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Abstract

The global physiological function of specifically expressed genes of mitoxantrone

(MTX)‐resistant prostate cancer (PCa) is unclear. In this study, gene expression pat-

tern from microarray data was investigated for identifying differentially expressed

genes (DEGs) in MTX‐resistant PCa xenografts. Human PCa cell lines DU145 and

PC3 were cultured in vitro and xenografted into severe combined immunodeficiency

(SCID) mice, treated with MTX intragastrically, three times a week until all mice

relapsed. Gene expression profiles of the xenografts from castrated mice were per-

formed with Affymetrix human whole genomic oligonucleotide microarray. The

Cytoscape software was used to investigate the relationship between proteins and

the signalling transduction network. A total of 355 overlapping genes were differen-

tially expressed in MTX‐resistant DU145R and PC3R xenografts. Of these, 16 genes

were selected to be validated by quantitative real‐time PCR (qRT‐PCR) in these

xenografts, and further tested in a set of formalin‐fixed, paraffin‐embedded and

optimal cutting temperature (OCT) clinical tumour samples. Functional and pathway

enrichment analyses revealed that these DEGs were closely related to cellular activ-

ity, androgen synthesis, DNA damage and repair, also involved in the ERK/MAPK,

PI3K/serine‐threonine protein kinase, also known as protein kinase B, PKB (AKT)

and apoptosis signalling pathways. This exploratory analysis provides information

about potential candidate genes and may bring new insights into the molecular cas-

cade involvement in MTX‐resistant PCa.
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1 | INTRODUCTION

Prostate cancer (PCa) is the most common cancer in men in western

countries.1 The majority of patients with advanced PCa have disease

that is initially sensitive to androgen deprivation therapy (ADT),

which successfully reduces tumour burden, improves symptoms and

can delay disease progression for several years,2,3 although,

responses are generally not durable and disease progression is
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inevitable. Mitoxantrone (MTX), a synthetic anthracenedione, has

been routinely used for the treatment PCa for its palliative benefit

which enhances clinical remission of the PCa patients. However,

despite their initial response and survival benefits, the majority of

patients eventually develop resistance to these therapies.4

The antineoplastic activity of MTX is believed to be related to its

ability to bind DNA and inhibit DNA topoisomerase II, an essential

enzyme in DNA synthesis and meiotic division which is highly

expressed in cancer cells.5 Damage to DNA is a notable inducer of

both transient and permanent alterations in cellular phenotypes. The

accumulation of DNA lesions leads to genomic instability through

chromosomes breaks, amplification of oncogenes and inactivation of

tumour suppression genes, driving to the acquisition of a malignant

cancer phenotype.6 However, cancer cells can overcome DNA dam-

age by induction of a DNA damage secretory program such as prolif-

eration, invasion, metastasis, especially treatment resistance can

develop through a variety of signal pathways, including base excision

repair, nucleotide excision repair, mismatch repair, direct repair and

recombinational repair.7,8 Comparative genomic hybridization can

help to identify relevant genes involved in tumour chemotherapy‐re-
sistance and to predict response and cancer prognosis.

In this study, the diversity and magnitude of transcriptional

responses to genotoxic damage induced by MTX were assessed in

two castration‐resistant prostate cancer (CRPC) xenografts types and

their controls using gene expression profiling. Identification of up‐
and down‐regulated gene expression levels in MTX‐resistant CRPC

could facilitate improved screening and understanding the underlying

mechanisms of MTX resistance, paving the way for the development

of targeted interventions that can circumvent such resistance to

treatment.

2 | MATERIALS AND METHODS

2.1 | Cell viability assay prepared for SCID mice
inoculation

Prostate cancer cell lines DU145 and PC3 were provided kindly by

Fred Hutchinson Cancer Research Center. The cells were seeded in

96‐well plates in quintuplicate with Dulbecco's Modified Eagle Med-

ium (DMEM, Invitrogen, Carlsbad, USA) basal medium plus 10% foe-

tal bovine serum (FBS) and 1% penicillin/streptomycin, at 37°C in a

humidified atmosphere with 5% CO2. After 24 hours of culture, cells

were treated with MTX (0.01, 0.1, 1 or 10 mg/mL) for 24, 48 and

72 hours respectively. Cell medium was removed and 100 mL/well

of MTT solution (0.5 mg/mL in PBS) were added and incubated for

3 hours (at 37°C, protected from light). After the end of incubation,

the supernatants were removed carefully, 150 mL of dimethyl sul-

foxide was added to each well. The cells were then shook for

10 minutes in the dark. Absorbance was measured at 450 nm in a

Microplate Reader (Bio‐Rad 680). Analysis of the obtained results

was done using GraphPad Prism 4 computer program to evaluate

cell proliferation rate and cytostatic rate. Untreated cells were used

as controls. For in vivo experiment, DU145 and PC3 cells were cul-

tured in DMEM supplemented with 10% charcoal‐stripped FBS

(Hyclone) and 1% penicillin/streptomycin at 37°C in a humidified

atmosphere with 5% CO2. Confluent cells were harvested with

F IGURE 1 Cell morphology and
viability of prostate cancer cells treated
with different concentrations of
mitoxantrone (MTX). A, DU145 cells:
Controls (untreated cells), 0.1 mg/ml MTX,
1 mg/ml MTX, 10 mg/ml MTX; PC3 cells:
Controls (untreated cells), 0.1 mg/ml MTX,
1 mg/ml MTX, 10 mg/ml MTX. B, Viability
of DU145 and PC3 cells was determined
by MTT assay. Error bars = SEM (n = 6)
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trypsin‐ethylenediaminetetraacetic acid (EDTA) (0.05% trypsin and

0.53 mmol/L tetrasodium EDTA), centrifuged 5 minutes at 225 g and

resuspended in the medium at 1 × 107/mL single cells. Aliquots of

0.1 mL were used for subcutaneous injection into CB‐17 severe

combined immunodeficiency (SCID) mice (purchased from Guangz-

hou Provincial Medical Experimental Center).

2.2 | Tumour inoculation and treatment

The animal study was carried out in a specific pathogen‐free room

and was approved by the Medical Ethics Committee of the Zhengz-

hou University in accordance with the Guide for the Care and Use

of Laboratory Animals (NIH publication no. 80‐23, revised 1996).

Four to six weeks old CB‐17 male SCID mice were used in the

experiment. Cells (1 × 106 cells) were injected subcutaneously into

both flanks resulting in two tumours per mouse to test the MTX

sensitivity. Once tumours became palpable, the mice were randomly

divided into four treatment groups (six mice per group). In the first

three groups, MTX was administered three times a week at 0.35 mg/

kg, 1 mg/kg and 3.5 mg/kg respectively. The fourth group was trea-

ted with physiological saline (control) at the same time‐points. In

another set of experiment, animals with palpable tumours were also

assigned into four groups: MTX (3.5 mg/kg), castration, MTX

(3.5 mg/kg) in combination with castration and control. Surgical cas-

tration was performed after tumours have developed. MTX and sal-

ine were administered intragastriclly in a 100 µL volume three times

a week in all experiments. The diameter of subcutaneously growing

tumours was measured with a calliper twice a week until the animals

were killed after 6 weeks of treatment. Tumour weight was calcu-

lated by the formula: Tumour weight (mg) = (length×width2)/2.

2.3 | RNA extraction, Labelling, hybridization and
scanning of microarray

Total tumour RNA was extracted using Trizol reagent (Takara, Dalian,

China) and concentrations were determined by a spectrophotometer

(NanoDrop, Nyxor Biotech). All the processes were carried out

according to the manufacturers’ instructions. Enrichment of total
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F IGURE 2 Effects of androgen deprivation and/or mitoxantrone (MTX) on prostate cancer (PCa) xenograft growth. A, Antitumour activities
of different concentrations of MTX: Control, 0.35 mg/kg, 1 mg/kg and 3.5 mg/kg. B, Combined effects of androgen deprivation and MTX on
PCa xenograft growth. (P < 0.015). (n = 5 mice per group)
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RNA from samples was carried out using the RNeasy Micro kit (Qia-

gen, Germantown, MD, USA), and samples’ quality and quantity were

assessed on a spectrophotometer. Hybridization was performed in

Affymetrix Human Genome U133Plus2.0 Chambers. Washes and

scanning of the arrays were carried out according to manufacturer's

instructions. Images were autogridded and the chemiluminescent sig-

nals were quantified, corrected for background and spot and spatially

normalized. Differentially expressed genes (DEGs) were identified

through filtering the dataset using P‐value <0.01 and a signal‐to‐
noise ratio>2 for use in ANOVA statistical analysis.

2.4 | Data preprocessing

The analysis was carried out using R package oligo (version 1.38.0,

http://bioconductor.org/packages/release/bioc/html/oligo.html) to

process the Affymetrix data files data by performing background

A

C

B

E

D

F IGURE 3 Volcano map and Venn
diagram of differentially expressed genes
(DEGs). A, Volcano plots of DEGs from
DU145R. B, Volcano plots of DEGs from
PC3R. Red spots represent up‐regulated
genes, green spots represent down
regulated genes, and grey dots represent
non‐DEGs. C, VennPlot for the up‐
regulated DEGs. D, VennPlot for the
down‐regulated DEGs. E, Heatmap plot of
the 355 overlapped genes between
DU145R and PC3R dataset. Red
represents higher expression and green
represents lower expression. DEGs were
selected by P < 0.05 and |log2 (fold‐
change)| > 0.5. DEGs, differentially
expressed genes
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correction, data normalization and expression calculation. Probes

were annotated by annotation files, and without corresponding gene

symbols the probes were removed. The DEGs between control and

MTX‐treatment samples were screened by non‐paired t test in limma

package.9 Genes within the threshold value |logFC (fold‐change)| >1
and P‐value <0.05 were identified as DEGs.

2.5 | Functional and pathway enrichment analyses

DAVID (Database for Annotation, Visualization and Integrated Discov-

ery http://david.abcc.ncifcrf.gov/, version 6.8)10 was used for Gene

Ontology (GO) enrichment analysis. The overlapping DEG in MTX‐
treatment xenografts DU145R and PC3R were screened out for func-

tional enrichment. Gene Ontology enrichment analysis was used to pre-

dict the enrichment degree and the potential functions of the DEGs in

biological processes (BP), cellular components (CC) and molecular func-

tions. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analysis was used for systematic analysis of gene

functions indicating a statistically significant difference.

2.6 | Pathway enrichment and network
construction

Two hundred genes with significant differences were intercepted from

differential gene expression data and statistically analyzed by the

GeneSpring GX software package. The target gene expression data

were analysed by Cytoscape and the signal pathway is derived from

tumour‐related candidate genes in microarray data. In order to find out

the DEGs closely related with signal pathway, additional filtering (mini-

mum 3‐fold change) was applied to extract the most significant of these

genes which were further analysed using Cytoscape software. Those

genes with known gene symbols and their corresponding expression

values were uploaded into the software. Networks of these genes were

algorithmically generated based on their connectivity.

2.7 | Western blot analysis

Preparation of total cell lysate and the procedures for Western blot

analyses were performed. Protein samples were separated on 10%

polyacrylamide resolving gels with the buffer system and transferred

onto nitrocellulose membranes for 2 hours at 250 mA. Protein bind-

ing sites on the nitrocellulose were blocked for 1 hour at 25°C in

5% (w/v) Marvel/PBS/3% (v/v) Tween‐20 (PBST), then incubated

overnight at 4°C with PARP1, ILB1, CDH1 and PLAUR monoclonal

antibodies (1:1000 dilution; Invitrogen, California, USA). The mem-

branes were washed 3 × 10 minutes in tris buffered saline tween

and probed with horseradish peroxidise‐conjugated secondary anti-

bodies (Amersham Life Sciences, Buckinghamshire, UK) for 1 hour at

25°C. Following 3 × 10 minutes washes in PBST, bands were

detected using enhanced chemiluminescence (ECL+reagents,

TABLE 1 Top 10 up‐and down‐expressed genes in the xenograft of DU145R vs its control

Primary
accession

Gene
symbol

Log2
ratio Main function

NM_016192 TMEFF2 5.784 Function as both an oncogene and a tumour suppressor and may regulate prostate cancer cell invasion

NM_001618 PARP1 5.742 Involved in regulation of differentiation and proliferation and recovery of cell from DNA damage

NM_001005377 PLAUR 5.712 Acts as a receptor for urokinase plasminogen activator

NM_001565 CXCL10 5.532 Chemotactic for monocytes and T‐lymphocytes

NM_012253 TKTL1 5.208 Catalyses the transfer of a two‐carbon ketol group from a ketose donor to an aldose acceptor

NM_000361 THBD 4.793 Responsible for the conversion of protein C to the activated protein C

NM_007315 STAT1 4.769 Signal transducer and transcription activator

NM_001964 EGR1 4.545 Plays an important role in regulating the response to growth factors

NM_000442 PECAM1 4.217 Play a role in endothelial cell‐cell adhesion

NM_002585 PBX1 3.736 Acts as a transcriptional activator of PF4 in complex with MEIS1

NM_198381 ELF5 −3.163 Regulation of the later stages of terminal differentiation of keratinocytes and a number of epithelium‐
specific genes

NM_020698 TMCC3 −3.703 May be involved in the regulation of the proteolytic processing of the amyloid precursor protein

NM_001001924 MTUS1 −4.546 Isoform 1 inhibits breast cancer cell proliferation, delays the progression and reduces tumour growth

NM_005242 F2RL1 −4.778 A member of the G‐protein coupled receptor 1 family of proteins

NM_001624 AIM1 −4.875 May function as suppressor of malignant melanoma.

NM_002276 KRT19 −5.091 Responsible for the structural integrity of epithelial cells

NM_023938 C1orf116 −5.257 Putative androgen‐specific receptor

NM_002354 EPCAM −5.386 Functions as a homotypic calcium‐independent CAMs

NM_000165 GJA1 −5.695 A gap junction protein involved in synchronized contraction of the heart and in embryonic development

NM_144777 SCEL −6.409 May function in the assembly or regulation of proteins in the cornified envelope

CAM, cell adhesion molecule.
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Amersham). Densitometric quantification of band intensities was per-

formed with Kodak one‐dimensional image analysis software.

2.8 | Gene validation by qRT‐PCR

Quantitative real‐time PCR was performed with QPK‐201 SYBR

Green master mix (Toyobo, Osaka, Japan) and the ABI 7300 system

from Applied Biosystems. The primers used in the study were

obtained from Invitrogen (Beijing, China). Thermocycling parameters

included a RT step at 50°C for 20 minutes, followed by a DNA poly-

merase activation step at 95°C for 2 minutes and 50 PCR cycles

(95°C for 20 seconds, 60°C for 30 seconds). All reactions were con-

ducted in triplicate. The fold‐change in differential expression for

each gene was calculated using the comparative CT method.

2.9 | Gene expression in tumour samples from
patients

Tumour samples were collected from patients with metastatic PCa.

We selected patients who were confirmed diagnostic of adenocarci-

noma, evidence of progression despite castrate levels of testos-

terone, being eligible for systemic chemotherapy based on MTX. We

were able to collect seven tumour samples embedded in 2 mL of

optimal cutting temperature (OCT) medium, stored at −80°C until

processing, and six samples formalin‐fixed, paraffin‐embedded

(FFPE). These patients have been received transurethral prostatic

resection before the start of MTX treatment.

Tissues from FFPE and OCT embedded were sectioned at 15 and

25 μm thicknesses, respectively, before the RNA extraction. Total RNA

from FFPE samples was obtained using the GenElute™ FFPE RNA

Purification Kit (Sigma). The RNAs from OCT samples were extracted

using TRIzol Reagent (Invitrogen) according to the manufacturer's

instructions. Quality and quantity of the total RNAs were measured by

NanoDrop‐2000 Spectrophotometer (Nanodrop Technologies).

2.10 | Statistical analysis

Results are presented as the mean ± SE of the mean. To determine

whether differences between groups were statistically significant,

Wilcoxon rank‐sum test of variance was performed, and P < 0.05

was considered to indicate a statistically significant difference. SPSS

12.0 software was used for statistical analyses.

3 | RESULTS

3.1 | MTX sensitivity testing

DU145 and PC3 cells were cultured with increasing concentrations

of MTX, at different time‐point, IC50 was determined by MTT assay.

Results demonstrated that MTX decreased cell proliferation in a time

TABLE 2 Top 10 up‐and down‐expressed genes in the xenograft of PC3R vs its control

Primary
accession

Gene
symbol

Log2
ratio Main function

M_001005377 PLAUR 6.314 Acts as a receptor for urokinase plasminogen activator

NM_006888 CALM1 5.856 Mediates the control of a large number of enzymes through calcium‐binding

NM_003133 SRP9 5.484 Plays a critical role in role in targeting secretory proteins

NM_016192 TMEFF2 5.784 Function as both an oncogene and a tumour suppressor and may regulate prostate cancer cell

invasion

NM_004613 TGM2 5.134 Catalyses the cross‐linking of proteins and the conjugation of polyamines to proteins

NM_004061 CDH12 4.678 Cadherins are calcium‐dependent cell adhesion proteins

NM_001114753 ENG 4.482 plays an important role in the regulation of angiogenesis

NM_001565 CXCL10 4.369 Chemotactic for monocytes and T‐lymphocytes

NM_003027 SH3GL3 3.987 Implicated in endocytosis

NM_001878 CRABP2 3.856 Transports retinoic acid to the nucleus

NM_005257 GATA6 −3.557 Involved in gene regulation specifically in the gastric epithelium

NM_005118 TNFSF15 −4.078 Mediates activation of NF‐kappa‐B

NM_005531 IFI16 −4.191 Involved in transcriptional regulation

NM_024915 GRHL2 −4.682 Transcription factor playing an important role in primary neurulation and in epithelial development

NM_004584 RAD9A −4.923 inhibitor of zinc‐dependent metallocarboxypeptidases

NM_005797 MPZL2 −5.138 Mediates homophilic cell‐cell adhesion

NM_004004 GJB2 −5.347 Gap channels (gap junctions) are specialized cell‐cell contacts that provide direct intracellular

communication

NM_144777 SCEL −5.495 May function in the assembly or regulation of proteins in the cornified envelope

NM_001037330 TRIM16 −6.2 Play a role in the regulation of keratinocyte differentiation

NM_017697 ESRP1 −6.676 mRNA splicing factor that regulates the formation of epithelial cell‐specific isoforms
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and dose‐dependent manner. As shown in Figure 1A,B, the highest

cytotoxicity of MTX was at 72 hours, and IC50 is 0.1 mg/mL for the

PCa cells. To investigate MTX sensitivity in vivo, 106 cells of the PCa

cells were inoculated into the flank region of 5‐week‐old male CB‐17
SCID mice to generate subcutaneous tumours. In general, palpable

tumour formation started at 4‐5 weeks after subcutaneous implanta-

tion. Once tumours grew to nearly 200 mm3, mice were treated

intragastrically with different concentrations of MTX. All animal pro-

cedures were performed according to local guidelines on animal care

and with appropriate institutional certification. Tumour volume and

weight were measured twice weekly and calculated by the formula

as previously described. As shown in Figure 2A,B; tumour volumes

differed significantly between control and MTX‐treated mice

(P < 0.01), while no significant effect was noted with less than 1 mg/

kg of the drug administration. MTX decreased tumour growth in a

dose‐dependent manner. Volume reduction for DU145 (45.8%) and

PC3 (43.2%) xenografts was observed with 3.5 mg/kg MTX. How-

ever, all mice eventually relapsed and tumours became resistant to

MTX.

To evaluate potential synergistic antitumour activities of andro-

gen deprivation and MTX, SCID mice with palpable PCa xenografts

were castrated and treated with 3.5 mg/kg MTX. We found that sur-

gical castration did not significantly change the tumour size of either

DU145 (P = 0.731) or PC3 (P = 0.794). However, as shown in Fig-

ure 2C,D; tumour volume was significantly decreased in the mice

experienced with MTX (3.5 mg/kg) treatment (P < 0.01). On day 28,

the mean tumor volume of the xenografts in control group grew

from 186.65 ± 32.84 to 712.72 ± 41.26 mm3, whereas experienced

castration and MTX (3.5 mg/kg) treatment, the mean tumor volumes

of DU145 and PC3 were 231.23 ± 24.52 and 254.47 ± 25.71 mm3

respectively (P < 0.01). All mice eventually relapsed although consis-

tently maintained their body weight during each study.
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3.2 | DEGs in MTX‐resistant xenografts

To identify the DEGs between MTX‐resistant xenografts and their

controls, threshold |logFC| >1 and P‐value <0.05 were used in com-

parative analysis. A total of 1849, 2123 genes were extracted from

the DU145R and PC3R respectively (Figure 3A,B). Among them,

986, 851 down‐regulated genes, and 863, 1272 up‐regulated genes

were screened in the DU145R and PC3R xenografts respectively.

We selected top 20 up‐regulated and down‐regulated genes accord-

ing to the log ratio expression values (Tables 1 & 2), and among

these, the ones in the MTX‐resistant groups whose expression levels

were changed by more than 3‐fold compared with their control

groups (P < 0.01). Upon comparison of the DEGs between both

MTX‐resistant xenografts, 355 genes are overlapped, comprising 131

co‐downregulated genes and 224 co‐upregulated genes (Figure 3C,

D). After that, the overlapping DEGs were clustered which can well

differentiate the MTX‐treatment samples from the controls. The

heatmap of the overlapping DEGs is shown in Figure 3E.

3.3 | Functional and pathway enrichment analysis
of overlapping DEGs

Gene Ontology enrichment analysis revealed 355 overlapping genes

that are involved in a number of BP including response to hypoxia,

transforming growth factor β receptor signalling pathway, signal

transduction and chemotaxis (Figure 4A). In terms of CC, DEGS were

mostly enriched in the extracellular exosome, cell surface and lateral

plasma membrane (Figure 4B). Molecular functions analysis indicated

that the overlapping DEGs were mainly associated with protein bind-

ing, heparin binding and transcription factor binding (Figure 4C).

TABLE 3 GO function and KEGG pathway enrichment analysis of DEGs

ID Terms Count P value Genes

Biological process

GO:0001666 Response to hypoxia 10 1.12E‐07 KCNMA1, EGR1, CCL2, EPAS1, SMAD4, THBS1, ENG, SRF, PLAU,

MB

GO:0007179 Transforming growth factor β receptor

signalling pathway

6 7.24E‐05 CCL2, ID1, SMAD4, PARP1, GDF15, ENG

GO:0007165 Signal transduction 15 9.48E‐04 SH3GL3, EPAS1, CRABP2, TANK, PLAUR, CXCL10, THBD,

CD274, IL1B, INPP4B, …

GO:0006935 Chemotaxis 4 2.62E‐03 ACKR3, PLAU, CXCL10, PLAUR

GO:0071407 Cellular response to organic cyclic

compound

4 2.70E‐03 CCL2, IL1B, STAT1, ARHGDIA

Cellular components

GO:0070062 Extracellular exosome 33 1.31E‐07 GALNT3, GNAI3, SLPI, PLAU, CDH1, CLDN11, EPCAM, TOR1A,

IL1B, MB, …

GO:0005615 Extracellular space 21 1.23E‐06 ADNP, CXCL10, FBLN1, THBD, CST6, HIST2H2BE, TACSTD2,

SERPINB5, SLPI, IL1B, …

GO:0009986 Cell surface 9 1.41E‐04 EPCAM, THBD, SLC1A3, ACKR3, AREG, THBS1, ALPP, FGFBP1,

ENG

GO:0016328 Lateral plasma membrane 4 1.69E‐03 EPCAM, TACSTD2, CDH1, GJB2

GO:0048471 Perinuclear region of cytoplasm 9 1.72E‐03 GALNT3,VAMP8, CDH1, MAP7, NDRG1, ACKR3, LAMC2,

PRKACB, STAT1

Molecular functions

GO:0005515 Protein binding 57 4.87E‐04 FOSL2, ATP6AP2, TNNC1, CRABP2, SDC2, CXCL10, EPCAM,

SPRED2, SERPINA1, PRKACB, …

GO:0008201 Heparin binding 5 6.73E‐03 CCL2, LAMC2, THBS1, FGFBP1, CXCL10

GO:0008134 Transcription factor binding 6 1.07E‐02 EPAS1, ID1, PBX1, ID3, PARP1, SRF

GO:0047718 Indanol dehydrogenase activity 2 1.40E‐02 AKR1C3, AKR1C1

GO:0070051 Fibrinogen binding 2 1.40E‐02 FBLN1, THBS1

KEGG pathyways

hsa04350 TGF‐β signalling pathway 5 1.91E‐03 ID2, ID1, SMAD4, ID3, THBS1

hsa04610 Complement and coagulation cascades 4 9.42E‐03 THBD, SERPINA1, PLAU, PLAUR

hsa04390 Hippo signalling pathway 5 1.51E‐02 ID2, ID1, SMAD4, CDH1, AREG

hsa04062 Chemokine signalling pathway 5 2.99E‐02 GNAI3, CCL2, PRKACB, STAT1, CXCL10

hsa05200 Pathways in cancer 7 3.68E‐02 GNAI3, EPAS1, SMAD4, CDH1, LAMC2, PRKACB, STAT1

DEG, differentially expressed genes; GO, Gene Ontology enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Subsequential KEGG pathway enrichment analysis revealed that the

common down‐regulated DEGs primarily enriched in the hippo sig-

nalling pathway, pathways in cancer, proteoglycans in cancer and cell

adhesion molecules (CAMs) (Figure 4D). The top five enriched terms

were presented in Table 3. These significantly enriched GO function

and KEGG pathways could aid further understanding of the roles of

these DEGs, involved in the development of MTX‐resistant CRPC.

3.4 | Identification of candidate MTX‐resistant
CRPC markers

To further clarify the core genes of DEGs identified in the microar-

ray analysis, protein‐protein interaction (PPI) networks were gener-

ated using DU145R and PC3R significant proteins. To characterize

the properties of the hub nodes based on analysis of the PPI net-

work, maximal clique centrality were chosen to identify candidate

MTX‐resistant CRPC markers. A node was identified as a hub protein

if its degree is more than 2‐fold of the median degree of all nodes

and highlighted with yellow colour (Figure 5A,B). For the hub

significant proteins, it consists of 63 nodes and 285 edges in the

DU145R network, 58 nodes and 255 edges in PC3R network. By

calculating the value of the three features for each hub significant

protein, the median values of “Degree,” “Betweenness” and “Close-

ness” for DU145R and PC3R were 9.55, 784.2, 0.019 and 10.74,

808.5, 0.018 respectively. Functional annotation and pathway analy-

sis of the nodes in the above networks are displayed in Table 4.

After performing edge percolated component and shortest path anal-

ysis, the most significant modules composed of 10 nodes were

screened out from the PPI networks and the hub genes in the net-

works with a connectivity degree >16 were identified (Figure 5C,D).

By comparing the hub genes between both MTX‐resistant xeno-

grafts, PARP1, IL8 and CDH1 are overlapped.

3.5 | Validation of gene expression data by
Western blotting and qRT‐PCR

The expression patterns of four DEGs, PARP1, IL1B, CDH1 and

PLAUR were evaluated by Western blot (Figure 6A) and quantitative
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real‐time PCR (qRT‐PCR) (Figure 6B). Results showed that up‐regu-
lated ILB1 expression at the mRNA level, and enhanced positive

expression of PARP1 and PLAUR in both DU145R and PC3R MTX‐
resistant PCa xenografts. However, CDH1 was down‐expressed
markedly in both MTX‐resistant tumour types as compared to their

respective controls. In addition, a panel of 16 DEGs with the highest

and lowest expression range in both androgen‐independent MTX‐re-
sistant xenografts DU145R and PC3R vs their controls was selected

and tested by qRT‐PCR (Figure 7A,B). Results showed that most of

these genes exhibited a similar transcriptional profile to that of

microarray data. The Pearson correction coefficient between the

qRT‐PCR and microarray data for the 16 DEGs was 0.81. Hence, the

microarray provided a reliable comparison of gene expression

between androgen‐independent MTX‐resistant xenografts and

untreated PCa.

Moreover, the 16 DEGs were also analysed in MTX‐resistant
(n = 4) vs MTX‐sensitive (n = 3) OCT tumour samples, and MTX‐re-
sistant (n = 5) vs MTX‐sensitive (n = 4) FFPE tumour samples from

patients with metastatic CRPC (Figure 7C,D). This analysis showed

that BLCAP and FOSL2 are significantly up‐regulated in OCT

samples. Of the 16 DEGs studied, 12 genes in the OCT tumours and

10 genes in the FFPE tumours were deregulated in the same way as

the xenograft models. Interestingly, BLCAP, FOSL2, ADNP and

FRMD3 were concurrently up‐expressed in the androgen‐indepen-
dent, MTX‐resistant xenografts, as well as in both FFPE and OCT

samples from MTX‐resistant CRPC patients.

4 | DISCUSSION

This study revealed global pathways and networks of DEGs involved

in DU145R and PC3R MTX‐resistant PCa xenografts. Prostate can-

cer is a heterogeneous disease and many molecular methods have

been used in the search to determine the mechanism behind its

development, and find new therapeutic and prognostic targets.11

Microarray technology for gene expression profiling has proven to

be successful in a variety of experimental settings having the poten-

tial to discover the diversified and dynamic molecules during tumour

progression.12,13 Despite enormous efforts made for differential

expression detection and biomarker discovery, few methods have

been investigated the gene expression level in tumour stage during

TABLE 4 The pathways enriched for the MCC identified node in the PPI networks

ID Terms Count P value Genes

DU145R

GO:0007219 Notch signalling pathway 4 3.68E‐03 HES1, NOTCH3, NOTCH2, CDK6

GO:0006351 Transcription, DNA‐templated 12 3.49E‐05 HES1, CCND1, MAPK13, CREM, JUN, PPARG, SMAD4,

SMAD2, TCEA2, MYB, PARP1, APEX1

GO:0032000 Positive regulation of fatty acid β‐oxidation 3 2.57E‐04 IRS2, IRS1, AKT2

GO:0008286 Insulin receptor signalling pathway 4 5.33E‐04 IRS2, PIK3R3, IRS1, AKT2

GO:0046328 Regulation of JNK cascade 3 6.11E‐04 PHLPP1, IGF1R, SH3RF1

GO:2001275 Positive regulation of glucose import in

response to insulin stimulus

3 1.11E‐03 PIK3R3, IRS1, AKT2

GO:0042127 Regulation of cell proliferation 5 3.26E‐03 FYN, TNFRSF10D, JUN, NFKBIA, FAS

GO:0045725 Positive regulation of glycogen biosynthetic

process

3 1.11E‐03 IRS2, IRS1, AKT2

GO:0034097 Response to cytokine 3 4.50E‐03 REL, JUN, TIMP2

GO:0030513 Positive regulation of BMP signalling

pathway

3 4.50E‐03 HES1, SMAD4, SMAD2

PC3R

GO:0042127 Regulation of cell proliferation 9 4.71E‐08 BID, PTGS2, EZH2, BRCA2, BCL6, JAK2, CHEK1, FAS, SRC

GO:0071260 Cellular response to mechanical stimulus 4 2.92E‐04 BCL10, CHEK1, FAS, CASP2

GO:0071347 Cellular response to interleukin‐1 4 6.45E‐04 IL6, CCL2, PTGS2, PTGES

GO:0050767 Regulation of neurogenesis 3 8.27E‐04 NOS1, CHD7, BCL6

GO:0006954 Inflammatory response 6 1.04E‐03 CCL2, CASP4, PTGS2, REL, JAK2, FAS

GO:0000724 Double‐strand break repair via HR 4 1.14E‐03 NBN, ZSWIM7, BRCA2, ATM

GO:0045087 Innate immune response 6 1.33E‐03 BCL10, IL6, CASP4, REL, JAK2, SRC

GO:0097192 Extrinsic apoptotic signalling pathway in

absence of ligand

3 3.94E‐03 MCL1, FAS, CASP2

GO:0070301 Cellular response to hydrogen peroxide 3 4.56E‐03 IL6, CYP1B1, EZH2

GO:0050727 Regulation of inflammatory response 3 8.72E‐03 CASP4, BCL6, JAK2

MCC, maximal clique centrality.

1996 | LI ET AL.



MTX‐resistant progression. For this, our study attempt to identify

putative molecules which may act as specific targets in cancer prog-

nosis and therapy in future.

Our microarray study identified several hub genes and established

their association with various genetic networks and biological path-

ways likely affecting MTX resistance in CRPC. Microarray analysed

results revealed that PARP1, also known as a DNA nick sensor, overex-

pressed in DU145R and PC3R xenografts. Poly (ADP‐ribose) poly-

merase (PARP) is a family of 17 proteins involved in regulation of

various cellular machineries, including necrosis, DNA repair, genomic

stability, post‐translational modification of proteins and parthanatos.14–

16 Recent analyses demonstrated that four of 17 human PARP (PARP1,

PARP2, PARP4, PARP5) exhibit PARylating activity in vitro.17,18 PARP

activity is mainly due to PARP1 enzyme which detects DNA double‐
strand breaks (DSBs) or DNA single‐strand breaks playing a role in pro-

tecting stalled replication forks from nuclease‐mediated degrada-

tion.19,20 It was reported that PARP1 is also activated by some

abnormal DNA structures or external signals through ERK pathway.21

Besides its canonical role in DNA repairing systems, PARP has demon-

strated broader functions in controlling cell survival and death in modu-

lating key components of angiogenesis in cancer cells.22 Inhibition of

PARP1 is being exploited for the cancer treatment.23,24 In fact, PARP

inhibitors have showed an extremely promising anticancer treatment

and are currently tested in phase I and II clinical trials in different solid

tumours.25

Network analysis helps us obtain global and integrated molecular

information about interactions among the significant DEGs. One

important network was identified around the AKT2 genes. AKT2 is a

putative oncogene encoding a protein belonging to the serine‐thre-
onine protein kinase, also known as protein kinase B, PKB (AKT) sub-

family of serine/threonine‐protein kinases, as well as a key node on

the phosphatidylinositol 3‐kinase (PI3K/AKT) pathway which is recog-

nized as a key pathway in carcinogenesis occurring commonly in

diverse human cancer cells.26,27 Previous studies have revealed that

aberrant activation of PI3K/AKT pathway is also closely associated

with the process of cancer metastasis.28 PI3K phosphorylates AKT

and consequently facilitates tumourigenesis and cancer progression

through its downstream targets.29 Report indicated that expressing

active AKT can avoid apoptosis and checkpoint‐dependent cell cycle

arrest due to suppression of homologous recombination (HR) and reli-

ance on error‐prone NHEJ.30 Studies demonstrated that DNA damage

activated AKT2 expression and subsequently conferred apoptotic

resistance in ovarian cancer cells.31 At the same network, significantly

decreased expression of CASP4, CASP2 and TNF‐receptor superfam-

ily protein fas cell surface death receptor (FAS) was observed among

the DEGs of MTX‐resistant xenografts.
In our study, Ataxia‐telangiectasia mutated kinase (ATM) was

found to be highly up‐regulated in MTX‐resistant xenografts, and

observed as a hub gene in the network. This gene is also highly

expressed in non‐small cell lung cancer (NSCL) exposed to carbon

ion irradiation.32 Ataxia‐telangiectasia mutated kinase, a member of

PI3K/AKT family protein, its main function is to control the cell cycle

progression following DNA damage, particularly DSBs.33 Reports

indicated that MTX produce DNA cross‐links and DNA replication

defects in tumour cells, once DNA damage occurs, ATM pathway for

HR repair is activated.34 DNA repair is an essential prerequisite for

A B

F IGURE 6 Expression profiles of PARP1, ILB1, CDH1 and PLAUR were evaluated by Western blot and qRT‐PCR. A, Western blot. B,
Results expressed as western blotting band intensity. C, qRT‐PCR. Means ± SEM (n = 4)
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the maintenance of genomic integrity and cellular viability.35 It is

demonstrated that DNA‐damaging drugs (including MTX) can trigger

an ATM‐dependent DNA damage response, leading to increased

cytokine secretion and resistance to chemotherapy‐induced apopto-

sis.36 Report also revealed that ATM together with phosphotyrosine

binding domain and a leucine zipper motif (APPL), a regulator of

ATM phosphorylation, modulates DNA damage repair and conse-

quently raises the survival of pancreatic carcinoma cells.37 In addi-

tion, ATM has been implicated in the control of RNA splicing that

may play a role in genomic stability.38,39

DNA‐damage response activates a secretory program that com-

prises a diverse spectrum of proteases, growth factors and, cytoki-

nes that have been shown to contribute to wound healing and

altered immune responses.40,41 Interleukin‐6 (IL‐6), at high concen-

trations, is found to protect cancer cells from therapy‐induced
DNA damage, oxidative stress and apoptosis by facilitating the

repair and induction of antioxidant response.42 In our study, IL6 is

up‐regulated and screened as a hub gene in androgen‐independent,
MTX‐resistant xenografts. Evidence support DNA damage and

stress induce sustained IL‐6 and IL1B production in PCa through

P2Y11 receptor‐p38 MAPK‐NF‐κB signalling pathway,6,43 which

may play an essential role in promoting cancer cells proliferation,

survival, invasiveness and metastasis. Therefore, inhibition of IL‐6
or in combination with conventional anticancer therapies may be a

potential therapeutic strategy for the treatment of MTX‐resistant
PCa.
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F IGURE 7 qRT‐PCR analysis of differentially expressed genes identified in the microarray. A, DU145R vs DU145, B, PC3R vs PC3, C,
optimal cutting temperature (OCT) and D, formalin‐fixed, paraffin‐embedded (FFPE) tumour samples from patients with metastatic castration‐
resistant prostate cancer. Expression data are represented by a log ratio calculated by comparing ΔCq from the xenograft with ΔCq from the
controls. ΔCq was calculated as the difference between Cq of the targeted genes and Cq of the endogenous control gene ACTB
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Sixteen DEGs were selected to be validated by qRT‐PCR
according to their function and relative expression level in MTX‐re-
sistant xenografts. These DEGs were further tested in MTX‐resis-
tant CRPC patient samples (seven OCT and six FFPE samples).

Results confirmed that BLCAP, EML1, FOSL2, ADNP and FRMD3

were deregulated in the same way among the xenografts, FFPE

and OCT tumour samples. However, discordant results were

observed in the expression of other genes such as PLD1, which

was down‐expressed in MTX‐resistant tumour samples but was sig-

nificantly overexpressed in MTX‐resistant xenografts. These con-

flicting results may be due to cellular heterogeneity between the

xenografts from cell lines and the tumour sample from patients.

Therefore, further clinical validation of these results is needed in a

large cohort of patients.

In analysing, often individual genes were found in multiple cate-

gories of functions related to cancer development including cell sig-

nalling, cell death, cellular growth and proliferation. Besides, it

reminds us there are certain limits in the analysis as there are many

different gene interactions resulting from various cellular/experimen-

tal conditions. Nevertheless, this exploratory analysis may be still

useful to bestow a theranostic perspective to the current trend of

research in PCa or to develop targeted therapies to overcome MTX

chemotherapy resistance.
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