
maximum of 300 epochs. Besides, we evaluated the performance
of the autoencoder in terms of mean absolute error (MAE) and root
mean squared error (RMSE). Finally, as an effective regularization
method, early stopping was also adopted to terminate training
with 5 epochs of patience once the model performance was no
longer improved on the validation dataset to avoid overfitting [27].

After the autoencoder was finalized, we made use of the trained
encoder of the autoencoder based on the input omics data and
obtained 100 transformed low-dimensional features from the bot-
tleneck layer to represent multi-omics features for each patient.
2.4. Transformed feature selection and clustering

The autoencoder reduced the initial high-dimensional informa-
tion to 100 low-dimensional features obtained from the bottleneck
layer. Next for each of these transformed features produced by the
optimized autoencoder, we combined clinical information and
built a univariate Cox-PH model for each feature, and then selected
informative features from which a significant Cox-PH model was
obtained (bothWald and Log-rank P-value < 0.05). We further used
these informative features to cluster the samples using partitioning
around medoids, a more robust version of K-means [28]. To deter-
mine the optimal number of clusters, we calculated two metrics
from multiple testing numbers of clusters, including Silhouette
index and Calinski-Harabasz criterion.
2.5. Molecular signatures for glioma subgrouping

After obtaining the labels from partitioning around medoids, we
identified the potential multi-omics features that are most corre-
lated with the risk subgroup of patients via the Wilcoxon test for
continuous features that include CNV features, gene expression
features, methylation features, protein expression features, and
miRNA expression features and Chi-square test or Fisher’s exact
test for somatic mutation features. We obtained 12,458 potential
CNV features, 13,368 potential gene expression features, 16,142
potential methylation features, 108 potential protein expression
features, 15 potential somatic mutation features, and 703 potential
miRNA expression features. We selected top potential features in
P-values ascending order as potential multi-omics signatures,
including 1,246 CNV signatures, 1,337 gene expression features,
1,614 methylation features, 108 protein expression signatures, 15
somatic mutation signatures, and 703 miRNA signatures.
2.6. Subgroup prediction via deep neural networks

After getting potential multi-omics signatures, we sought to
establish a robust and effective prediction model that could
achieve glioma patient stratification well only based on the poten-
tial multi-omics signatures or single-omics signatures. More
specifically, to predict subgroups of glioma patients based on
multi-omics data, we built and optimized subgrouping prediction
models from the combination of potential multi-omics signatures.
In addition, we devised and optimized subgrouping prediction
models from each single-omics data, using the corresponding
potential signatures respectively. To guarantee the robust classifi-
cation of glioma patients, we constructed multiple prediction mod-
els, including fully connected neural networks (FCN), support
vector machine (SVM), random forest (RF), LogitBoost (LGB), and
Naive Bayes (NB). We constructed multiple parameter spaces for
each prediction model and carried out grid search to tune model
parameters to find the best model with optimal parameters.
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2.7. Data partitioning and processing

We randomly split 80% of the glioma samples as training sets
for 5-fold cross-validation and 20% of the glioma samples as testing
sets to guarantee a reliable performance evaluation. We deter-
mined the known labels of the glioma samples by taking advantage
of partitioning around medoids based on informative low-
dimensional features from the autoencoder. We constructed pre-
diction models using 80% training sets and then predicted the
labels of testing sets. To guarantee the robustness of the models,
we adopted 5-fold cross-validation for training sets. Besides, we
ran grid search cross-validation scheme to tune prediction algo-
rithm parameters and sought the best model training set of param-
eters. To guarantee a more reliable performance evaluation, we
repeated the random split, cross-validation, and grid search for
all prediction models 10 times and took account of performance
metrics in all evaluation experiments. We applied multiple prepro-
cessing steps on both the training sets and testing sets. For gene
expression, DNA methylation, and protein expression data, we
adopted a robust scaling on the omics data using the means and
the standard deviations and we took advantage of unit-scale nor-
malization for miRNA expression and CNV data according to the
similar practice in [23,29].

2.8. Evaluation metrics

To evaluate the prediction models comprehensively, we
adopted multiple metrics, including accuracy, Kappa, balanced
accuracy, and ROC AUC. In addition, we adopted the brier score
as the mean squared error between the expected probabilities for
one specific subgroup and the predicted probabilities. The score
ranges from 0 to 1, and a lower score suggests higher classification
accuracy.

2.9. Alternative PCA to the autoencoder

To show the robust performances of the autoencoder, we car-
ried out principal components analysis (PCA) as the benchmark.
We extracted the same number of principal components (100
PCs) as those low-dimensional features in the bottleneck of the
autoencoder. We identified 11 survival-associated PCs using the
Cox-PH model with the same wald and log-rank p-value cutoff
and then we clustered the samples using the same partitioning
around medoids for glioma patients based on these PCs.

2.10. Ranking omics signatures associated with survival prognosis

Although the deep neural network is proved to be effective and
robust in subgrouping glioma patients, the network is often per-
ceived as a black box and it’s hard to derive informative biological
insights from the model. To tackle the problem, we employed Old-
en’s algorithm in the neural network and extracted and ranked
these potential multi-omics signatures according to their relative
importance when subgrouping the samples [30]. Finally, we could
deem those signatures ranking on the top and bottom as landmark
multi-omics signatures contributing to the glioma patient
stratification.
3. Results

3.1. Survival-associated glioma subtypes are identified

We developed i-Modern, an integrated Multi-omics deep learn-
ing network method, and optimized a sophisticated computational
model to stratify patients based on their prognosis in glioma. To do
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so, from the TCGA project, we obtained 419 patient samples that
included clinical information, gene expression, copy number varia-
tion (CNV), DNA methylation, protein RPPA expression, miRNA
expression, and somatic mutation profiles. These multi-omics data
were preprocessed as described in the ‘‘Methods” section, and
finally, we obtained 18,582 gene expression features, 23,554 CNV
features, 20,156 DNA methylation features, 173 protein expression
features, 884 miRNA expression features, and 29,951 somatic
mutation features in these patients. Our i-Modern workflow is
shown in Fig. 1A. After the model training and parameter optimiza-
Fig. 1. The workflow for this work. (A) Multi-omics data integration and patient stra
signature ranking.
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tion, we finally adopted the architecture setting (Fig. 1B and Sup-
plemental Fig. S1). To note, early stopping terminated the model
training and made the autoencoder avoid overfit according to
MSE as shown in Fig. 2B. According to MSE, MAE, and RMSE met-
rics, the autoencoder managed to compress the original high-
dimensional features effectively with lower validation MSE, MAE,
and RMSE during training (Fig. 2B and Supplemental Figs. S2A
and S2B). Regarding the relationship between the input features
and reconstructed features by the autoencoder, the model
achieved a promising performance where the Spearman correla-
tification. (B) Prediction model training, performance evaluation, and multi-omics



Fig. 2. The deep learning model for glioma cancer patient stratification. (A) The architecture of the encoder we established. (B) Training and validation MSE loss iteration
during model optimization in cross validation. (C)Glioma patient subgrouping visualization based on survival-associated low-dimensional features from the autoencoder. (D)
Survival analysis for high-risk subgroup and low-risk subgroup based on survival-associated low-dimensional features from the autoencoder.
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tion coefficient was 0.789 ± 0.144 (standard deviation, SD), 0.787
± 0.129 (SD), 0.762 ± 0.188 (SD), 0.678 ± 0.135 (SD), 0.572 ± 0.10
0 (SD) for CNV features, gene expression features, DNAmethylation
features, miRNA expression features, protein expression features,
respectively, and the accuracy is 0.998 ± 0.002 for somatic muta-
tion features (Supplemental Fig. S2C and Supplemental
Table S1). After that, we extracted 100 low-dimensional features
from the 100 nodes of the bottleneck as new features (Fig. 2A).
To identify survival-associated low-dimensional features, we then
built a univariate CoX-PH model on each low-dimensional feature
and obtained 76 features significantly associated with survival
prognosis (wald and log-rank p-value < 0.05). Based on these 76
features, we performed partitioning around medoids in glioma
patients, with cluster testing numbers from 2 to 6. By evaluating
silhouette index and calinski-harabasz index, we determined that
2 clusters would be the best setting for clustering the glioma
patients (Supplemental Fig. S3A). Interestingly, the 2 clusters clas-
sified the patients into 2 subgroups that represent two significantly
different survival groups (Log-Rank P-value = 3.59e-07, Cox P-
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value = 1.18e-07), including low-risk subgroup S1 with a better
survival state and high-risk subgroup S2 with worse survival state
(Fig. 2C and 2D). Considering S1 and S2 subgroups are informative
for clinical practice, we thus determined to adopt these two sub-
grouping criteria.

To corroborate the superiority of our optimized autoencoder,
we also carried out principal component analysis (PCA) on glioma
patients. After picking up the top 100 PCs, we filtered and got 11
survival-associated PCs using Cox-PH model (wald and log-rank
p-value < 0.05). Using partitioning around medoids, we found that
these PCs failed to distinguish two subgroups from each other well
(Supplemental Fig. S3B).
3.2. Differential multi-omics profiles characterize high-risk and low-
risk subgroups

Based on the two survival-associated subgroups generated by
partitioning around medoids, we identified 12,458 potential CNV
features, 13,368 potential gene expression features, 16,142 poten-
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tial methylation features, 108 potential protein expression fea-
tures, 15 potential somatic mutation features, and 703 potential
miRNA expression features that might contribute to the difference
between the high-risk subgroup and low-risk subgroup (Wilcoxon
test or Independence test, P-value = 0.05). To enable the discovery
of potential therapeutic targets in the high-risk glioma group, we
selected the top 10% of CNV signatures (1,246), gene expression
signatures (1,337), methylation signatures (1,614), and all protein
expression signatures (108), somatic mutation signatures (15),
and miRNA signatures (703) in P-values ascending order as puta-
tive multi-omics signatures.

As shown in Fig. 3A, high-risk subgroup S2 harbored less
POLR3A copy number variation than low-risk subgroup S1 (Wil-
coxon test, P-value < 2.2e-16). Our analysis indicated that
decreased CNV of POLR3A was likely to be associated with glioma
progression and development, rather than aberrant gene expres-
sion, methylation, protein expression, or somatic mutations of
POLR3A. In addition, we found that increased MSN gene expression
(Fig. 3B; Wilcoxon test, P-value < 2.2e-16), decreased GPX4 methy-
lation (Fig. 3C; Wilcoxon test, P-value < 2.2e-16), increased ANXA1
protein expression (Fig. 3D; Wilcoxon test, P-value = 9.3e-07),
increased MIR155 miRNA expression (Fig. 3E; Wilcoxon test, P-va
lue < 2.2e-16), rare occurrence of IDH1,chr2:209113112–209113
112,+,Missense_Mutation,SNP,CC > CT (Fig. 3F; Chi-Square test, P-
value < 2.2e-16) might contribute to glioma development and pro-
gression as well. Remarkably, many of these differential omics
genes were found to be possible risk factors in gliomas based on
previous reports[31–35]. This suggests that our findings not only
get cross-verified by previous research but also add novel insights
or possible mechanisms on how these risk genes may function in
glioma progression. For example, it was reported that elevated
GPX4 expression is associated with the proliferation and migration
of glioma cells[32]. Combined with our finding above, one could
infer reasonably that the interaction between increased GPX4
expression and decreased GPX4 methylation was likely to con-
tribute to high-risk gliomas. In addition, there were plenty of
potential multi-omics signatures contributing to the difference
between high-risk subgroup S2 and low-risk subgroup S1, includ-
ing decreased CDHR1 CNV (Wilcoxon test, P-value < 2.2e-16),
increased CASP8 gene expression (Wilcoxon test, P-value = 2.2e-
Fig. 3. Profiles for multi-omics landmark signatures between high-risk subgroup an
gene expression (Wilcoxon test, P-value < 2.2e-16). (C) GPX4 methylation (Wilcoxon tes
07). (E) MIR155 miRNA expression (Wilcoxon test, P-value < 2.2e-16).(F) IDH1,chr
value < 2.2e-16).

3516
13), decreased MMP9 methylation (Wilcoxon test, P-value < 2.2e-
16), increased TFRC protein expression (Wilcoxon test, P-value < 2.
2e-16), increased MIR222 expression (Wilcoxon test, P-value < 2.
2e-16), and rare occurrence of TP53,chr17:7577121–7577121,+,M
issense_Mutation,SNP,GG > AA (Fisher’s test, P-value = 0.032) in
high-risk S2 subgroup (Supplemental Figs. S4A-F). Again, most
of them had supporting evidence to be associated with gliomas
in previous studies[36–41], and these research works further cor-
roborate our multi-omics findings and provide inspiration for
glioma functional studies further. The detailed differential multi-
omics profiles characterizing high-risk and low-risk subgroups is
shown in Supplemental Table S2.

3.3. Fully connected neural networks achieve robust performance
based on multi-omics or single-omics data

To explore the value of the multi-omics signatures in subgroup-
ing and predicting survival prognosis for glioma patients, here we
developed and optimized multiple specified fully connected neural
(FCN) networks customized for classifying glioma patients. We
split the samples into 10 bins randomly using a 70/30 ratio where
70% of training sets are for cross-validation and 30% of testing sets
are for testing. To exploit the potential performance, we carried out
grid search for optimizing parameters for each neural network.
Besides, we built multiple traditional machine learning as the
benchmark and optimized and evaluated the predictive perfor-
mance among these models, including support vector machine
(SVM), random forest (RF), LogitBoost (LGB), and Naive Bayes
(NB). To evaluate the models on testing sets comprehensively,
we adopted multiple measures metrics, including accuracy, Kappa,
balanced accuracy, specificity, sensitivity, ROC AUC, and Brier
score.

The optimized FCN achieved excellent predictive performance
when classifying glioma patients into two subgroups based on
potential multi-omics signatures. Compared with other prediction
models, FCN obtained better performance in these two valuable
and practical evaluation metrics: for balanced accuracy, FCN
achieved 97.80%, outperforming 82.52% of LGB, 86.31% of NB,
87.93% of RF, 82.01% of SVM; for Kappa, FCN achieved 95.00%, out-
performing 74.07% of LGB, 77.71% of NB, 81.58% of RF, 76.64% of
d low-risk subgroup. (A) POLR3A CNV (Wilcoxon test, P-value < 2.2e-16). (B) MSN
t, P-value < 2.2e-16). (D) ANXA1 protein expression (Wilcoxon test, P-value = 9.3e-
2:209113112–209113112,+,Missense_Mutation,SNP,CC > CT (Chi-Square test, P-
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SVM (Fig. 4A and Supplemental Table S3). In addition, FCN gained
promising predictive performance in terms of accuracy, specificity,
and sensitivity as well, suggesting that 2-subgrouping for glioma
patients based on multi-omics signatures is effective (Fig. 4A and
Supplemental Table S3).

Besides, we explored the scenarios where there were limited
available omics signatures. Interestingly, FCN still performed well
in these situations and performed better than other models. When
it comes to single-gene expression signatures, FCN gained an excel-
lent predictive performance: for balanced accuracy, FCN achieved
97.04%, outperforming 79.11% of LGB, 81.67% of NB, 86.20% of RF,
and 82.00% of SVM; for Kappa, FCN achieved 95.02%, outperform-
ing 71.35% of LGB, 71.15% of NB, 81.71% of RF, and 57.73% of
SVM (Fig. 4B and Supplemental Table S3). Another robust exam-
ple is single-methylation signatures where FCN performed better
than other models: for balanced accuracy, FCN achieved 95.70%,
outperforming 79.88% of LGB, 78.95% of NB, 81.66% of RF, and
84.45% of SVM; for Kappa, FCN achieved 91.28%, outperforming
75.11% of LGB, 74.92% of NB, 78.45% of RF, and 75.02% of SVM
(Fig. 4C and Supplemental Table S3). We could get similar trends
when we evaluated these models in terms of accuracy, specificity,
and sensitivity and the scenario of other single-omics signatures,
including single-CNV, single-protein expression, single-somatic
mutation, single-miRNA expression, suggesting 2-subgrouping for
glioma patients based on single-omics signatures (or incomplete
multi-omics) is feasible (Supplemental Figs. S5A-D). For a com-
prehensive performance comparison based on multi-omics and
these six single-omics signatures in these five metrics, please refer
to Supplemental Table S3.

Furthermore, we evaluated the optimized FCNs in the aspect of
ROC AUC and Brier scores, and these FCNs were proved to be
robust. For multi-omics signatures, FCN achieved 0.990 ± 0.005
AUC and 0.037 ± 0.0.007 brier score, suggesting the complex func-
tions in the fully connected neural network could capture the
intrinsic relationship between multi-omics signatures and sub-
group labels successfully (Fig. 4D and 4G). Besides, FCNs based
on single-omics signatures showed good performance. For exam-
ple, FCN based on single-gene expression signatures achieved 0.9
71 ± 0.012 AUC and 0.043 ± 0.012 brier score and FCN based on
Fig. 4. Performance evaluation for deep learning predictive models. (A) Comparis
signatures in terms of accuracy, balanced accuracy, kappa, sensitivity, and specificity. (B
expression signatures in terms of accuracy, balanced accuracy, kappa, sensitivity, and spe
on methylation signatures in terms of accuracy, balanced accuracy, kappa, sensitivity, an
based on multi-omics signatures in terms of ROC AUC. (E) Comparison of performance in
ROC AUC. (F) Comparison of performance in subgrouping across model methods base
subgrouping for FCNs across multi-omics signatures and single-omics signatures in term
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single-methylation achieved 0.971 ± 0.005 AUC and 0.047 ± 0.01
4 Brier score (Fig. 4E, 4F and 4G). We observed good predictive
performance when we evaluated FCNs in the situation of other
single-omics signatures (Fig. 4G, Supplemental Figs. S6A-D). All
these results suggest that these potential multi-omics signatures
can provide promising values and the optimized FCNs manage to
capture the intrinsic relationship between these omics signatures
and the survival prognosis of glioma patients. For a comprehensive
performance comparison based on multi-omics and these six
single-omics signatures in these two metrics, please refer to Sup-
plemental Table S4 and Table S5.

3.4. Ranking of landmark omics signatures unveils potential
therapeutic targets

Although the optimized FCNs show excellent performance in
classifying glioma patients into high-risk and low-risk subgroups,
it’s hard to derive informative clues from the black-box models
[42]. Here we employed Olden’s algorithm to the optimized FCNs
we trained from the multi-omics data and extracted importance
scores for each potential omics signature [30].

The individual signature of protein expression contributes most
to classifying glioma patients into risk-associated subgroups, sug-
gesting aberrant protein expression is more likely to be associated
with the survival prognosis of gliomas (Supplemental Figs. 7A and
7B).

For identifying potential therapeutic omics signatures, we
ranked multi-omics signatures in each omics layer. In the CNV sig-
nature layer, the top-ranked CNV signatures included ZNF28,
FAM25C, PSG9, FAM25BP, ANXA8, NLRP2, FAM25G, ZNF285, ST8SIA6,
SHLD2, DHTKD1, PTPN20, ZNF419, PSG3, BMS1P1, NUTM2D,
GLUD1P2, LENG9, LILRB1, and LOC728218 (Fig. 5A). In the gene
expression signature layer, the top-ranked gene expression signa-
tures included BCAN, DLL3, SOX8, SPRY4, MARCKS, EDC3, CIAO1,
MCUB, OLIG1, UBQLN4, DKK3, ITM2C, ATP1A1, TUBA1B, NCEH1,
TSTD1, PPFIBP1, PPM1J, TPM3, and MAPT (Fig. 5B). In the DNA
methylation signature layer, the top-ranked methylation signa-
tures included GNG8, FGF20, MAP3K1, TMEM26, RAB11FIP4,
CCNI2, BIRC3, MT3, GSAP, SPAG9, LRMP, KIAA1549, VSIG2,
on of performance in subgrouping across model methods based on multi-omics
) Comparison of performance in subgrouping across model methods based on gene
cificity. (C) Comparison of performance in subgrouping across model methods based
d specificity. (D) Comparison of performance in subgrouping across model methods
subgrouping across model methods based on gene expression signatures in terms of
d on methylation signatures in terms of ROC AUC. (G) Prediction performance in
s of brier score.



Fig. 5. Ranking scheme of multi-omics signatures. (A) Copy number variation signatures ranking. (B) Gene expression signatures ranking. (C) DNA methylation signatures
ranking. (D) miRNA expression signatures ranking. (E) Protein expression signatures ranking. (F) Somatic mutation signatures ranking.
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CALHM2, AIFM3, METTL24, PDZK1IP1, MYT1, SLC41A3, and
SYNGR2 (Fig. 5C). In the miRNA expression signature layer, the
top-ranked miRNA expression signatures included MIR194-2,
MIR6804, MIR203A, MIR215, MIR3127, MIR3923, MIR4701,
MIR3117, MIR7158, MIR5088, MIR22, MIR5708, LET7A-3,
MIR101-1, MIR9-2, MIR6750, MIR127, MIR494, MIR585, and
MIR1307 (Fig. 5D). In the protein expression signature layer, the
top-ranked protein expression signatures included MAPK3, PRKCA,
CTNNB1, SMAD3, YWHAZ, CDK1, ADAR, COPS5, PXN, YWHAB,
HSPA1A, PIK3CA, IGFBP2, BCL2A1, BID, ANXA1, RICTOR, PDK1,
FN1, and CCNB1 (Fig. 5E). In the somatic mutation signature layer,
the top-ranked somatic mutation signatures included IDH1,chr2:
209113112–209113112,+,Missense_Mutation,SNP,CC > CT, KTI12,
chr1:52499071–52499097,+,In_Frame_Del,DEL,GCCCGCCACCT
GAGGTCCCGCGATCGGGCCCGCCACCTGAGGTCCCGCGATCGG>--,
FRMPD2,chr10:49380999–49380999,+,Silent,SNP,TT > TC, IDH1,ch
r2:209113113–209113113,+,Missense_Mutation,SNP,GG > GA,
TP53,chr17:7577121–7577121,+,Missense_Mutation,SNP,GG > AA,
ARHGAP5,chr14:32561313–32561313,+,Nonsense_Mutation,SNP,
CC > CT, ARHGAP5,chr14:32561316–32561316,+,Nonsense_Muta
tion,SNP,GG > GT, ARHGAP5,chr14:32561340–32561340,+,Mis
sense_Mutation,SNP,GG > GA, RP11-460 N20.5,chr7:64559189–6
4559189,+,RNA,SNP,GG > GA, DUX4L19,chrY:13488193–1348819
3,+,RNA,SNP,GG > GT, EGFR,chr7:55233043–55233043,+,Mis
sense_Mutation,SNP,GG > TT, ARHGAP5,chr14:32561296–325612
96,+,Missense_Mutation,SNP,TT > TC, ARHGAP5,chr14:32561340–
32561340,+,Missense_Mutation,SNP,GG > AA, RNA5-8SP2,chr16:3
3965459–33965459,+,RNA,SNP,CC > CT, ATG2A,chr11:64666182–
64666182,+,Missense_Mutation,SNP,CC > CG, NFKBIZ,chr3:10157
2635–101572635,+,Missense_Mutation,SNP,TT > TG.

(Fig. 5F). To note, a significant portion of these top-ranked top
signatures we identified were already found to be involved in
glioma signaling in various biological pathways or mechanisms.
For example, of top 20 gene expression signatures, more than half
have been reported to be involved in gliomas, including BCAN,
DLL3, SOX8, SPRY4, MARCKS, EDC3, MCUB, OLIG1, DKK3, ATP1A1,
TUBA1B, PPFIBP1, TPM3, and MAPT[43–56]. For a comprehensive
ranking of landmark omics signatures in patient classification,
please refer to Supplemental Table S6.
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3.5. Putative therapeutic targets identified from multi-omics deep
learning

Although there were more than 5,000 potential multi-omics
signatures in our result, the top-ranked signatures were thought
to be more informative and valuable. Here, we selected the top
80 landmark multi-omics signatures, and these included 10 gene
expression signatures, 29 CNV signatures, 29 methylation signa-
tures, 9 protein expression signatures, and 3 miRNA signatures.
Besides, we also considered those 16 somatic mutation signatures
as potential targets.

We performed univariate Cox-PH models using each of the top
80 omics signatures and 16 somatic mutation signatures and iden-
tified 74 survival-associated multi-omics signatures out of these
signatures (Log-Rank P-value < 0.05), including 5 gene expression
signatures, 2 protein expression signatures, 28 methylation signa-
tures, 2 miRNA expression signatures, 29 CNV signatures and 8
somatic mutation signatures (Supplemental Fig. S8). For example,
we found that low copy number variation of CEACAM1 (Fig. 6A,
Log-Rank P-value = 0.00118), high gene expression of DLL3
(Fig. 6B, Log-Rank P-value = 6.23e-06), somatic mutation of IDH1,
chr2:209113112–209113112,+,Missense_Mutation,SNP,CC > CT
(Fig. 6C, Log-Rank P-value = 0.0475), high protein expression of
IGFBP2 (Fig. 6D, Log-Rank P-value = 0.00181), high methylation
of of MAP3K1 (Fig. 6E, Log-Rank P-value = 4.14e-05), and low
miRNA expression of MIR22 (Fig. 6F, Log-Rank P-value
P = 0.0047) were all associated with significantly better glioma
prognosis. Reassuringly, all these potential targets were previously
proved to be involved in glioma progression and even associated
with prognosis in some way [44,57,58–61]. For detailed informa-
tion regarding the relationship between the top 80 omics signa-
tures and somatic mutation signatures and survival prognosis,
please refer to Supplemental Table S7. Another interesting obser-
vation is that all survival-associated CNV signatures and somatic
mutation signatures are positive with good prognoses, which
may be good guidelines to develop therapeutic targets in glioma.

Together, all these results further corroborate our multi-omics
findings and may gain new insights into glioma development and
accelerate precision drug discovery in the future.



Fig. 6. Multi-omics-based identification of potential therapeutic targets for gliomas. (A) CEACAM1 CNV (Log-Rank P-value = 0.00118). (B) DLL3 gene expression (Log-
Rank P-value = 6.23e-06). (C) IDH1,chr2:209113112–209113112,+,Missense_Mutation,SNP,CC > CT (Log-Rank P-value = 0.0475). (D) IGFBP2 protein expression (Log-Rank P-
value = 0.00181). (E) MAP3K1 methylation (Log-Rank P-value = 4.14e-05). (F) MIR22 miRNA expression (Log-Rank P-value = 0.0047).
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4. Discussion

Heterogeneity is one of the main limitations for understanding
and diagnosing glioma. Effective subgrouping method to classify
glioma patients into high-risk and low-risk subgroups is promising
in clinical practice in the field. To our knowledge, we are the first to
use the deep learning framework to integrate comprehensive
multi-omics, including gene expression, miRNA expression, CNV,
protein expression, somatic mutations, and methylation in glioma.
Our high-risk and low-risk subgrouping strategy will benefit the
diagnosis of glioma and provide a survival prognosis guideline
for patients.

The optimized FCN models from multi-omics data achieve
robust predictive performance for classifying glioma patients not
only on multi-omics but also single-omics data, making our deep
learning framework more precise and feasible in the reality. Based
on the prediction model, we derived plenty of interesting biomark-
ers associated glioma risk and progression. For example, CDH11 is
already found to be a risk factor in gliomas, however, the mecha-
nism of how CDH11 may play in gliomas is still unknown [62].
We discovered inhibitive CDH11 methylation will contribute to
poor prognosis in gliomas rather than proliferative CDH11 methy-
lation, aberrant CDH11 gene expression, protein expression,
somatic mutation, and CNV. Other biological results from our sub-
grouping will benefit the understanding of gliomas in the multi-
omics setting as well.

We evaluated and ranked the potential landmark multi-omics
signatures and explored the importance of these signatures overall
or from an individual perspective. Based on ranking of these multi-
omics signatures, we discovered quite a few promising multi-
omics signatures that are significant with survival prognosis and
may serve as potential therapeutic targets to treating high-risk
gliomas in the future.

Key Points.

� A robust deep learning model to integrate multi-omics data in
glioma systematically and explore glioma patient subtypes with
survival prognosis.

� Accurate classification of gliomas is critical with significant clin-
ical implication, and our prediction models could robustly pre-
dict patient cancer risks even with incomplete omics data.

� Our deep learning model could identify landmark omics signa-
tures associated with cancer development, and provide novel
3519
and effective therapeutic targets for hard-to-treat cancer
subtypes.
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