
Chemical and biological approaches to improve the
efficiency of homologous recombination in human
cells mediated by artificial restriction DNA cutter
Hitoshi Katada, Toshimasa Harumoto, Narumi Shigi and Makoto Komiyama*

Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku,
Tokyo 153-8904, Japan

Received December 26, 2011; Revised February 3, 2012; Accepted February 6, 2012

ABSTRACT

A chemistry-based artificial restriction DNA cutter
(ARCUT) was recently prepared from Ce(IV)/EDTA
complex and a pair of pseudo-complementary
peptide nucleic acids. This cutter has freely
tunable scission-site and site specificity. In this
article, homologous recombination (HR) in human
cells was promoted by cutting a substrate DNA
with ARCUT, and the efficiency of this bioprocess
was optimized by various chemical and biological
approaches. Of two kinds of terminal structure
formed by ARCUT, 30-overhang termini provided by
1.7-fold higher efficiency than 50-overhang termini. A
longer homology length (e.g. 698 bp) was about
2-fold more favorable than shorter one
(e.g. 100 bp). When the cell cycle was synchronized
to G2/M phase with nocodazole, the HR was
promoted by about 2-fold. Repression of the
NHEJ-relevant proteins Ku70 and Ku80 by siRNA
increased the efficiency by 2- to 3-fold. It was
indicated that appropriate combination of all these
chemical and biological approaches should be very
effective to promote ARCUT-mediated HR in human
cells.

INTRODUCTION

Precise recombination of huge genome has been attracting
significant interest of chemists, biochemists and biologists.
Homologous recombination (HR) is one of the most
powerful ways to manipulate genome in living cells,
since a target DNA sequence in genome can be altered
to its homologous sequence of choice. In mammalian

cells, however, this recombination occurs with only a
limited frequency (1). In 1994, it was reported that a
double-strand break (DSB) at a specific site in substrate
DNA, induced by a rare cutting endonuclease, notably
activates the repair machinery in cells and drastically
stimulates HR (2). These pioneering works were
extended to elegant HR works using zinc finger nucleases,
conjugates of a non-specific nuclease domain of FokI
restriction enzyme with tandemly assembled zinc finger
proteins, which cut genomes at target site (3–8).
Furthermore, FokI nuclease was fused with a transcrip-
tion activator-like effector (TALEN) (9–12), and engin-
eered homing endonucleases have been also developed
(13–19). These protein-based DNA cutters have been suc-
cessfully used for site-directed mutagenesis in many biolo-
gical and medical applications.
Recently, a completely chemistry-based artificial restric-

tion DNA cutter (ARCUT) has been prepared by
combining Ce(IV)/EDTA complex (molecular scissors)
and two strands of pseudo-complementary peptide
nucleic acid (pcPNA; sequence-recognizing moiety)
(20,21). One of the most significant advantages of this
chemistry-based tool is that the site of selective scission
is a priori determined by Watson–Crick base pairings
between the pcPNA strands and the DNA substrate.
Thus, ARCUT for aimed scission of genomes can be
straightforwardly designed and synthesized without any
selection procedure. The site specificity is high enough to
cut one site in human genome (22). In a preliminary com-
munication (23), it was shown that DSB introduced by
ARCUT is satisfactorily recognized by the repair system
in human cells and stimulates HR therein. A strong
potential of ARCUT as a new tool for genome manipu-
lation was indicated. In this article, ARCUT-mediated
HR in human cells is investigated more in detail.
Substrate DNA is cut at a pre-determined site by
ARCUT and incubated with donor DNA in human
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cells. Various chemical and biological factors are varied,
and their effects on the efficiency of HR are quantita-
tively analyzed. The chemical factors investigated are the
structure of scission terminus (either 50-overhang or
30-overhang) and the length of homology region between
target DNA and donor DNA. Furthermore, the cell cycle
is synchronized to the phases which have been proposed to
be preferable for HR. A typical competitive pathway of
HR (non-homologous end-joining; NHEJ) is suppressed
by using siRNA.

MATERIALS AND METHODS

Preparation of the substrate DNA

The substrate DNA for ARCUT scission (pBFP-N1) was
prepared by introducing five amino acid mutations (T65S,
Y66H, Q80R, I167T and L231H) into pEGFP-N1
(Clontech) with the use of QuikChange site-directed
mutagenesis (Stratagene) according to the manufacturer’s
protocols. The primers are presented in Supplementary
Figure S1 (together with other PCR primers used in
this study).

Preparation of donor DNA

The PCR template (pQE30-EGFP) was constructed from
pEGFP-N1-mut encoding EGFP with three amino acid
substitutions (Q80R, I167T and L231H). The full-length
coding region of EGFP mutant was amplified. The
product was digested with BamHI and HindIII, and
cloned into pQE30Xa plasmid (QIAGEN) which was
digested with these restriction enzymes. Using this
plasmid as template, the donor EGFP short (119 bp) and
the donor EGFP long (717 bp) were prepared by PCR,
and purified by QIAquick PCR purification kit
(QIAGEN).

Site-selective scission of substrate DNA by ARCUT

The Ce(IV)/EDTA solution was prepared by mixing an
aqueous solution of Ce(NH4)2(NO3)6 (20mM) and
EDTA�4Na (20mM) in HEPES buffer and then adjusting
the pH to 7.0 with a small amount of NaOH (20). The
synthesis, purification and characterization of pcPNA
strands were described elsewhere (24). In pcPNA,
pseudo-complementary bases, 2,6-diaminopurine (D)
and 2-thiouracil (Us), are used, in place of conventional
nucleobases A and T, to achieve double-duplex invasion
efficiently [D/Us pairs formed in the pcPNA/pcPNA
duplex are destabilized by the steric repulsion between
amino group of D and the sulphur atom of Us, whereas
D/T and Us/A pairs in the pcPNA/DNA duplexes are
sufficiently stable (25)]. The site-selective scission of
DNA by ARCUT was carried out at 37�C and pH 7.0
(5mM HEPES buffer) for 66 h under the following con-
ditions: [pBFP-N1]=8nM, [each of pcPNAs]=100 nM,
[Ce(IV)/EDTA]=100 mM and [NaCl]=100mM.
The reactions were stopped by adding ethylenediaminete-
tramethylenephosphonic acid to a final concentration of
500mM. Then, the scission fragment (4.7 kb) was purified

by agarose gel electrophoresis (1.5%) and extracted from
the gel using QIAquick Gel Extraction Kit (QIAGEN).

HR in human cells, and its flow cytometry and
sequencing analyses

In DMEM supplemented with 10% fetal bovine serum,
293T cells were maintained at 37�C with 5% CO2. For
the flow cytometric analyses, these cells were seeded at
5� 104 cells on each well in 24-well dish. On the next
day, ARCUT-treated (or non-treated) pBFP-N1 and the
donor EGFP gene fragment (in mole ratio 1:7, 800 ng in
total) were introduced into these 293T cells using
Lipofectamine 2000 (Invitrogen). The ratio of the sub-
strate to the donor DNA was fixed to 1:7, since the
ratios 1:7 and 1:15 provided comparable recombination
efficiency in our previous report (23). The transfection
efficiency was 97.2%, according to a control experiment
in which non-treated pEGFP-N1 was introduced into
293T cells under the same conditions (data not shown).
When the donor EGFP short was used, a dummy DNA
that is irrelevant to either the substrate or the donor was
added to adjust the total amount of DNA to 800 ng. After
48 h incubation, the expressions of EGFP and BFP were
analyzed by a fluorescence microscope (DMI 6000B,
Leica), and the numbers of EGFP positive cells were
counted with a Flow Cytometry (Guava EasyCyte Plus,
Millipore).

For the sequencing analyses, 293T cells, seeded at
2� 105 cells on each well in six-well dish, were transfected
with ARCUT-scission product and the donor EGFP gene
fragment (in mole ratio 1:7, 2 mg in total) using Fugene
HD Transfection Reagent (Roche). After 48 h incubation,
the plasmids were extracted from the cells and isolated by
agarose gel electrophoresis. The plasmids were extracted
from the gel using Get pure DNA kit-Agarose
(DOJINDO), dissolved in ddH2O (10 ml), and transformed
into 50 ml of Escherichia coli DH5a (TOYOBO). After 96
colonies were picked up and cultured in LB media in
96-well deep well plate, the plasmids were purified by
Multi Screen Plasmid DNA purification kit (Millipore).
The sequences were determined by an ABI PRISM 3130
genetic analyzer using 50-CAAATGGGCGGTAGGCGT
G-30 as the primer.

HR in the human cells synchronized to G2/M phase

On each well in six-well dish, 293T cells were seeded at
3� 105 cells. Next day, nocodazole (SIGMA) in DMSO
was added to the medium to a final concentration of
0.1 mg/ml, and the cells were cultured for 18 h. In order
to confirm that the cells were synchronized to G2/M
phase, they were harvested and treated with Guava Cell
Cycle Reagent (Millipore) and analyzed with Guava
EasyCyte plus. To these synchronized 293T cells,
ARCUT-treated pBFP-N1 and the donor EGFP long
(in mole ratio 1:7, 2 mg in total) were introduced using
Fugene HD Transfection Reagent. The cells were
cultured for 48 h, and the recombinant plasmids were
extracted and analyzed as described above.
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Suppression of Ku70 and Ku80 proteins to promote HR

The siRNAs for Ku70 and Ku80 were purchased from
SANTA CRUZ Biotechnology. Non-specific siRNAs are
50-CGUACGCGGAAUACUUCGAAG-30 and 50-UCG
AAGUAUUCCGCGUACGAU-30. To 293T cells, which
were seeded at 2� 105 cells on each well in six-well
dish and incubated for 1 day, siRNA (10 nM in 2.5ml of
medium) was introduced using Lipofectamine RNAiMAX
(Invitrogen), and the cells were cultured for 96 h. At the
time points of 48 and 96 h after the siRNA transfection,
the cells were harvested and the total RNA was extracted
by using ISOGEN (Nippon Gene) for RT-PCR analysis.
The total RNA was treated with DNase (Promega), and
used for the reverse transcription with SuperScript III
Reverse Transcriptase (Invitrogen). The cDNA was
mixed with THUNDERBIRD SYBR qPCR MIX
(TOYOBO), and quantitative PCR was performed
using a CFX96 Real-Time System (Bio-Rad). The
beta-2-microglobulin (B2M) gene was used as internal
standard.

For HR experiments, at the time point of 48 h after
siRNA treatment, the cells were transfected with
ARCUT-treated pBFP-N1 and the donor EGFP long
(in mole ratio 1:7, 2 mg in total) using Fugene HD
Transfection Reagent. The cells were cultured for 48 h,
and the recombinant plasmids were analyzed as described
above.

RESULTS AND DISCUSSION

Design of HR experiments

The ARCUT-promoted HR was carried out as shown in
Figure 1a. The substrate plasmid pBFP-N1 contains the
gene of blue fluorescent protein (BFP), which is under the
control of a CMV promoter. On the other hand, the donor
DNA codes a part or the whole of enhanced green fluor-
escent protein (EGFP). Note that these donor DNAs have
no initiation codon so that they never express EGFP by
themselves. The BFP and the EGFP have the same amino
acid sequences except for the amino acids in their

chromophore sites (Ser65, His66 and Gly67 for
BFP versus Thr65, Tyr66 and Gly67 for EGFP; see
Figure 1b). With the use of ARCUT, the
chromophore-coding site of the BFP in the substrate
DNA was cut, and the scission product was introduced
into 293T cells after being purified by gel electrophoresis,
together with the donor EGFP fragment. Thus, the
amount of the recombinant protein, which is formed in
the cells and emits green fluorescence, directly reflects the
efficiency of HR reactions in the human cells.
In ARCUT, two pcPNA strands are laterally shifted by

several nucleotides and the resultant single-stranded
portions (the parts underlined in red in Figure 2a) are
cut by the molecular scissors Ce(IV)/EDTA. Thus, in
the scission termini, either of the two DNA strands pro-
trudes the other by 10–15 nt, and the overhang structure
depends on the direction of the lateral shift of two pcPNA
strands (Figure 2b). This feature is in contrast with cur-
rently available protein-based cutters, which almost
always provide only 50-overhang termini. In order to in-
vestigate the effect of these overhang structures on the
efficiency of HR, two sets of ARCUT were designed. In
the DNA scission by ARCUT-50-overhangs (the set of
pcPNA1 and pcPNA2), both of the scission ends have
50-overhang structures (the 50-end of each DNA strand is
protruding). On the other hand, 30-overhang structures are
formed by ARCUT-30-overhangs (the set of pcPNA3 and
pcPNA4). These two ARCUTs cut the substrate DNA at
the target site, as was clearly evidenced by the electrophor-
esis in Supplementary Figure S2.

Effect of the homology length on the efficiency of
ARCUT-mediated HR in human cells

In Figure 3a, two donor DNAs of different lengths were
used. The donor EGFP long (717 bp) contains a homology
sequence of 185 bp in the upstream of the chromophore-
coding site and a homology sequence of 513 bp in the
downstream. On the other hand, the donor EGFP short
(119 bp) contains homology sequences of 50 bp in both the
upstream and the downstream. With the use of
ARCUT-30-overhangs (also with ARCUT-50-overhangs),

Figure 1. (a) HR in human cells to convert the chromophore of BFP to the chromophore of EGFP. (b) The sequences of BFP and EGFP near the
chromophore-coding regions.
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HR was efficient as evidently shown by the emission
of green fluorescence from the recombinant protein
(Figure 3b). Without the ARCUT scission, however, HR
hardly took place. The number of green fluorescence-
emitting cells was determined by flow cytometric analysis
(Figure 3c). When the donor EGFP long (L) was used, the
fraction of green fluorescence-emitting cells in the total
cells was 22.5%. With the use of the donor EGFP short
(S), the fraction was slightly lower (11.1%). As was pre-
viously reported, a longer donor is more favorable for HR
(26). However, it is noteworthy that, without the ARCUT
treatment, HR is much less efficient with EGFP long and
virtually nil with EGFP short. Essential role of ARCUT
for efficient HR is reconfirmed.

Effect of DSB structure on the HR efficiency

In order to estimate the efficiency of HR for the
30-overhang structure and the 50-overhang structure quan-
titatively, the recombinant plasmids were extracted from
the cells and directly analyzed by sequencing experiments
(Table 1). With the use of ARCUT-30-overhangs, the
fraction of the correctly repaired plasmids, which had a
chromophore of EGFP, was 10.1% of the total plasmids.
With ARCUT-50-overhangs, the fraction of the repaired
plasmids was 6.0%. Apparently, DSB of 30-overhang
structure is 1.7-fold more suitable for the HR than DSB
of 50-overhang structure.
It has been mostly accepted that, in the initial step of

HR, the termini of DSB are resected, and the resultant

30-overhangs invade homologous sequences in the donor
DNA (27). With the ARCUT-50-overhangs, the resection
must extend beyond the border I (for the lower DNA
strand) or the border II (for the upper DNA strand),
since otherwise a 30-overhang structure is not obtained
(Figure 2b). On the other hand, the DSB created by
ARCUT-30-overhangs intrinsically possesses 30-overhang
structures. Thus, the preference of the 30-overhang struc-
ture is consistent with this mechanism. It has been defin-
itely concluded that, in order to achieve HR efficiently in
human cells by ARCUT, two pcPNA strands should be
laterally shifted toward the C-terminal end of each pcPNA
(50-direction of the complementary DNA strand) to form
30-overhang termini.

By-products of the ARCUT-mediated HR in human cells

As shown in Table 1, the HR is accompanied by two side
reactions, which are categorized into two classes. In the
‘mutation’, several nucleotides were deleted or inserted at
the DSB site (a representative sequence is shown in
Figure 4a). They cover about 10% of the recombinants.
The other one (�4%) is ‘donor integration’ in which the
whole of the donor EGFP fragment was ligated into the
substrate BFP plasmid (Figure 4b). These by-products
could be attributed to NHEJ as an alternative major
pathway of DSB repair.

Many other plasmids carried the BFP gene. Apparently,
the scission fragment of the BFP, formed by ARCUT, was
directly connected each other and returned to the original

Figure 2. (a) Two sets of ARCUT used in this study to provide different DSB structures (50-overhangs and 30-overhangs). Note that the
single-stranded portions underlined in red are selectively hydrolyzed by Ce(IV)/EDTA. The terms D and U refer to pseudo-complementary
nucleobases 2,6-diaminopurine and 2-thiouracil, respectively. In order to promote the activity of ARCUT, lysines (Lys) and phosphoserines
(P) are attached to the termini of pcPNAs (20). (b) Terminal structures of DSB produced by these two types of ARCUT. In order to expose
homologous sequences for HR, the overhangs formed by ARCUT must be resected at least down to the borders I and II.
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form. This reversal could occur either in human cells
or in E. coli, which was used for the cloning
procedure. Thus, it is not conclusive, which is really the
case.

Promotion of the HR by cell cycle synchronization

It has been known that the balance between HR and
NHEJ for DSB repair depends on the cell cycle (28,29).
HR is up-regulated in later S phase to G2 phase, whereas
NHEJ is effective in G1 to early S phase. In Figure 5, 293T
cells were synchronized into G2/M phase using
nocodazole. The distribution was G0/G1:6.3%, S:31.2%
and G2/M:62.4% (the right panel). Compared with asyn-
chronous cells in the left panel (G0/G1:41.8%, S:40.5%
and G2/M:17.6%), the population of G2/M is notably
increased. Exactly as expected, the HR by
ARCUT-30-overhangs in these nocodazole-treated cells
was �2-fold more effective than in asynchronous cells
(Table 2; the entries 1 and 2). The cell cycle synchroniza-
tion is certainly effective to promote ARCUT-mediated
HR in human cells.

Suppression of competitive NHEJ pathway
by RNA interference

The efficiency of ARCUT-mediated HR in human cells
was also improved by depletion of NHEJ-relevant
proteins Ku70 and Ku80. The DSB repair by NHEJ
starts by the binding of a heterodimer of these subunits
to the DSB ends. Thus, a classical gene targeting through
HR was promoted by depletion of Ku70 protein (30,31).
In Figure 6, the expressions of Ku70 and Ku80 proteins in
293T cells were repressed with the use of the correspond-
ing siRNA. The levels of the mRNA were decreased to less
than 9%. Under these conditions, the efficiency of HR by
ARCUT-30-overhangs was increased by 2.7-fold with
Ku70 siRNA and by 2.0-fold with Ku80 siRNA, in com-
parison with the efficiency with non-specific siRNA
(Table 2; see the entries 3–5).
In the Ku80 siRNA-treated cells, the deletions of

several nucleotides at the chromophore-coding site
slightly prevailed. A similar result was obtained for the
treatment with nocodazole (Table 2; the entry 2).
Apparently, some of the DSBs formed by the ARCUT
were repaired by a pathway other than HR and NHEJ.
One of the probable candidates is alternative NHEJ
(alt-NHEJ), which involves extensive resection of DSB
ends, and is dominant in the cells lacking the Ku
proteins (32–34). In order to suppress this side reaction,
knock-down of PARP1 as an alt-NHEJ-specific protein
could be effective (35,36).
The attempts to combine this approach with the cell

synchronization by nocodazole, described in the previous
section, and improve the efficiency furthermore were un-
successful, since the cell viability was severely impaired
when the cells were consecutively treated by these two
procedures. Further optimization of the experimental con-
ditions should be necessary.

Figure 3. Effects of the homology length on the ARCUT-mediated HR
efficiency in human cells. (a) The substrate DNA coding BFP and the
donor DNAs having different lengths of homology regions. (b) Typical
fluorescence microscopy images of the 293T cells cultured for 48 h after
the transfection with the ARCUT-treated substrate DNA and the
donor EGFP long (717 bp). The upper and lower panels show blue
channel (Ex: 360 nm, Em: 470 nm) and green channel (Ex: 480 nm,
Em: 520 nm), respectively. (c) The fraction of green fluorescence-
emitting cells in the total cells measured by flow cytometry. The
terms L and S refer to the donor EGFP long and the donor EGFP
short, respectively.

Table 1. Comprehensive analysis of the plasmids extracted from 293T

cells cultured for 48 h after the transfection of ARCUT-scission

product together with the donor EGFP long

Number
of plasmids
analyzed

EGFP,
n (%)

Mutation,
n (%)

Donor
integration,
n (%)

BFP,
n (%)

50-overhang 167 10 (6.0) 18 (10.8) 6 (3.6) 133 (79.6)
30-overhang 158 16 (10.1) 16 (10.1) 7 (4.5) 119 (75.3)
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Figure 4. Representative by-products of HR, which are formed through (a) ‘mutation’ and (b) ‘donor integration’.

Figure 5. Cell cycle distribution with the treatment of 0.1 mg/ml nocodazole (right) and without the treatment (left). Flow cytometry was carried out
at 18 h after the treatment. The results of HR on these cells are presented in Table 2.

Table 2. Effects of cell cycle synchronization and suppression of NHEJ on the product distribution

Entry Treatment Number of
plasmids analyzed

EGFP,
n (%)

Mutation,
n (%)

Donor integration,
n (%)

BFP,
n (%)

1 Asynchronous 72 9 (12.5) 7 (9.7) 3 (4.2) 53 (73.6)
2 Nocodazole 83 18 (21.7) 16 (19.3) 3 (3.6) 46 (55.4)
3 Non-specific siRNA 79 10 (12.7) 14 (17.7) 2 (2.5) 53 (67.1)
4 Ku70 siRNA 88 27 (30.7) 13 (14.8) 2 (2.3) 46 (52.3)
5 Ku80 siRNA 84 20 (23.8) 20 (23.8) 4 (4.8) 40 (47.6)

The 293T cells were synchronized to G2/M phase by nocodazole (entries 1 and 2) or treated with siRNAs (entries 3–5). Then,
the cells were transfected with ARCUT product together with the donor EGFP long, and cultured for 48 h. The results of the
nocodazole treatment and the siRNA treatment are presented in Figures 5 and 6, respectively.
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CONCLUSION

An artificial restriction DNA cutter (ARCUT) is a recently
developed chemical tool to cut double-stranded DNA at a
pre-determined site, which can be determined simply in
terms of Watson–Crick rule. The structure of its scission
termini (30- or 50-overhang) can be easily and straightfor-
wardly modulated according to our need, although most
of protein-based DNA cutters currently available provide
only the termini of 50-overhang structures. In this work,
ARCUT was used to form a DSB at target site and stimu-
late aimed HR in human cells. A substrate DNA, cleaved
at a pre-determined site by ARCUT, was introduced into
human cells together with a donor DNA, and the
efficiency of HR was quantitatively evaluated. Of two
kinds of scission ends formed by ARCUT, 30-overhang
terminal structures provide better HR efficiency than
50-overhang terminal structures. Longer donor DNA is
more favorable for ARCUT-mediated HR, although the
HR is successful even with very short homology site
(e.g. 50 bp in each side). The efficiency of this HR is
notably promoted when human cells were synchronized
into G2/M phase. The suppression of NHEJ through re-
pression of the relevant proteins Ku70 and Ku80 was also
effective to promote ARCUT-mediated HR. All these
chemical and biological approaches are, in principle, inde-
pendent from each other. Accordingly, appropriate
combination of them should be very effective to
promote ARCUT-mediated HR in human cells. These
attempts, as well as the applications of ARCUT to target-
ing of human genome, are currently under way in our
laboratory.
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