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Abstract

A cancer immune phenotype characterized by an active T-helper 1 (Th1)/cytotoxic response is associated with
responsiveness to immunotherapy and favorable prognosis across different tumors. However, in some cancers, such an
intratumoral immune activation does not confer protection from progression or relapse. Defining mechanisms associated
with immune evasion is imperative to refine stratification algorithms, to guide treatment decisions and to identify
candidates for immune-targeted therapy. Molecular alterations governing mechanisms for immune exclusion are still
largely unknown. The availability of large genomic datasets offers an opportunity to ascertain key determinants of
differential intratumoral immune response. We follow a network-based protocol to identify transcription regulators (TRs)
associated with poor immunologic antitumor activity. We use a consensus of four different pipelines consisting of two
state-of-the-art gene regulatory network inference techniques, regularized gradient boosting machines and ARACNE to
determine TR regulons, and three separate enrichment techniques, including fast gene set enrichment analysis, gene set
variation analysis and virtual inference of protein activity by enriched regulon analysis to identify the most important
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TRs affecting immunologic antitumor activity. These TRs, referred to as master regulators (MRs), are unique to
immune-silent and immune-active tumors, respectively. We validated the MRs coherently associated with the
immune-silent phenotype across cancers in The Cancer Genome Atlas and a series of additional datasets in the Prediction
of Clinical Outcomes from Genomic Profiles repository. A downstream analysis of MRs specific to the immune-silent
phenotype resulted in the identification of several enriched candidate pathways, including NOTCH1, TGF-β, Interleukin-1
and TNF-α signaling pathways. TGFB1I1 emerged as one of the main negative immune modulators preventing the favorable
effects of a Th1/cytotoxic response.

Key words: transcription regulator; master regulator analysis; immunologic constant of rejection; immune exclusion; gene
regulatory networks

INTRODUCTION

Over the past decade, corroborations of the effects of antitumor
immunity on tumor progression have piled up. The discovery of
escape mechanisms of the tumor-immune system, including the
identification of immune checkpoints, has led to major advance-
ments in immunotherapy [1–3]. Despite these advancements, a
significant proportion of patients (60-80%) who are treated with
immunotherapy still fail to obtain better clinical outcomes [1].

It is now accepted that a T-cell inflamed cancer phenotype
is associated with responsiveness to immunotherapy and a
favorable prognosis [3–6]. In this context, we previously defined
the immunologic constant of rejection (ICR), a signature that
captures the concomitant activation of innate and adaptive
immune effector mechanisms required for the occurrence
of immune-mediated tissue-specific destruction [9]. The
ICR consists of 20 transcripts belonging to four functional
categories: CXCR3/CCR5 chemokines (CXCL9, CXCL10, CCL5),
Th1/Interferon-γ signaling (IFNG, IL12B, TBX21, CD8A, CD8B,
STAT1, IRF1), cytotoxic (GNLY, PRF1, GZMA, GZMB, GZMH)
and immune regulatory (CD274, CTLA4, FOXP3, IDO1, PDCD1)
functions [9, 23, 28, 50, 60, 62]. We have previously assessed
the prognostic and predictive implications of ICR in different
settings and used such a signature to define discrete categories
of immune subtypes i.e. ICR high (ICR-H), ICR medium (ICR-
M) and ICR low (ICR-L) within each solid tumor included in
The Cancer Genome Atlas (TCGA) data [12, 49]. However, while
prognostic and predictive connotations of the intratumoral
immune response have been extensively addressed, the
mechanisms governing the molecular alterations underlying
immune exclusion are poorly understood. Thus, it is imperative
to identify key driver genes and their associated downstream
mechanisms leading to immune exclusion to develop effective
therapeutic strategies [50].

Using the TCGA database, pan-cancer analyses have sought
to address this critical question by correlating the mutational
status of driver cancer genes and/or the status of oncogenic
signals with the degree of the intratumoral immune response
[7, 8, 16, 19, 49, 59]. While some of the oncogenic signals have
been validated in experimental models [34, 56], a considerable
proportion of intratumoral immune response variation remains
unexplained [8]. It is presently unknown whether an intrinsic
activation of transcription regulators (TRs) involved in sustain-
ing the oncogenic process can influence distinct immune dispo-
sition and their prognostic implications, and this represents our
working hypothesis.

A necessary condition for tumor progression and drug resis-
tance is transcriptional dysregulation [24, 32]. A majority of
cancer driver genes are TRs [20]. TRs are largely dysregulated

due to genomic aberrations or alterations in their regulatory
proteins, which in return can modulate the expression of their
target genes, referred to as its ‘regulon’. These TRs have been
identified as key oncogenic drivers whose activity patterns are
influential to a patient’s clinical prognosis [21].

Here we use the TCGA RNA-Seq data to discover key driver
TRs, referred to as master regulators (MRs), for the immune-
silent cancer phenotype. We utilize the RNA-Seq data for 12
cancer types, comprising a total of 2307 primary tumor samples
divided into ICR low (ICR-L and immune silent) and ICR high
(ICR-H and immune active) [49], each having gene expression
for 3674 TRs and 23 216 target genes. These 12 cancers include
8 tumor types in which ICR bears a favorable prognostic impli-
cation referred as ICR enabled (IRC-E) tumors and 4 cancer types
in which ICR is associated with unfavorable prognosis, namely
ICR disabled (ICR-D) tumors as illustrated in [49].

There have been several methods in the literature [15, 38]
that have been used in previous studies to perform MR analysis
(MRA). A primary ingredient for MRA is to reverse engineer a
high quality gene regulatory network (GRN) consisting of TR-
target gene interactions (regulon or gene sets) from RNA-Seq
data. This is one of the central problems in computational biol-
ogy, and a plethora of techniques have been proposed, includ-
ing mutual information-based method ARACNE [37] and tree-
based machine learning techniques such as GENIE [33] and
regularized gradient boosting machine (RGBM) [17, 22, 41–44,
51]. In [45], through an open-science competition (DREAM Chal-
lenge), the authors compared various GRN inference methods
on several synthetic and real datasets. In [26], the authors illus-
trated the superior performance of RGBM for the DREAM Chal-
lenge networks (see Supplementary Figure S1b). Hence, RGBM
is the primary GRN inference technique focused on in this
work.

Another key component of MRA is to estimate enrichmen-
t/activity scores for TRs in a given sample, taking into consid-
eration its regulon. This is essential to identify differentially
enriched/activated TRs (MRs). While techniques such as RGBM
utilize a simplistic difference in average expression of positively
and negatively regulated targets to estimate the activity of a
TR, methods such as virtual inference of protein-activity by
enriched regulon analysis (VIPER) [8] and MARINA [6] utilize
a dedicated algorithm formulated to estimate TR activity tak-
ing into account the TR mode of action, the TR-target gene
interaction confidence and the pleiotropic nature of each target
gene regulation. Moreover, there exists single sample gene set
enrichment analysis [57] techniques such as gene set varia-
tion analysis (GSVA [27]) and fast gene set enrichment analysis
(FGSEA [53]) to estimate enrichment score for each TR in a
given sample. This is utilized for further differential analysis
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(ICR-H versus ICR-L) to identify the key MRs w.r.t. a phenotype
of interest.

In recent literature, techniques such as Netfactor [8] and [24]
take a consensus based approach to identify signature specific
MRs or estimate TR activities, respectively. It was shown in [24]
that since the TR regulons are estimated by taking a consensus
approach, they are more robust for downstream tasks with less
likely to be influenced by false positives. Following the same
principle, we identify the MRs specific to immune-active and
immune-silent cancer phenotypes by taking a consensus (inter-
section) of the MRs determined by using four different MRA
pipelines: (a) RGBM + FGSEA, (b) RGBM + GSVA, (c) RGBM + VIPER
and (d) ARACNE + VIPER. Thus, in our proposed framework, we
use two state-of-the-art GRN inference techniques and three
different gene set enrichment/activity estimation techniques to
robustly determine the MRs.

We investigate the MRs that are common across 12 cancer
types and are specific to either the ICR-H or ICR-L phenotype.
We perform a validation of these MRs by observing expected
activity patterns (with statistical significance) for ICR-H and ICR-
L samples in each of the remaining cancer types in TCGA. These
cancer types, referred as ICR neutral (ICR-N), have no clear corre-
lation between the immunological status and prognosis [49] and
thus serve as a test set for pan-cancer validation. Furthermore, in
another replication study, we observe expected activity patterns
for MRs specific to either ICR-H or ICR-L phenotype on a set
of eight different datasets (cancer types) in the Prediction of
Clinical Outcomes from Genomics Profiles (PRECOG) repository
[25]. Finally, we perform downstream analysis of the MRs specific
to ICR-L using ConsensusPathDB [35] to discover corresponding
enriched pathways, several of which are potential candidates
that can be targeted to readjust the immunosuppressive tumor
microenvironment. The primary contributions of our work are
as follows:

• A framework which takes the consensus of four different
MRA pipelines to identify MRs specific to immune-active and
immune-silent phenotype.

• Validation of the activities of MRs specific to ICR-L and ICR-H
on sets from two different data sources i.e. the ICR-N cancer
types in TCGA and the PRECOG datasets.

• Downstream analysis of MRs specific to ICR-L lead to the
unbiased identification of enriched pathways, such as the
NOTCH1, TGF-β, Interleukin-1 and TNF-α signaling pathways,
which can potentially be targeted to readjust the immuno-
suppressive tumor microenvironment.

• TGFB1I1 emerged as one of the main negative immune mod-
ulators preventing the favorable effects of a Th1/cytotoxic
response.

Figure 1 illustrates the protocol followed for RGBM + FGSEA
(one of the four consensus methods) to identify the MRs from
the RNA-Seq data (see Supplementary Figure S1a) differentiating
ICR-H from ICR-L phenotype. Table 1 represents the notation
table for all the abbreviations used in this work.

MATERIALS AND METHODS
Transcriptional regulators

We wanted to select a wide list of candidates as TRs, looking
for all the genes involved in the process that modulate the fre-
quency, rate or extent of cellular DNA-templated transcription.
Therefore, we selected all the genes annotated with the Gene

Table 1. List of notations and abbreviations used

TR Transcription regulator
MR Master regulator
GRN Gene regulatory network
ICR Immunologic constant of rejection
NES Normalized enrichment score
MRA Mater regulator analysis
TCGA The Cancer Genome Atlas
PRECOG Prediction of Clinical Outcomes for Genomics profiles
RGBM Regularized gradient boosting machine
GSEA Gene set enrichment analysis
FGSEA Fast gene set-enrichment analysis
GSVA Gene set variation analysis
VIPER Virtual inference of protein activity by enriched regulons
ICR-H ICR high → highest expression of ICR genes →

immune-active phenotype
ICR-L ICR low → lowest expression of ICR genes →

immune-silent phenotype
ICR-M ICR medium → medium expression of ICR genes
ICR-E ICR enabled cancers or eight cancer types in which ICR-H

has favorable prognosis in terms of clinical outcome [49]
ICR-D ICR disabled cancers or four cancer types in which ICR-L

has favorable prognosis in terms of clinical outcome [49]
ICR-N ICR neutral cancers (20 cancer types) that have no clear

correlation between ICR and prognosis [49]
ICR-EH ICR enabled cancer and ICR high sample within that

cancer
ICR-EL ICR enabled cancer and ICR low sample within that cancer
ICR-DH ICR disabled cancer and ICR high sample within that

cancer
ICR-DL ICR disabled cancer and ICR low sample within that

cancer

Ontology (GO) term GO:0006355 (regulation of transcription) [5].
The interrogation of the GO through Ensembl Biomart was per-
formed in August 2018 resulting in a list of 3674 TRs. Previously
tools such as ARACNE, VIPER and NetFactor focused on tran-
scription factors (TFs). Moreover, the original RGBM algorithm
also exploited an active binding network based on binding sites
of TFs. Recently, there have been studies [14, 47, 48] that extend
the hubs of GRNs to regulatory proteins beyond the TFs. For
example, in [48], the authors considered a set of 2506 regulatory
proteins annotated in GO with TF activity and transcription
cofactor activity. Our set of 3674 TRs was a superset of their set
including receptors, kinases, growth factors, signal transduction
proteins, transcription co-activators and cofactors as candidate
regulators.

Other interesting examples where hubs of the networks were
focused on signal molecules (and not just TFs) include approach
such as SigMaps [14] or surface receptors i.e. the receptors inter-
actome, to identify active ligand-receptors pairs [47]. These stud-
ies used ARACNE + VIPER and generalized the concept of MRA
to generic signal molecules (not just TFs) as originally intended
in [6, 37].

Data acquisition and normalization

RNA-Seq data from the TCGA website were downloaded and
processed using TCGA biolinks. RNA-Seq data for each cancer
were represented as Dc = {gc

1,i, gc
2,i, . . . , gc

p,i}, ∀i ∈ {1, . . . , Nc}, where
c represents the cancer type, i corresponds to the ith sample, gc

j,i

refers to the expression of the jth target gene in sample i and Nc

represents the total number of samples available for that c. We
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Fig. 1. Identification of differentially active MRs for the ICR phenotype using one of the four master regulator analysis pipelines (RGBM + FGSEA). (A) RNA-Seq gene

expression in the TCGA samples for one cancer, for example, breast invasive carcinoma (BRCA) was processed to be quantile-normalized and log2 transformed. (B)

GRN inferred from the RNASeq data using RGBM for a given cancer. The GRN estimated TR-target interactions (see Supplementary Table S1 for details about TR-target

network characteristics). (C) Correlation matrix determined using RNA-Seq and GRN, leading to the quantification of positively and negatively regulated targets for

each TR. (D) The single-sample TR activities obtained from gene expression data and the TR regulons. (E) Top statistically significant (P≤ 0.05) differentially active

TRs, referred to as MRs, determined using the FGSEA technique. (F) Activity matrix corresponding to the MRs for a cancer type along with the encoded phenotype

information. Here ‘yellow’ samples refer to ICR high phenotype whereas the ‘green’ samples belong to ICR low phenotype.

had a total of p = 23 216 target genes, including 3674 TRs. The
RNA-Seq data from 32 primary solid tumor cancers were used in
our analysis. These samples were quantile normalized and log 2
transformed for analysis (see Figure 1A).

From the PRECOG repository, we selected 8 datasets, each
corresponding to a different and the largest unique dataset
available for a particular cancer type as the validation set. These
included GEO Accession Id: GSE32894 for bladder urothelial
carcinoma (BLCA), GSE3494 for breast invasive carcinoma (BRCA),
GSE39582 for colon adenocarcinoma (COAD), GSE108474 for
glioblastoma multiforme (GBM), GSE65858 for head and neck
squamous cell carcinoma (HNSC), GSE72094 for lung adenocar-
cinoma (LUAD), GSE9891 for ovarian serous cystadenocarcinoma
(OV) and GSE65904 for skin cutaneous melanoma (SKCM). Each
of these 8 datasets consisted of 224, 251, 579, 490, 270, 398,
278 and 210 tumor samples, respectively, and were normalized
using ‘rma’ or quantile normalization [13], followed by log 2
transformation, depending on the platform i.e. Affymetrix and
Illumina, respectively. These normalized datasets along with ICR
information for each sample within a cancer type were obtained
from [61].

ICR classification and cancer type selection

Gene signatures found in early studies on tumor rejection
by immunotherapy strongly overlap with pathways that were

upregulated during other instances of immune-mediated tissue
rejection like graft versus host disease, allograft rejection or
autoimmunity [63]. This observation led to the formulation of
the ICR. More specifically, ICR reflects coordinated activation
of IFN-stimulated genes, upregulation of specific chemokine
ligands, Th1 polarization and induction of immune effector
functions, paralleled by the counter-activation of immune
regulatory mechanisms [23, 28, 49, 50].

We previously classified the cancer samples in the TCGA
using ICR classification [49] for each cancer type c. In short, a
consensus clustering [49] algorithm based on the expression of
the 20 ICR genes [49] was applied to the cancer samples of a
particular cancer c, to classify its samples into three discrete
categories: ICR high (ICR-H and immune active i.e. hot immune
phenotype), ICR medium and ICR low (ICR-L and immune silent
i.e. cold immune phenotype).

The cluster with the highest expression of ICR genes was
termed ICR-H, while the cluster with the lowest ICR gene expres-
sion was termed ICR-L. All samples in the intermediate cluster
were defined as ICR medium (ICR-M) for each cancer, c, as
indicated in [49]. The code and instructions to obtain the ICR
class labels for all tumor samples of a specific cancer, c, are
available in our repository https://github.com/raghvendra5688/
ICR_Analysis (see Supplementary Table S2 for a breakdown of
the tumor samples into the ICR-H, ICR-M and ICR-L categories
for each cancer of interest). Our objective was to compare the

https://github.com/raghvendra5688/ICR_Analysis
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cancer samples with a highly active immune phenotype i.e.
ICR-H with the immune-silent phenotype i.e. ICR-L. In [49], we
emphasized that there exists a subset of cancer types where
ICR-H has a better survival prognosis than ICR-L. These eight
cancer subtypes were referred to as ICR enabled (ICR-E) cancers.
Similarly, there exists a subset of four cancer types for which
the ICR-L group has better survival prognosis than ICR-H group,
which we defined as ICR disabled (ICR-D) cancers. All remaining
cancers were classified as ICR neutral (ICR-N). Thus, in this work,
we primarily focused on these 12 cancer types (8 ICR-E and 4
ICR-D cancer types) as the ICR phenotype has prognostic value
in these cancer types [49].

Inferring gene regulatory networks

Given Dc, we inferred GRN between the TRs and the target
genes (i.e. TR-target edges, Figure 1B), using two different state-
of-the-art techniques, namely RGBM [42] and ARACNE [37]. The
inferred GRNs were weighted and unsigned. For quality control,
we remove those TRs whose regulon size were less than 10 in
both RGBM and ARACNE inferred GRNs. We used the ‘RGBM’
and ‘corto’ packages in R to perform the RGBM and ARACNE
methods for GRN inference, respectively. A brief description of
these methods is provided in the Supplementary.

Scoring TR activities

Given Dc and the GRN (Gc) for a particular cancer c, the level of
activity of a TR in a sample can be estimated as a function of
the collective mRNA levels of its targets as illustrated in RGBM
[42] and VIPER [8]. More details about TR activity estimation for
RGBM are provided in the Supplementary.

Gene-set enrichment analysis and MR selection

In VIPER, a probabilistic framework that directly integrates the
target mode of regulation i.e. whether targets are activated
or repressed, confidence in regulator-target interactions and
target overlap between different regulators (pleiotropy) is
utilized to compute the normalized enrichment score of a
TR’s regulon. Since VIPER expresses activity for all the TRs
on the same scale i.e. NES, we can now perform differential
analysis using a Bayesian statistical framework such as LIMMA
[54] (‘limma’ package in R) to identify differentially activated
TRs (MRs) between ICR-H and ICR-L samples for a particular
cancer c.

In FGSEA [53], to identify the differentially active TR regulons
between ICR-H and ICR-L primary tumor samples, we first esti-
mate the average mRNA level difference of each gene between
the two groups. This difference represents the fold change score
(FC-score). To determine the enrichment score with statistical
significance for specific TR regulons, we use the ‘fgsea’ function
in the ‘fgsea’ package in R [53]. We select TRs with FDR-adjusted
[11] P ≤ 0.05 and |NESc| > 1.0 for all cancer types as differentially
activated MRs (Figure 1E). Figure 1F highlights the activity of the
MRs indicating some MRs have high activity in ICR-H samples
but low activity in ICR-L samples and vice-versa.

In GSVA, a non-parametric, unsupervised technique is used
to estimate TR regulon enrichment scores as a function of genes
inside and outside the regulons analogously to a competitive
gene set test [27]. We use the ‘gsva’ function in the ‘gsva’ package
in R providing the expression information, TR regulons, maxi-

mum and minimum size of a regulon as input while keeping all
other parameters at their default settings. We obtain a sample-
specific enrichment score for each TR regulon, which can now be
utilized to perform differential analysis using a Bayesian statis-
tical framework, such as LIMMA, to determine the differentially
activated TRs (MRs) between ICR-H and ICR-L samples for a
cancer type c.

Pathway enrichment analysis

We use ConsensusPathDB [30, 35] for the functional and pathway
enrichment analysis of MRs common across the 12 cancer types
for the ICR-H and ICR-L phenotypes separately (latest version
[36]). ConsensusPathDB allows us to perform overexpression
analysis on top of differentially activated MRs to identify signif-
icantly enriched molecular functions (M), cellular components
(C), biological process (BP), pathways (P) and protein complexes
(PC). The advantage of using ConsensusPathDB over a popular
tool like DAVID [31] is that it provides the option to search
through multiple databases (different types of interactions) to
find enriched pathways, unlike DAVID, which only uses the
KEGG database. Moreover, unlike ingenuity pathway analysis,
ConsensusPathDB is a free open source software available for
such enrichment analysis. Since we consider well annotated TFs
(genes) along with receptors, kinases and proteins in our list
of transcriptional regulators, we only include databases such
as Biocarta, CORUM, Innate DB, KEGG, WikiPathways, Reactome,
Nepath, PIC and PINdb, all of which are available in Consensus-
Pathdb, for our downstream enrichment analysis. The visualiza-
tion of the enriched pathways obtained via ConsensusPathDB is
performed using the ‘func2vis’ package in R.

EXPERIMENTAL RESULTS
MR identification using consensus framework

Detailed information about the 12 cancers of interest and the
number of ICR-H, ICR-L and ICR-M samples in each cancer
is provided in Supplementary Table S2. A comparison of the
inferred GRNs from the RGBM and ARACNE methods (per cancer
c) is provided in Supplementary Table S1. In this work, we used
four different pipelines for performing MRA: (a) RGBM + FGSEA,
(b) RGBM + GSVA, (c) RGBM + VIPER and (d) ARACNE + VIPER and
take a consensus i.e. intersection of the MRs determined by these
varied pipelines as the differentially activated MRs between ICR-
H and ICR-L samples for a particular c. For the RGBM + FGSEA
method, we used the |NESc| > 1.0 and FDR-adjusted P ≤ 0.05 as
the selection criterion for identifying the differentially activated
TRs (MRs). However, for the other 3 pipelines to be less restrictive,
we selected all TRs with FDR-adjusted P ≤ 0.05 when comparing
the enrichment scores between ICR-H and ICR-L samples as our
MRs. Supplementary Figures S1c and S1d illustrate the volcano
plot as well as the differential activity of the MRs identified using
each of the four different MRA pipelines for an ICR-E cancer
(BLCA) and an ICR-D cancer, LGG (brain lower grade glioma),
respectively. The total number of consensus MRs for each cancer
type of interest is highlighted in the Supplementary. Supplemen-
tary Figure S1e highlights the MRs identified using the different
MRA pipelines as Venn diagrams for each of the 12 cancers of
interest.

Finally, we investigate whether the MRs identified were influ-
enced by tumor purity levels in the samples. The tumor purity
information for each sample was obtained from [58] (available
for all the 12 ICR cancers) and [8] (available for a subset of 8 ICR
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Fig. 2. Figure 2 provides insight into the ICR classification, ICR’s prognostic value and the key questions answered in this paper.

enabled/disabled cancers). We took the tumor purity informa-
tion as a covariate when performing differential activity anal-
ysis using the ‘limma’ package in R and observed that the top
differentially active MRs identified without considering tumor
purity remained intact for the majority of the 12 cancers of
interest, except for cancers with small sample sizes such as
SKCM and UCEC (see Supplementary Figure S1f for comparison).
This might be the result of (1) imperfect estimation of purity;
(2) heterogeneity of the non-tumor-cell compartment (consisting
of stroma and different leukocyte subsets with heterogeneous
functional activation states, such as T helper 1, T helper 2, M1
and M2 macrophages etc.); (3) the heterogeneity in terms of
activation of immune-related pathways, such as IRF1/STAT1 and
Wnt β-catenin signaling in cancer cells [39, 55, 56]; and (4) the
dynamic relationship between cancer cells and immune cells,
as elucidated by single-cell sequencing studies [7, 10]. Therefore,
MRs specific to ICR-H and ICR-L identified by our consensus
pipeline might have captured both tumor-immune interplay and
cancer-cell intrinsic immunoregulatory signals.

MR activities across primary tumors for the ICR
phenotype

The goal here was to showcase the activity patterns or the
NES of the consensus MRs and illustrate its usage to identify
known MRs specific to the ICR-H phenotype. We highlight the
NES scores for MRs, as determined by the FGSEA method, for
each cancer c as a volcano plot in Figure 3A. We demonstrated
the median activity of these MRs (per c) across ICR-H and ICR-L
samples in Figure 3B. We observed that MRs with NES ¿ 0 tend
to have high positive median activity across ICR-H samples and
negative median activity across ICR-L samples i.e. points belong-
ing to the 4th quadrant in Figure 3B (see also Supplementary
Figure S3). Thus, these MRs were considered to be specific to
the ICR-H phenotype. Similarly, MRs with NES ¡ 0, generally had
high positive median activity across ICR-L samples and negative
median activity across ICR-H samples i.e. points belonging to the

2nd quadrant in Figure 3B. Therefore, these MRs were considered
to be specific to the ICR-L phenotype.

It is noteworthy that the same MR can appear multiple times
(with different color/shapes) in both Figure 3A and B, since we
were showcasing the results for all the 12 cancers together.
Additionally, we observed genes such as CD28, CD4, CD74, CIITA,
CXCL10, FLI1, IKZF1, IRF1, LGALS9, LILRB4, NCF1, NLRP3, PARP9,
PSMB8, PSMB9, PSME2, STAT1, TFEC and TRIM22 were MRs for all
the 12 cancer subtypes. Out of the 20 ICR genes, only 6 were in the
list of 3674 TRs (STAT1, IRF1, TBX21, FOXP3 and CXCL10). Remark-
ably, 3 of them (STAT1, IRF1 and CXCL10) were MRs consistently
positively activated in all the 12 ICR-H cancer samples (see
Figure 4A and B). In particular, STAT1, IRF1, TBX21 and CXCL10
were positively activated in ICR-EH tumors and STAT1, IRF1 and
CXCL10 in ICR-DH cancer samples. Therefore, this provided a
positive validation that our approach could capture expected
known genes as MRs for the ICR-H phenotype.

Consensus MRs across the 12 ICR prognostic cancers

As a first step, we aimed at identifying the most conserved MRs
characterizing the two opposite immune phenotypes (ICR-H and
ICR-L) within each prognostic cancer category (ICR-E and ICR-
D). We then compare the lists of the identified MRs between
the eight ICR-E and the four ICR-D cancers. We found 44 MRs
differentially activated between ICR-H and ICR-L phenotypes
and common to all the 8 ICR-E cancers as observed in Figure 4A.
Similarly, we identified 29 MRs common to all the 4 ICR-D
cancers as depicted in Figure 4B. Interestingly, we observe each
of these MRs has high positive median activity in ICR-H samples
and low negative median activity in ICR-L samples and thus is
considered to be specific to the ICR-H phenotype. From Figure 4A
and B, we determined 19 MRs (highlighted in ‘gray’ in Figure 4A
and B), which were shared across all the 12 cancers of interest
(both ICR-E and ICR-D cancers) and were all specific to the ICR-H
phenotype.

This observation indicated that (1) the dominant features
characterizing the two opposite immune phenotypes (ICR-H
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Fig. 3. (A) NES for the Consensus MRs obtained via FGSEA were showcased for each c through a volcano plot. For each of these MR, |NESc—¿1 and FDR-adjusted P≤ 0.05

in the RGBM + FGSEA MRA pipeline. (B) Median activities of MRs in ICR-H and ICR-L samples of each cancer were highlighted as scatter points. For these MRs, either

median activity was high in ICR-H samples and low in ICR-L samples for a given c (points along the extreme of the diagonal in the 4th quadrant) or median activity

was high in ICR-L samples and low in ICR-H samples (points along the extreme of the diagonal in the 2nd quadrant).

Fig. 4. (A) 44 consensus MRs identified to be differentially active for each of the eight ICR-E cancers. Median activity in ICR-H (‘yellow’) versus ICR-L (‘green’) samples

in each cancer, c, for these MRs were shown by a heatmap. (B) Median activity in ICR-H versus ICR-L samples in each of the 4 ICR-D cancers was highlighted for the

29 consensus MRs (ICR-D) i.e MRs that were differentially active in every one of the 4 ICR-D cancers (for each of the 4 MRA pipelines). (C) Box plots comparing MR

activities (top 10 MRs based on fold-change in activity, see Supplementary Table S3) in ICR-H versus ICR-L samples for each of the 8 ICR-E cancers. Predominantly,

every one of these MRs had high activity in the ICR-H samples and low activity in the ICR-L samples for each, c, and was thus specific to the ICR-H phenotype. (D) Box

plots comparing MR activities (top 10 MRs based on fold-change activity, see Supplementary Table S4) in ICR-H vs ICR-L samples for each of the 4 ICR-D cancers. As

observed in Figure 4C, all these MRs were specific to the ICR-H phenotype. The 19 MRs highlighted in ‘gray’ in Figure 4A and B are MRs shared by both the ICR-E and

ICR-D cancers.

and ICR-L) resulted in the upregulation of MRs related to high
immune activity rather than MRs capturing immune-exclusion
and (2) these MRs are shared independently of the prognostic
connotation of immunologic activity (ICR).

Consensus MRs specific to ICR-H and ICR-L phenotypes

We observed from Figure 4 that all the shared MRs across the 12
cancers of interest, or even within the ICR-E or ICR-D categories,
were specific to the ICR-H phenotype. While this approach led
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Fig. 5. (A) Median activity in ICR-H (‘yellow’) and ICR-L (‘green’) samples for each of the 8 ICR-E cancers were highlighted for consensus MRs (118 in total) in ≥ 50% of

the cancer subtypes (see Supplementary Table S5). The ‘yellow’ rectangle included MRs which had high + median activity in ICR-H samples and - median activity in

ICR-L samples and were specific to the ICR-H phenotype. Similarly, the ‘green’ rectangle highlighted the MRs (32 in total) that were specific to the ICR-L phenotype. (B)

Median activity in ICR-H versus ICR-L samples for each of the 4 ICR-D cancers were illustrated for the consensus MRs (234 in total) in ≥ 50% of the cancer tissues (see

Supplementary Table S7). (C) 155 MRs specific to the ICR-H phenotype and their median activity in ICR-H samples for the 12 ICR-E and ICR-D cancers were showcased

here (see Supplementary Table S9). (D) 57 MRs specific to the ICR-L phenotype and their median activity in ICR-L samples for the 12 ICR-E and ICR-D cancers (see

Supplementary Table S10).

to the identification of dominant features conducive to immune
activation (ICR-H specific MRs), we employed a less stringent
criterion to identify MRs facilitating immune-exclusion i.e. ICR-L
specific MRs.

Figure 5A highlights consensus MRs which were present in ≥
4 out of the 8 ICR-E cancers (50% selection criterion). We obtained
a set of 118 such MRs and their corresponding cancer subtypes
were elaborated in Supplementary Table S5. Figure 5A illustrated
the median activity in the ICR-H and the ICR-L samples for
each of the eight ICR-E cancers. A total of 32 of these MRs had
high median activity in ICR-L samples and low median activity
in ICR-H samples in at least 50% of the ICR-E cancers (see
Supplementary Table S6 for significance). These 32 MRs were
considered to be specific to the ICR-L phenotype for the ICR-
E cancers. A similar analysis was performed for ICR-D cancers,
as observed in Figure 5B, with the same selection criterion (50%
i.e. 2 out of 4 ICR-D cancers). More details about the set of
consensus MRs identified for ICR-D cancers were provided in the
Supplementary. A total of 84 of MRs had high median activity
in ICR-L samples and low median activity in ICR-H samples in
at least 50% of the ICR-D cancers (see Supplementary Table S8
for significance) and were considered to be specific to the ICR-L
phenotype for the ICR-D cancers.

We took a union of the MRs identified to be specific to the ICR-
H for the eight ICR-E cancers as well as the four ICR-D cancers
and considered only those MRs whose median activity in ICR-H

cancer samples was > 0. This resulted in a total of 155 MRs (see
Supplementary Table S9), which were considered to be specific to
ICR-H phenotype across all the 12 cancers of interest. Figure 5D
highlighted the median activity of each of these MRs across all
the 12 ICR cancers. Several of these MRs (IRF1, STAT1, CXCL10,
TBX21 and FOXP3) were part of the 20 ICR gene signature whose
high expression indicated active immune engagement i.e. the
ICR-H phenotype. We performed a similar analysis for the ICR-L
phenotype as demonstrated in Figure 5C. This leads to a total of
57 MRs (see Supplementary Table S10), which were considered
to be specific to the ICR-L phenotype across all the 12 cancers
of interest. Figure 5C highlighted the median activity of each
of these MRs across all the 12 ICR cancers. Thus, we identified
the set of 155 MRs and 57 MRs specific to the ICR-H (immune-
active) and ICR-L (immune-silent) phenotype, respectively, and
could now perform downstream pathway enrichment analysis
to identify molecular mechanisms potentially governing the
immune-exclusion functions.

TGBF1I1 as main negative immune modulator
preventing favourable response

We observed in Supplementary Table S9, a set of seven MRs with
different median activity patterns between the ICR-EH and ICR-
DH cancer samples across the eight ICR-E and the four ICR-D
cancers of interest. Some of these MRs are not necessarily a TR
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Fig. 6. (A) MRs having different median activity patterns in ICR-H samples for ICR-E versus ICR-D cancers (see Supplementary Table S9). (B) MRs having different

median activity patterns in ICR-L samples for ICR-E versus ICR-D cancers (see Supplementary Table S10). MRs which were not a TR for a cancer, c, were given a median

activity of 0 (e.g. AR does not satisfy the quality control criterion to be a TR for HNSC, KIRC and had 0 median activity and TGFBR3 does not satisfy the quality control

criterion to be TR for BRCA, STAD and had 0 median activity).

in each of the 12 cancers and hence are given a median activity
of 0. Each of these seven MRs had a low negative median activity
in a majority of the eight ICR-E cancers and high positive median
activity in a majority of the four ICR-D cancers, as depicted
in Figure 6A (see Supplementary Table S9 for statistical signifi-
cance). These 7 MRs included SMO, TGFB1I1, ELF1, KANK2, DLL4,
AR and PABPC1L and could potentially provide insights about the
difference in survival prognosis between the ICR-EH and ICR-DH
tumor samples. Interestingly, the MR TGF-β appears to be posi-
tively activated in the ICR-D cancers, whereas it has a median
negative activity in majority of the ICR-E cancers. TGF-β is a
known immune suppressor [66] that inhibits the proliferation
of T-cells as well as cytokine production via FOXP3-dependent
and independent mechanisms. Thus, its high activation can give
some insights for the poor survival prognosis in the case of ICR-H
samples belonging to the ICR-D cancers.

Similarly, we observed in Supplementary Table S10, a set of 5
MRs with different median activity patterns between the ICR-L
samples across the 12 ICR cancers. Each of these five MRs had
a low negative median activity in a majority of the four ICR-D
cancers and high positive median activity in a majority of the
eight ICR-E cancers, as depicted in Figure 6B (see Supplementary
Table S10 for statistical significance). These 5 MRs included SMO,
TBX2, TGFBR3, PABPC1L and IGF2. The deactivation of these MRs
could be associated with better survival prognosis in the ICR-D
cancers, whereas their high activity in ICR-E cancers could be
associated with poor survival outcomes as shown in [49].

We additionally correlated the activity of MRs with survival
outcomes. Interestingly four out of the six MRs with high median
activity in ICR-DH (TGFB1I1, KANK2, PABPC1L and SMO) could
segregate the entire cohort according to survival outcome (P
¡ 0.05, Bonferroni corrected), all being associated with shorter
survival. This effect was coherent across the group of all 12 ICR
cancers and within ICR-E and ICR-D cancer groups (see Supple-
mentary Figure S6C), corroborating their intrinsic immunosup-
pressive role. Furthermore, ICR prognostication was dependent
on the expression of TGFB1I1, as ICR was associated with a
favorable outcome only in presence of low TGFB1I1 activity
(Bonferroni corrected P = 0.03, see Supplementary Figure S6D
and E). Overall, this suggested that TGFB1I1 could be the main
immunomodulator and a potential target for immune conver-
sion.

Enrichment analysis

Once we had identified the MRs that were specific to the ICR-
H (155 MRs) and ICR-L (57) phenotypes across all the 12 cancer
subtypes of interest, we performed downstream (enrichment)
analysis using ConsensusPathDB [35]. First, we considered all the
155 MRs specific to the ICR-H phenotype as enriched genes and
the background to be the set of all target genes (23 216 genes).
We then utilized the overexpression analysis framework of Con-
sensusPathDB for determining enriched pathways, protein com-
plexes and GO categories. We identified a total of 40 protein com-
plexes, 826 GO terms and 237 pathways that were significantly
enriched (FDR-adjusted P ≤ 0.05) for the MRs specific to the ICR-
H phenotype. The enriched protein complexes and GO terms
specific to ICR-H MRs were detailed in the Supplementary.

The top significantly enriched pathways associated with
MRs particular to the ICR-H phenotype involve Immune System
(R-HSA168256), Cytokine Signaling in Immune System (R-
HSA-1280215), Interferon Signaling (R-HSA-913531), C-type
lectin receptor signaling pathway (path:hsa04625), Interleukin-
4 and Interleukin-13 signaling (WP4066), etc. as depicted in
Supplementary Figure S8A. The MRs that were part of each
enriched pathway were illustrated in Supplementary Figure S8B,
where the intensity represents the median activity for that MR
across all 12 cancer tissues of interest. Interestingly, we observed
that the majority of the top significantly enriched pathways are
hallmark pathways of immune engagement [9], justifying the
ICR-H phenotype, where the high activity of these MRs indicated
active immune engagement and at least a partial rejection of the
cancer tissue [62].

A similar analysis was performed for the 57 MRs specific to
the ICR-L phenotype. On overexpression analysis, we detected
a total of 4 protein complexes, 131 GO terms and 30 path-
ways to be significantly enriched (FDR-adjusted P ¡ 0.05) for
the MRs specific to the ICR-L phenotype (only 33 of 57 MRs
are involved in one or more enriched pathway). The enriched
protein complexes included Brg1-associated complex II from
CORUM, PDPK1:PIP3:PKC zeta from Reactome, emerin C32 and
AF4.com from PINdb as depicted in Supplementary Table S11.
The significantly enriched GO terms along with their category
level stratification for the ICR-L phenotype were showcased in
Supplementary Figure S7B.
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Fig. 7. Sankey plot showcasing MRs specific to the ICR-L phenotype (only 33 out of 57 MRs) were involved in each of the enriched pathways obtained via

ConsensusPathDB as a result of overexpression analysis. The dot plot showed the ratio between MRs specific to ICR-L phenotype and the total number of genes

in each enriched pathway (FDR-adjusted P≤ 0.05).

The top significantly enriched pathways particular to the
ICR-L phenotype include the Generic Transcription Pathway
(R-HSA-212436), Transcriptional Regulation of TP53 (R-HSA-
3700989), NOTCH1 Intracellular Domain Regulates Transcription
(R-HSA-2122947), TNF-α (WP231) and Interleukin-1 (R-HSA-
9020702) signaling pathways, Signaling by TGF-β Receptor
Complex (R-HSA-170834), etc. We identified five clusters with
the predominant clusters belonging to transcriptional regulation
and interleukin signaling pathways as depicted in Figure 7. From
Figure 7, we observed that the maximum ratio on the x-axis
reached a value of ≈ 0.25, indicating that at max only one-fourth
of the genes in a pathway were overexpressed (i.e. MRs specific
to the ICR-L phenotype across 12 cancers). Figure 7 showcased
that MRs such SMARCC2, KAT2A, KAT5, L3MBTL1, PRMT5 and
HDAC10 were the ones which are involved in Regulation of TP53
Activity, NOTCH signaling pathway and generic transcription
pathways, whereas MRs such as BTRC, PRKCZ and PDPK1 were
the ones associated with Interleukin-1 and TNF-α signaling
pathways. Interestingly, MRs such as PRDM16 and ZNF423 lead to
enrichment of obesity-related pathways, differentiation of white
and brown adipocyte (WP2895) and MRs SETD3 and SETD5 lead
to enrichment of Histone modifications (WP2369). Moreover, the
MR SALL2 has appeared as a new player in cancer [29] due to
its role in the regulation of cell proliferation and survival, its
interaction with viral oncogenes and its association with the
TP53 tumor suppressor and MYC oncogene, thereby demanding
more investigation.

Validation of MRs for ICR-N cancers and PRECOG
datasets

We performed a validation experiment by comapring the activity
patterns of the consensus MRs determined by our framework

to be specific to the ICR-H and ICR-L tumor samples in all ICR
neutral (ICR-N) cancers. We performed hierarchical clustering
of the MRs specific to ICR-L phenotype based on their activity
patterns in ICR-N tumor samples. A similar hierarchical clus-
tering was performed for the MRs specific to the ICR-H phe-
notype and the two dendrograms were assimilated together, as
illustrated in Figure 8A. We observed that the MRs, which were
specific to the ICR-L phenotype (55 out of 57) had predominantly
high activity patterns in all ICR-L samples independent of the
type of cancer, whereas they had low activity patterns in the
majority of the ICR-H samples for all the 20 ICR-N cancers in
TCGA (see Figure 8A and Supplementary Table S12 for statistical
significance). Similarly, for the MRs associated with the ICR-
H phenotype, we observed that a majority of these MRs (145
out of 155) had high activities in the ICR-H samples while they
had negative activities in the majority of the ICR-L samples
as demonstrated in Figure 8A (see Supplementary Table 12 for
statistical significance).

Moreover, an additional validation on the set of eight datasets
(BLCA, BRCA, COAD, GBM, HNSC, LUAD, OV and SKCM can-
cers) obtained from the PRECOG repository was conducted. For
an MR whose gene expression is not available in a particular
dataset, we considered its activity value to be 0 for the ICR-
H and ICR-L samples in that dataset. We again observed that
the MRs which were specific to ICR-L phenotype (53 out of 57)
had predominantly high activity patterns in all ICR-L samples
independent of the type of cancer, whereas they had low activity
patterns in a majority of the ICR-H samples in the PRECOG
datasets (see Figure 8B and Supplementary Table S13 for sta-
tistical significance). Similarly, for the MRs associated with the
ICR-H phenotype, we observed that a majority of these MRs
(148 out of 155) had high activities in the ICR-H samples while
they had negative activities in the majority of the ICR-L samples
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Fig. 8. (A) Validation of activity patterns of MRs specific to the ICR-H and ICR-L phenotypes with statistical significance obtained via analysis of the 12 ICR-E and ICR-D

cancers with the 20 ICR-N cancers. The 20 ICR-N cancers were adrenocortical carcinoma (ACC), cervical squamous cell carcinoma and endocervical adenocarcinoma

(CESC), cholangiocarcinoma (CHOL), COAD, lymphoid neoplasm diffuse large B-cell lymphoma (DLBC), esophageal carcinoma (ESCA), GBM, kidney chromophobe (KICH),

kidney renal papillary cell carcinoma (KIRP), LUAD, lung squamous cell carcinoma (LUSC), mesothelioma (MESO), OV, pheochromocytoma and paraganglioma (PCPG),

prostate adenocarcinoma (PRAD), rectum adenocarcinoma (READ), testicular germ cell tumors (TGCT), thyroid carcinoma (THCA), thymoma (THYM) and uterine

carcinosarcoma (UCS). (B) Validation of the activity patterns of MRs specific to the ICR-H and ICR-L phenotypes with statistical significance obtained via analysis

of the 12 ICR-E and ICR-D cancers on eight different datasets in the PRECOG repository.

as demonstrated in Figure 8B (see Supplementary Table 13 for
statistical significance). Finally, we highlight in Supplementary
Figure 9, the reverse activity patterns of top MRs identified
specifically for each cancer subtype, c, in the TCGA by the RGBM
+ FGSEA MRA pipeline (i.e. the MRs per cancer as depicted in
Figure 3) in the corresponding PRECOG repository dataset.

These two in silico validations confirm that the MRs, which we
determined using our consensus framework, were specific to the
ICR-L phenotype and should likely be involved in immune exclu-
sion functions. Thus, the enriched pathways associated with
these MRs could potentially represent molecular mechanisms
driving the immune-excluded cancer phenotype and could be
targeted to design therapeutic strategies.

DISCUSSION
In recent years, TR activities estimated from RNA-Seq data have
attracted much attention in cancer research [17, 22, 24, 42].
Although different methodologies [6, 24, 42] have been used to
derive TR activity profiles based on different definitions of TR
regulons, the common notion was that mRNA levels of the target
genes of a TR could be used to determine its activity. Moreover,
TRs (MRs) which were differentially activated w.r.t. a phenotype
of interest could be treated as prognostic markers and could
reveal novel mechanisms associated with the tumor microenvi-
ronment. However, the exploration of MRs as therapeutic targets,
alone or in combination with other genomic markers is a recent
phenomenon only [6, 17, 22, 24, 42].

Here, we designed and applied four different MRA pipelines
using the TCGA RNA-Seq data to discover differentially acti-
vated TRs (MRs) w.r.t. the immunologic constant of rejection
phenotype (ICR-H versus ICR-L). We took a consensus of the
MRs identified by these varied MRA pipelines for our goal of
identifying key driver MRs for the immune-silent (ICR-L) cancer
phenotype. Our network-based framework led to the discovery of

155 MRs specific to the ICR-H phenotype and 57 MRs specific to
the ICR-L phenotype. Downstream analysis of the MRs specific to
ICR-H using ConsensusPathDB showed significant enrichment
of protein complexes such as the IRF1 and IRF9 complex with
the CXCL10 promoter, DTX3L-PARP9-STAT1 complex, CD4: IL16
complex and pathways that are hallmark pathways of an active
immune response.

The primary goal of our work was to identify key driver genes
and their associated mechanisms for an immune excluded can-
cer phenotype (ICR-L). The downstream analysis of MRs spe-
cific to ICR-L using ConsensusPathDB resulted in enrichment
of the BRG1-associated protein complex, which has a known
role in oncogenesis [65]. Moreover, we identified TGF-β, NOTCH1,
Interleukin-1 and TNF-α pathways to be significantly enriched
w.r.t. the MRs particular to the ICR-L phenotype. Some of the MRs
associated with the ICR-L phenotype lead to significant enrich-
ment of the β-catenin pathway, whose signaling was known to
prevent antitumor immunity in melanoma [56] and other tumors
[40] and was associated with an immune-silent phenotype due
to lack of CCL4 mediated chemotaxis of effector cells. NOTCH
inhibitors are currently in clinical trials and demonstrated clini-
cal activity in heavily pretreated metastatic cancer patients [46].

Similarly, TGF-β (TGFB1I1) is a known immune suppressor
[66] and its high activation in ICR-D cancers suggests the occur-
rence of phenomenon, such as immune exhaustion, leading to
poor survival rates in these ICR-H tumor samples. This observa-
tion is in agreement with very recent data in mice demonstrating
that blocking TGFB1 overcomes resistance to immune check-
point inhibition [18]. The list of MRs generated by our analysis
might be exploited for future targeted therapy combinations
aimed at converting immune-silent to immune-active tumors,
therefore, potentially extending the benefit of immunotherapy.

It is noteworthy that the MRs, PABPC1L and SMO are the only
MRs that have high positive median activity in ICR-DH tumors,
whereas it has negative median activity in ICR-DL tumors. More-
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over, it has negative activity in ICR-EH tumors while having
high positive median activity across the majority of the ICR-
EL tumors. Thus, PABPC1L and SMO are potential biomarkers
that demand further investigation to better understand their
prognostic role within the context of ICR.

Briefly, our results demonstrate that TR activity profiles
inferred from RNA-Seq data using RGBM + FGSEA, RGBM +
GSVA, RGBM + Viper and ARACNE + Viper MRA pipelines can be
used to discover key MRs associated with an immune excluded
phenotype. In silico validation of these consensus MRs was
performed in ICR-N cancers and a set of eight different datasets
collected from the PRECOG repository, suggesting that these MRs
can be used as promising therapeutic markers. Finally, as the
data were generated form bulk transcriptome, next steps would
include the dissection of the origin of the identified MRs using
single cell sequencing techniques and spatial transcriptomics
[8], the contribution of somatic mutations and germline variants
[52], the validation at protein level [64] and their functional
analysis in experimental models.

Key Messages

• Network analysis coupled with the availability of large-
scale genomic data leads to identification of key driver
genes for an immune-silent cancer phenotype.

• Master regulators such as L3MBTL1, SALL2, BTRC,
PRKCZ, KAT2A and SMARCC2 are positively active for
the immune-silent cancer phenotype in pan-cancer
settings.

• The downstream pathway analysis leads to detection
of NOTCH1, TGF-β, Interleukin-1 and TNF-α signaling
pathways that were coherently associated with absence
of a protective immune response, potentially represent-
ing a target for cancer immunologic conversion.
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