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Abstract: Goblet cells and the mucus they secrete serve as an important barrier, preventing 
pathogens from invading the mucosa to cause intestinal inflammation. The perspective 
regarding goblet cells and mucus has changed, with current evidence suggesting that they 
are not passive but play a positive role in maintaining intestinal tract immunity and mucosal 
homeostasis. Goblet cells could obtain luminal antigens, presenting them to the underlying 
antigen-presenting cells (APCs) that induces adaptive immune responses. Various immuno
modulatory factors can promote the differentiation and maturation of goblet cells, and the 
secretion of mucin. The abnormal proliferation and differentiation of goblet cells, as well as 
the deficiency synthesis and secretion of mucins, result in intestinal mucosal barrier dysfunc
tion. This review provides an extensive outline of the signaling pathways that regulate goblet 
cell proliferation and differentiation and control mucins synthesis and secretion to elucidate 
how altering these pathways affects goblet functionality. Furthermore, the interaction 
between mucins and goblet cells in intestinal mucosal immunology is described. 
Therefore, the contribution of goblet cells and mucus in promoting gut defense and home
ostasis is illustrated, while clarifying the regulatory mechanisms involved may allow the 
development of new therapeutic strategies for intestinal disorders. 
Keywords: goblet cell, intestinal tract, intestinal barrier, mucosal immunity, cytokine, 
Mucin2

Introduction
The intestinal tract is essential in controlling nutrient digestion and absorption while 
functioning as a barrier to prevent foreign antigens and pathogens from entering the 
mucosal tissues and maintaining intestinal homeostasis. The intestinal barrier sys
tem depends on interactions among several barrier components, including mucus 
layer, epithelial layer and intercellular tight junctions and the lamina propria 
underneath.1,2 Among these components, the integrity of the mucus barrier formed 
by goblet cells and their secretions play a vital role in maintaining intestinal 
homeostasis. Goblet cells secrete mucins, which are high-molecular-weight glyco
proteins, denoting the primary structural element of the mucus layer.3,4 The mucins 
are highly hydrophilic and can bind water to form a gel-like structure, preventing 
direct contact between enterocytes and the intraluminal content, especially patho
genic microorganisms.4 The absence of or any defect in the mucus layer allows 
a large number of bacteria to make contact with the epithelial cells, triggering an 
excessive immune response in the host,5 leading to colitis in mice.6 Various 
intestinal infections resulting from parasites,7,8 viruses,9 and bacteria10 modify the 
production of mucin and goblet cells, demonstrating the importance of the mucus 
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layer in separating the luminal contents from the epithe
lium. However, the critical function of the mucus layer and 
goblet cells in host defense has not received adequate 
attention. Recent studies have started to focus on the 
ability of goblet cells to actively sense and respond to 
infections while secreting additional products, such as 
trefoil factor peptides (TFF), mucins, Fc-γ binding protein 
(Fcgbp), and resistin-like molecule β (RELMβ), which are 
crucial in promoting intestinal defense.11–13 This review 
summarizes the current advancements regarding the sig
naling pathways that control goblet cell differentiation 
while discussing the new functional responsibility of gob
let cells in intestinal mucosal immunology.

The Differentiation of Goblet Cells
The self-renewal of intestinal epithelial cells is maintained 
by the proliferative activity of adult stem cells located at 
the base of the intestinal crypts. The progeny of these stem 
cells proliferates and then differentiates into functional 
epithelial subtypes that migrate to the villi and eventually 
into the lumen shed into the gut lumen.14,15 The four main 
types, namely Paneth cells, intestinal epithelial cells, enter
oendocrine cells, and goblet cells, are derived from the 
stem cells in the basement of the crypt.11 Enterocytes 
represent the majority (up to 80%) of cells in the intestinal 
epithelium, they are responsible for ion, water, sugar, pep
tide and lipid uptake.15 The basal part of endocrine cells 
contains a large number of dense neuroendocrine granules, 
which contain the secreted peptide hormones, secreted 
basally in an endocrine or paracrine manner.16 The goblet 
cell contains mucigen granules that are expelled to the 
surface as intestinal mucus, protecting and lubricating the 
mucosa. Paneth cells are primarily located in the small 
intestine, where they secrete a number of mediators of 
host defense, including lysozyme, tumor necrosis factor, 
and defensins, that protect against intestinal bacterial 
pathogens.17 Dynamic analysis of the goblet cells in the 
intestines of mice indicated a migration from the crypt base 
to the villi tip once after differentiation, where they enter 
the lumen.18,19 The upper crypt cells of the colon show that 
during differentiation, the goblet cells develop the capacity 
to generate and store significant quantities of mucus.5 

These immature goblet cells are located at the base of the 
crypt in a pyramidal shape.18 The goblet cell cannot be 
distinguished morphologically in Mucin2 (Muc2) deficient 
mice, despite the continued presence of other goblet cell 
products, such as TFF.20 Maintaining stem cells and the 
distinction into four main types of intestinal cell lineages 

involves a variety of complex signaling pathways, such as 
Wnt/β-catenin, Notch, PI3-kinase/Akt, and bone morpho
genetic protein (BMP) signaling.21 The canonical Wnt 
pathway is tightly linked with cell proliferation, differen
tiation and stem cell maintenance.15,22 Wnt ligands bind to 
the Frizzled–LRP5–LRP6 receptor complex, which inhi
bits continuous destruction of β-catenin by the cytoplasmic 
adenomatous polyposis coli (APC) destruction complex in 
the intestinal epithelium.23 The accumulation of β-catenin 
leads to its translocation to the nucleus, where it binds 
T cell factors (TCFs) and directly regulates gene 
expression.23 Using transgenic mice ectopically expressing 
Dickkopf1 (Dkk1), a secreted Wnt inhibitor, Pinto et al24 

found that epithelial proliferation is highly reduced simul
taneously with the loss of crypts. Although enterocyte 
differentiation appeared unaffected, secretory cell lineages 
were largely absent. In the presence of WNT, stabilized β- 
catenin can bind the Hes1 promoter together with Notch 
intracellular domain (NICD), resulting in stable Notch 
activation and promoting the initial absorptive or secretory 
cell differentiation decision by lateral inhibition.25,26 

Higher up in the crypt, in the absence of WNT, negative 
feedback of the Hes1 promoter and absence of nuclear β- 
catenin causes oscillatory Notch activation and enables 
stochastic secondary fate decisions within a lineage (for 
example goblet versus enteroendocrine cell fate26). The 
Notch signaling pathway significantly regulates intestinal 
enterocyte lineage, activating the hairy and enhancer of 
split 1 (Hes1) transcription factor, repressing the basic 
helix-loop-helix (bHLH) transcription factor mouse atonal 
homolog 1 (Math1),11,27 also known as Atonal homologue 
1 (Atoh1). The Notch-Hes1 pathway promotes intestinal 
progenitor cell differentiation toward luminal epithelial 
cells, restricting the development of secretory cells. 
Notch signaling pathway activation disrupts the differen
tiation of secretory cells with the villi coated primarily with 
absorptive enterocytes associated with Hes1 activation.11,21 

Math1 facilitates the distinction of intestinal stem cells into 
the goblet cell lineage and is seemingly essential for differ
entiating intestinal secretory lineages since studies have 
shown that Math1-deficient mice failed to generate three 
gastrointestinal mucosal cell types, namely enteroendo
crine, Paneth, and goblet cells.18,28 As indicated by pre
vious research, the transcriptional activation of the Jagged1 
Notch-ligand, mediated by β-catenin, leads to Notch being 
downstream of Wnt in colorectal cancer cells.29,30 

Furthermore, the terminal differentiation of goblet cells 
involves the activation of Krüppel-like transcription factor 
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4 (Klf4), SAM pointed domain-containing ETS transcrip
tion factor (Spdef), and growth factor independence 1 
(Gfi1). As a downstream target of Math1, Gfi1 controls 
intestinal secretory cell subtype allocation and 
differentiation.31 Furthermore, fewer supernumerary enter
oendocrine and goblet cells were evident in Gfi1 knockout 
mice, while they lacked Paneth cells. Gfi1-null crypts con
taining no Paneth cells and only a few goblet cells display 
a quantitative reduction in Spdef, which is absent from 
Atoh1-null crypts lacking intestinal secretory cells, sug
gesting Spdef functionality downstream of Gfi1 and 
Math1 in the goblet cell terminal differentiation 
pathway32 (Figure 1). In the intestine, Klf4 regulates goblet 
cell terminal differentiation by controlling Muc2 
expression,33 which can be inhibited by the Notch signal
ing pathway.34 Recent studies indicate that prolyl hydro
xylase 3 (PHD3) also controls the generation of intestine 
goblet cell by bounding the E3 ubiquitin ligase HUWE1 
and inhibition of HUWE1-mediated ubiquitination and 
degradation of ATOH1.35

Various additional factors, such as immune cells, diet, 
and bacteria, also influence goblet cell differentiation.36–38 

Significantly fewer intestinal goblet cells in germ-free 
mice only express modest levels of MUC2 while contain
ing an exceedingly thin mucus layer compared with con
ventionally housed mice.39 However, exposing germ-free 
mice to a conventional environment enhances RELMβ and 
MUC2 expression, leading to a substantially thicker mucus 
layer.40 The microbiota, acting via secreted factors related 
to indole, promote goblet cell differentiation and regulate 
intestinal homeostasis via the xenobiotic aryl hydrocarbon 
receptor to increase expression of the cytokine interleukin- 

10 (IL-10), reversing an effect of aging in geriatric mice.41 

Therefore, these results support the vital role of microbial 
colonization in goblet cell development and maturation.

The Classification and Structure of 
Mucins
Mucins consist of large glycoproteins containing tan
dem repeats with high levels of serine and threonine, 
with the hydroxyl residues displaying a significant 
number of O-linked oligosaccharides.4 To date, 21 dif
ferent mucin genes have been detected, designated 
MUC1 to MUC21 according to the order of their 
discovery.42 Furthermore, based on their structural 
characteristics and biological functionality, mucins are 
segregated into two primary groups, namely mem
brane-associated mucins and secreted mucins. 
Intestinal membrane-associated mucins are denoted by 
MUC1, MUC3A/B, MUC4, MUC12, MUC13, MUC15, 
MUC17, MUC20, and MUC21. Secreted mucins can be 
divided into gel-forming mucins (MUC2, MUC5AC, 
MUC5B, MUC6, and MUC19), which are essential 
during the development of the mucus barrier on muco
sal surfaces, and non-gel forming mucins (MUC7, 
MUC8, and MUC9).42–46 Gel-forming mucins play 
a functional protective, transportation, lubrication, and 
hydration role in the mucous membranes.47 Minimal 
information is available regarding the functionality of 
non-gel forming mucins. Membrane mucins provide 
a safe epithelial cell barrier while playing an important 
role in signal transduction.43 A summary of the mucin 
classification is listed in Table 1.

Figure 1 Role of transcription factors in goblet cell differentiation.
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Regulation of Mucin Synthesis
The endoplasmic reticulum (ER) represents the organelle 
where mucins are synthesized, and N-linked glycosylation 
occurs. The assembled mucins are transported to the Golgi 
complex, where they are O-linked glycosylated to a size of 
2.5 million Daltons.48–50 They are then packaged as secre
tory granules, accounting for about 75% of the cytoplasmic 
volume.51 The granules mature to produce highly concen
trated mucins that eventually merge with the plasma mem
brane and are secreted into the extracellular domain.52 The 
mucin structure changes to form a gelatinous combination 
with water, covering the surface of the epithelium.49 MUC2 
denotes the prominent intestinal mucin secreted by healthy 
mice, the deficiency of which leads to spontaneous inflam
mation and infection susceptibility.6

Recent studies have revealed that epigenetic and tran
scriptional regulation primarily controls the expression of 
mucin.43,47,53 Signaling pathways control Muc2 transcrip
tional regulation, activating the transcription factors binding 
to specific Muc2 promoter sites. Negative or positive Muc2 
transcription is reportedly regulated by several biologically 
active molecules, including growth factors, hormones, 
microbial products, and cytokines.43 Muc2 gene expression 
regulation is essentially governed by the promoter region. 
The promoter structures of Muc2 reveal that a typical TATA 
box exists at the 31/−25 bp upstream location of the tran
scriptional initiation site.54,55 The Muc2 gene 5′-flanking 
areas display a CACCC box that specifically binds to the 
specificity protein 1 (Sp1) transcription factor. In addition, 
transcription factor p53 can activate the transcription of 

Muc2 by binding to both the −1131 /−1100 and −676 / 
−650 sites.56 Moreover, NF-κB is also associated with the 
upregulation of Muc2 transcription,57 representing the final 
effector molecule that regulates Muc2 expression in multiple 
signaling pathways (Figure 2).

Many other factors impact the expression of Muc2 by 
directly binding on different sites of the promoter, 
including short-chain fatty acids (SCFAs),58 galectin- 
3,59 homeobox domains (Cdx),60 the GATA family,61 

and HATH1.62 SCFAs are metabolites formed by gut 
microbiota from dietary fiber, including acetate, propio
nate, and butyrate.63 As part of the β-galactoside-binding 
gene family, galectin-3 is implicated in tumor progres
sion, cell migration, adhesion, and apoptosis.59,64 Both 
butyrate and galectin-3 stimulate Muc2 expression 
through the AP-1 transcription factor binding site in the 
Muc2 promoter.58,65 AP-1 is a dimeric protein complex 
that consists of c-Jun and c-Fos proto-oncogenes, the 
expression of which can be facilitated by butyrate.58 

Two Cdx-2 binding sites are present in the Muc2 pro
moter at −177/-171 and −191/-187, suggesting that Cdx- 
2 is a transcriptional regulator for Muc2.60 GATA exists 
in the Muc2 gene 5′-flanking region and comprises six 
transcription factors in the highly conserved zinc finger 
DNA-binding domain, which is responsible for upregu
lating Muc2 gene expression.61,66 HATH1 and MATH1 
are bHLH transcription factors essential in regulating the 
differentiation of goblet cells.18,28 HATH1 binding sites 
are present in the Muc2 promoter sequence, the mutation 
of which down-regulates the expression of Muc2.62

Some bacterial products regulate the production of 
Muc2 indirectly by activating the NF-kB pathway, includ
ing lipopolysaccharides (LPS), Gram-negative bacterial 
flagellin A, and Gram-positive bacterial lipoteichoic acid 
(LTA). Muc2 transcription is upregulated by Gram- 
negative Pseudomonas aeruginosa LPS by activating 
NF-κB via the Ras-mitogen-activated protein kinase 
(MAPK) pathway in the intestinal epithelial cells.57,67 

However, flagellin binds to the Asialo-GM1 glycolipid 
receptor on the surface, releasing ATP and subsequently 
binding to the cell surface G protein-coupled receptor 
(GPCR). This increases the intracellular calcium levels, 

Table 1 The Classification of Mucins

Subfamily MUC Gene

Membrane bound MUC1, MUC3, MUC4, MUC10, MUC11, 
MUC12, MUC13, MUC14, MUC15, 

MUC16, MUC17, MUC18, MUC20, MUC21

Secreted Gel- 

forming

MUC2, MUC5AC, MUC5B, MUC6, MUC19

Non Gel- 

forming

MUC7, MUC8, MUC9

Figure 2 Schematic representation of the promoter regions of MUC2.
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activating NF-κB via the downstream signaling 
pathways.57 Furthermore, LTA binds and activates the 
platelet-activating factor receptor, a cell surface GPCR, 
inactivating the epidermal growth factor receptor 
(EGFR), in turn leading to the activation of the Ras/Raf/ 
MEK/ERK/pp90rsk/NF-kB pathway while upregulating 
the transcription68 of Muc2.

Furthermore, several cytokines and chemokines are 
involved in mucin synthesis. The Th1 type cytokine, 
tumor necrosis factor-α (TNF-α), upregulates the transcrip
tion of Muc2 via the PI3K/AKT/NF-κB signaling pathway. 
Moreover, TNF-α also inhibits the transcription of Muc2 
through the JNK pathway, but overall effect of is a net 
increase in Muc2 transcription, because NF-κB transcrip
tional activation of this gene is able to counter-balance the 
suppressive effects of the JNK pathway.69 However, TNF- 
α inhibited Muc2 production when NF-κB was inactivated, 
which gives rise to the defective mucosal protection.69 

Vasoactive intestinal peptide (VIP), a neuropeptide hor
mone, is responsible for the Muc2 transcription upregula
tion by activating the CREB/ATF1 transcription factors via 
the p38 and MAPK pathways.70 PGE2 also induced Muc2 
transcription by activation of CREB/ATF1. The underlying 
molecular mechanisms of another Th1 type cytokine, IL- 
1β, induces the Muc2 activation of the p38 and ERK 
pathways, leading to cyclooxygenase 2 expression, an 
enzyme related to PGE2 synthesis.71 Moreover, IL-4 and 
IL-13 are Th2 cytokines that can upregulate the expression 
of Muc2 through the MAPK/NF-κB mediated pathway.72

Epigenetic regulation includes microRNA silencing, 
histone modification, and DNA methylation. The methyla
tion of specific CpG sites in the promoter region and first 
intron of Muc2 is associated with the repression of 
MUC2.73 Recent studies have revealed that the expression 
of Muc2 gene is controlled by the methylation of DNA 
and the modification of histone in the 5′ flanking area of 
the Muc2 promoter.74

Regulation of Mucin Secretion
After mucin proteins are synthesized in the goblet cells, they 
are tightly packed into intracytoplasmic granules. They are 
then transported to the surface of the cell and ultimately 
secreted into the lumen. Mucin secretion can be divided into 
two types, namely constitutive and stimulated secretion. In 
typical physiological conditions, goblet cells are synthesized 
continuously, secreting mucins to form the hydrated gel 
coating on the intestinal mucosal luminal surface. This con
tinual secretion of mucin is essential for maintaining the 

thickness of the mucus gel. It is constantly subjected to 
various microbial pathogens and stimuli and is often shed 
due to peristaltic intestinal movements.75 The release of 
mucin is accelerated when goblet cells are subjected to 
powerful secretagogues and is influenced by many different 
factors, including neuropeptides, cytokines, and lipids.76 

Bioactive cytokine binds to specific receptor-affecting sec
ondary messengers and signaling components, such as intra
cellular diacylglycerol, cAMP, and Ca2+, activating protein 
kinase C to promote the secretion67,77 of mucin. The pros
taglandin E2 (PGE2) immune modulator binds the EP4 
receptor, promoting cAMP-dependent exocytosis in the 
human colon.78,79 Carbachol, a Ca2+-mediated agonist, ele
vates the cytosol levels of Ca2+, which stimulates the 
secretion80 of mucin. Phorbol 12-myristate 13-acetate 
(PMA) significantly promotes the release of mucin via the 
protein-kinase C-dependent pathway.77

Recent research has indicated that the mucus secretion 
of goblet cells is modulated by several cellular processes, 
including the assembly and activation of inflammasomes, 
the generation of reactive oxygen species (ROS),4,5,81 

autophagy, and endocytosis. Previous research has 
revealed the inhibition of clathrin-mediated endocytosis, 
as well as defects in autophagy-related proteins, including 
Atg5, Atg14, and FIP200, resulting in the aggregation of 
goblet cell mucin granules.4,81 Mucin accumulation is not 
associated with mucin expression, suggesting that this 
effect might be caused by mucin secretion deficiency.

Recent studies have shown that the secretion of goblet 
cells relies on autophagy proteins.81 The MUC2 granule 
aggregation in the goblet cells is determined via a targeted 
villin-driven deficiency of the Atg5 autophagy protein in 
the intestines of mice. This process is mediated by ROS 
derived from NADPH oxidases.

The NLR protein, NLRP6, is associated with inflamma
some signaling and is essential for maintaining intestinal 
homeostasis.82,83 In NLRP6 knock out mice, goblet cells 
were less efficient at secreting mucin and had poorer devel
opment of the inner mucus layer.83 No reduction was evident 
in the specific protein transcription of goblet cells in NLRP6- 
deficient mice, suggesting that the lack of mucus generation 
could not be attributed to a decline in transcript production. 
Conversely, the accumulation of intracellular mucin particles 
in the distal colon of mice deficient in NLRP6 increased, but 
these particles failed to merge with the apical surfaces of the 
goblet cells. NLRP6 deficiency resulted in defective goblet 
autophagy, reducing mucin secretion into the intestinal lumen.
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Recent reports indicated that some goblet cells localized 
at the colonic crypt entrance underwent nonspecific endocy
tosis, known as sentinel goblet cells (senGC). Toll-like recep
tors (TLR)-ligands, LPS, and P3CSK4 were endocytosed by 
senGC, triggering TLR-MyD88 signaling and inducing 
downstream ROS synthesis, causing NLRP6 inflammasome- 
mediated caspase 1 and 11 activation. Furthermore, this led 
to the Ca2+-dependent exocytosis of MUC2 and intercellular 
signaling connections, prompting the secretion of MUC2 by 
the adjacent responsive GCs. The inhibition of endocytosis or 
NADPH/Dual oxidase ROS synthesis restricted TLR-ligand- 
induced Muc2 secretion12,84 (Figure 3).

The Interaction Between Goblet 
Cells and Immune Cells
Although the main functions of intestinal goblet cells have 
traditionally been believed to include producing and secreting 

mucus, recent studies have shown that this is not the case. The 
intestinal lamina propria (LP) has a large population of den
dritic cells, such as CD103- CX3CR1+ antigen-presenting 
cells (APCs) with macrophage qualities and CD103+ 
CX3CR1- APCs with dendritic cell characteristics.85–87 In 
CD103+ APCs, retinaldehyde dehydrogenase (ALDH1) 
expression is essential for producing all-trans retinoic acid 
(ATRA), which plays various roles in the mucosal immune 
response to lumen antigens, such as promoting IgA responses, 
imprinting lymphocytes with gut homing, and prompting reg
ulatory T cell formation.86,88,89 The CD103- CX3CR1+ APCs 
are crucial for the formation of Th17 T cells, colitis, and the 
production of TNF-α.90 Research has revealed that intestinal 
epithelial cells can also obtain luminal antigens, presenting 
them to the dendritic CD103+ cells underlying the LP in 
a way that induced adaptive immune responses, known as 
goblet-cell-associated antigen passages (GAP cells86,91). 

Figure 3 Regulatory mechanism of mucus secretion in goblet cell and interaction with immune cells. Soluble antigens in the lumen of the intestine such as LPS and P3CSK4 
are endocytosed by senGC, triggering TLR-MyD88 signaling, ROS synthesis and NLRP6 inflammasome, causing Ca2+-dependent secretion of MUC2. Goblet cells can also 
deliver luminal antigens to APCs, initiating adaptive responses.
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When acetylcholine (ACh) acts on muscarinic acetylcholine 
receptor 4 (mAChR4) on the goblet cells, GAPs are formed.92 

The formation of GAPs occurs in a steady state in the small 
intestine, but is inhibited by Myd88 dependent microbial sen
sing in the colon. According to Knoop KA, GAP cells could 
occur in the colon following treatment with antibiotics, that 
they were repressed by TLR ligands in a goblet cell intrinsic 
Myd88-dependent manner. The EGFR and MAPK are acti
vated by Myd88, inhibiting the formation of colon GAPs. 
Therefore, both CD103− and CD103+ dendritic cells, as well 
as subsequent mucosal inflammation, are activated92 

(Figure 3).
Goblet cell products and luminal antigens are transferred 

during the interaction with APCs, imprinting them with muco
sal properties.86 The primary goblet cell product, MUC2, has 
been shown to imprint anti-inflammatory gene markers 
required for oral tolerance on APCs.93 Interfering with the 
APC and epithelial cell interaction reduces the transfer of 
goblet cell products to APCs, reducing the induction of muco
sal reactions.94 RELM-β is another product secreted by goblet 
cells, acting as a chemoattractant recruit CD4 T cells to the 
colon LP when infected with C. rodentium95 CD4+ T cell 
recruitment to the infected colons of RELM-β knockout mice 
was restricted, reducing IL-22 production, a pluripotent cyto
kine directly responsible for enhancing the proliferation of 
epithelial cells. Goblet cells also regulate the immune response 
by secreting various cytokines, such as IL25, IL18, IL17, IL15, 
IL13, IL7, and IL6, and chemokine exotoxin, CCL6, CCL9, 
and CCL20. The latter attract APCs to the epithelium.91,94 

Therefore, goblet cells establish intimate interactions with 
immune cells, playing a unique and integral role in maintaining 
gut immune homeostasis.96

Immune Regulation of Goblet Cell 
Function
Although goblet cells control the LP via a specific mechanism, 
the immune system is also essential in regulating goblet cell 
functionality (Figure 4). Type 3 Innate Lymphoid Cells 
(ILC3s) promotes goblet cell differentiation and the expression 
of MUC2 through the lymphotoxin (LT)-LTβR pathway dur
ing intestinal listeria infection.10,97 DCs such as macrophages 
and dendritic cells provide processed, phagocytosed antigens 
for activating and instructing naïve CD4+ T cells to convert to 
type 2 helper (Th2) cells.98,99 These cells are essential for the 
immune response against extracellular parasites and intracel
lular pathogens, resulting in the increased secretion of cyto
kines like IL-13, IL-9, IL-5, and IL-4.100–102 Of these, IL-4 and 

IL-13 are considered the major effector cytokines that signal 
through the IL-4Rα and IL13Rα1 subunits on the intestinal 
epithelial cells to induce goblet cell hyperplasia via the down
stream signal transducer and activator of transcription factor 6 
(STAT6) signaling.103,104 STAT6 is critical for goblet cell 
hyperplasia development during infection with 
T. spiralis.18,105 STAT6 deficient mice infected with 
T. spiralis failed to generate infection-induced goblet cell 
hyperplasia. Further studies have shown that IL-13 is crucial 
in regulating goblet cell hyperplasia in Gymnophalloides seoi 
infection. The overexpression of IL-13 in mice causes the 
development of goblet cell hyperplasia in their intestines. 
Furthermore, the overexpression of exogenous IL-9 and IL- 
25 promotes goblet cell proliferation and mucin expression via 
an IL-13-reliant pathway.106 The administration of IL-4 
enhances the thickness and quality of the mucus while decreas
ing pathogenic contact with the epithelium in C. rodentium and 
colitis in infected mice.107 IL-13 and IL-4 upregulate the 
expression of specific goblet cell products, TFF3 and MUC2, 
via STAT6 signaling.108 In addition, IL-13 and IL-4 increase 
the transcription of MUC2 through the MAPK pathway72 

(Figure 4).
Like Th2 cytokines, some Th1 cytokines regulate mucin 

biosynthesis, while TNF-α upregulates MUC2 in human 
intestinal epithelial cells via the NIK and PI3K/Akt signaling 
pathways converging at the common NF-κB pathway.69 

MUC2 was increased in the 3D co-culture model of Caco-2 
and HT29-MTX cells when treated with IL-1β, while 
MUC5AC remained unchanged.109 By activating PI3K and 
PKC-MEK/ERK, IL-1β also stimulates the secretion of mucin 
and the expression of MUC2 genes in the epithelial cells of the 
human airway.110 In contrast, the Th1 cytokines, TNF-α and 
IFN-γ, decrease the production of intestinal mucin, as well as 
the mucin transportation rate from the Golgi to secretory 
vesicles in the C. rodentium infection mode,107 implying that 
the Th1 cytokine impact on goblet cells is not only related to 
the type of cytokines but also pathological conditions.

Studies have shown that the Th17-associated cytokine, 
IL-22, is essential in regulating the expression of mucin 
and the differentiation of GC. IL-22 knockout mice fail to 
increase the expression of MUC2 and reduced goblet cell 
hyperplasia in N.brasiliensis and T. muris infection.111 

This is correlated with the reduced induction of TH2 
immunity as IL-4, IL-5, and IL-13 declined.112 In 
a mouse colitis model, IL-22 was directly responsible for 
mucin gene expression in the mucosal epithelial cells via 
goblet cell restitution and STAT3-reliant signaling, alle
viating local intestinal inflammation.113,114
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As an anti-inflammatory cytokine, IL-10 inhibits 
macrophage activation and inflammatory response.115,116 

The expression of IL-10 in normal subjects was higher 
than in inflammatory bowel disease (IBD) patients.117 IL- 
10 knockout mice were used for the animal inflammation 
model.118 The goblet cell count decreased in IL-10 defi
cient mice compared with wild-type mice.119 Recent stu
dies have also shown that IL-10 has a direct impact on 
goblet cell mucus production and mucosal 
characteristics.120 Moreover, previous studies suggest that 
IL-10 restricts ER stress and protein misfolding in goblet 
cells, enhancing intestinal mucus production.121

The IL-1 cytokine, IL-33, increases in response to infec
tion and colitis122 while prompting the production of the IL-4, 
IL-5, and IL-13 Th2 cytokines from innate lymphoid cells 
(ILCs) and T cells.123 IL-33 prevented goblet cell depletion by 
inhibiting Notch1 signaling in a dextran sulfate sodium (DSS)- 
induced mouse colitis model.124 Research has shown that IL- 
33 prompts the production of IL-13 by stimulating ILCs, 
indirectly inducing epithelial goblet cell differentiation.37

Conclusions
Mucin is the primary secretory product of goblet cells and is 
responsible for generating mucus layers, protecting against 
pathogen invasion in the intestinal mucosa. These mucus 
layers are essential in preventing pathogenic microbial inva
sion and colonization while establishing commensal intest
inal microbiota. In recent years, several studies have 
examined the molecular mechanisms of mucin biology and 
the regulatory pathways responsible for the secretion and 
biosynthesis of mucin. This data can help develop new 
strategies to treat the abnormal mucin expression that is 
often present in inflammatory and malignant diseases. 
Furthermore, while the primary function of goblet cells is 
to maintain the integrity of the intestinal barrier, the compli
cated contribution of these cells to mucosal immunity far 
exceeds the mere secretion of mucus. Notably, goblet cells 
are now considered active participants in defending the host, 
reacting to their luminal environment in conjunction with 
the immune response. This review summarizes the crucial 
nature of the immune system in regulating the biological 

Figure 4 Immune regulation of goblet cell function and mucin production. (1) IL-33 and IL-25 activate ILC2 and Th2 cells during parasite infections, which release Th2 
cytokines such as IL-4, IL-5, IL-9, and IL-13. IL-4 and IL-13 can promote goblet cell proliferation through STAT6 signaling. IL-4 and IL-13 also upregulate the expression of 
TFF3 and MUC2 via STAT6 or MAPK signaling. IL-25 and IL-9 also promoted goblet cell proliferation and mucin expression through IL-13 dependent pathway. IL-33 induces 
goblet cell differentiation by stimulating ILCs to produce IL-13. (2) Th1 cytokines such as TNF-α, IL-1β and IFN-γ play complex way in regulating mucin biosynthesis, which 
not only induce, but also inhibit MUC2 expression in different pathophysiological conditions. (3) IL-22 can regulate goblet cell differentiation and induces mucin expression in 
STAT3 signaling. IL-10 promotes mucin expression by inhibiting protein misfolding and ER stress in goblet cells.
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functions of goblet cells. In conclusion, further research is 
necessary on how goblet cells control the extracellular envir
onment, interact with the microbiome and its products, and 
communicate with underlying immunity to clarify the spe
cific mechanisms involved and develop novel therapeutic 
approaches for intestinal disorders.
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