ARTICLE

Determining molecular properties with differential
mobility spectrometry and machine learning
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The fast and accurate determination of molecular properties is highly desirable for many
facets of chemical research, particularly in drug discovery where pre-clinical assays play an
important role in paring down large sets of drug candidates. Here, we present the use of
supervised machine learning to treat differential mobility spectrometry - mass spectrometry
data for ten topological classes of drug candidates. We demonstrate that the gas-phase
clustering behavior probed in our experiments can be used to predict the candidates’ con-
densed phase molecular properties, such as cell permeability, solubility, polar surface area,
and water/octanol distribution coefficient. All of these measurements are performed in
minutes and require mere nanograms of each drug examined. Moreover, by tuning gas
temperature within the differential mobility spectrometer, one can fine tune the extent of ion-
solvent clustering to separate subtly different molecular geometries and to discriminate
molecules of very similar physicochemical properties.
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ARTICLE

Ithough mass spectrometry-based techniques have long

found utility for fast and sensitive compound detection

and for gas-phase properties measurements (e.g., ion
structure, reactivity), the efficacy of employing gas-phase mea-
surements to predict condensed phase properties remains a
contested subject’2. However, differential mobility spectrometry
(DMS) has recently shown promise in this regard®~*. Most
commonly employed as a narrow-pass filter to separate ions from
chemical noise>®, DMS takes advantage of an oscillating asym-
metric electric field to drive rapid cycles of microsolvation and
evaporation in environments that are seeded with low partial
pressures of solvent vapor>”8, In examining how ion micro-
solvation properties are affected by specific structural attributes,
the influence of electronic and resonance effects®>?, the steric
hindrance of charge sites>!®!1, and the influence of intramole-
cular hydrogen bonding have been observed!2. Thus, a picture is
now emerging which suggests that the dynamic DMS environ-
ment facilitates swift and statistical sampling of an analyte’s
potential energy surface. Consequently, strong correlations may
be observed between an analyte’s clustering behavior within the
DMS instrument and molecular properties in the condensed
phase, such as cell permeability, which are partially dependent on
the interaction potential between the analyte and its condensed
phase environment>413-15,

During the early stages of drug development, it is the goal of
medicinal chemists to relate the cellular availability of a drug
candidate to its physicochemical properties and chemical struc-
ture!®17. Thus, from the perspective of rational drug design, a fast
and sensitive technique that can aid in predicting molecular
properties is highly desirable. At present, there are several
benchtop in vitro techniques available to measure cellular per-
meability (e.g, RRCK, Caco-2, and MDCK)!8 and other physi-
cochemical properties that serve as preliminary appraisals of
in vivo behavior (e.g., turbidometry, PAMPA, LogD, pK,)!°.
However, it is often challenging to discriminate between closely
related structural analogues using the current state-of-the-art
techniques?%-2!. Moreover, while exceptional progress has been
made in refining these methods?>~24, they still require consider-
able resources and often experience issues with reproduci-
bility?>26. As a result, efforts to develop complementary
techniques for assaying molecular properties are ongoing. A
recent example of such a development is the experimental polar
surface area (EPSA) technique?”-?8, which employs supercritical
CO; fluid chromatography to assess the partitioning of an analyte
between a polar stationary phase and a non-polar mobile phase.
EPSA has been demonstrated as a highly efficient means for
indirect detection of intramolecular hydrogen bonding?’. Such
intramolecular hydrogen bonds (IMHBs) are common features of
organic molecules, playing a critical role in defining the con-
formations of small molecules?®, as well as the secondary struc-
tures of peptides and proteins’?, With regard to drug design,
introducing IMHBs has been put forward as a strategy to mask
regions of higher polarity that might otherwise reduce cell per-
meability?8. However, prior to the advent of the EPSA technique,
identification of IMHBs, by either computation or experimenta-
tion, was challenging?’. Thus, recent EPSA determinations of
IMHB-containing molecules are quickly becoming a gold stan-
dard by which to test the ability of DMS to discern such
features31-32,

Unlike the majority of the molecules studied here, whose
passive and fundamental physicochemical properties were our
focus, the CRG species key attribute lies in understanding the
reactivity trends of these molecules. These chemical reactivities
are strongly influenced by their interaction potentials?3, making
them good candidates for study via DMS. As added functional
groups on drug molecules, CRGs react with specific nucleophilic

residues in proteins, serving to silence enzymatic activity until
protein re-synthesis can occur’*-37. To date, dozens of CRG-
modified drugs have been approved for treatment of hyperlipi-
demia, infectious diseases, and cancer’’. These drugs contain
electrophilic moieties such as carbamates, acetates, B-lactones, (-
lactams, and acrylamides, and several reviews have described the
efforts to develop covalent inhibitor therapeutics**-37, including
attempts to address-negative side-effects of these functional
groups>8-4%, Given this considerable interest, there is an impetus
towards a more detailed understanding of physicochemical and
pharmacological properties of molecules of this type.

But, one question remains: How could the gas-phase micro-
solvation properties of a molecule, as measured by the DMS-MS
technique, correlate so strongly to a molecule’s physicochemical
properties as measured in bulk solution? This begins by con-
sidering the critical measurements during a DMS experiment—
the relationship between the separation voltage (SV) and optimal
compensation voltage (CV) for transmission of the molecule
through the DMS cell>-341, Specifically, the more strongly a
molecule interacts with solvent molecules purposefully added
inside the DMS cell, the more negative the CV value at a given
SV. This CV/SV pairing encodes the molecule’s interaction
potential with the solvent system on a microscopic scale. How-
ever, variations in dynamic clustering behavior (and, therefore,
differential mobility) across different molecule types/chemistries
can render such a comparison ineffective. By taking a global view
of the complete DMS behavior using a dispersion plot>’~19, one
can qualitatively determine whether the molecule of interest
exhibits strong-clustering (type A), weak-clustering (type B), or
hard sphere collision (type C) interactions with the gaseous
environment of the DMS cell®>’~10. Note, that in some cases the
species of interest does not strictly follow one of these three
common behavior types (see for example Figure S10 and Fig-
ure S11). In these cases the molecular interactions vary in a
complex way as SV increases.

To ensure that the DMS-based assessment of molecular phy-
sicochemical properties is applicable across different chemistries,
it is necessary to assess the properties of several molecular
topologies jointly. To this end, we have combined the experi-
mental results of our previous studies on ten 2-methylquinoline
derivatives and twenty-two 2-methylquinolin-8-ol derivatives
with the results from thirty-three IMHB-containing drug candi-
dates (vide infra)>*. We have also undertaken a parallel study of
24 acrylamide-based covalent reactive groups (CRGs) and have
likewise included these species in a global analysis for all 89 small
molecule drug candidates. We demonstrate that, with the aid of
supervised machine learning (ML), the full range of DMS dis-
persion plot SV/CV data can be used to provide a quantitative
means of accurately assessing a variety of molecular properties
which are related to an analyte’s interaction potential.

Results and discussion

Differential mobility spectrometry. With regard to the IMHB-
containing molecules, we hypothesize that those exhibiting an
IMHB should interact with protic solvent vapor more weakly
than an isomeric form of the same molecule that lacks an IMHB.
This is due to the competition between intramolecular and
intermolecular hydrogen bonding with solvent molecules inside
the DMS cell. If so, this will manifest in DMS measurements as a
comparatively positive CV shift for IMHB-containing isomers. To
test this, 16 sets of isomeric molecules were selected for study
where one of the isomers contained within a given set exhibited
an IMHB as determined by EPSA measurements®’. In total, 33
IMHB-containing molecules were studied; two of these (set Al)
are shown in Fig. 1, with the rest provided in as Supplementary
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Fig. 1 DMS dispersion plots of molecule set A1. Measurements were
recorded in an N, environment seeded with methanol vapor (1.5% mole
ratio) at T=150°C and T=300 °C. (Inset) Molecular topology A, set #1.
Dispersion data for Ala and A1b are plotted in black and red, respectively.
Compound A1la exhibits an IMHB (highlighted in green, whereas compound
A1b does not). Protonation sites, as determined by DFT calculations, are
highlighted in red. In A1la, the proton is shared between the carbonyl
oxygen atom and ring nitrogen atom in the protonated form. Error bars (26)
indicate the standard deviation of the Gaussian fit to the CV peak

Figures 7-2219. The IMHB-containing molecules are classified
based on the IMHB data mining study of the Cambridge Struc-
tural Database published by Kuhn et al.?°. Here, four of the most
common IMHB topologies were investigated, which we label as
topologies A-D!0. The numeric portion of the label (see, e.g.,
inset Fig. 1) indexes the isomeric set within a given topology, and
the lower case letter labels a particular isomer within the set, with
isomer a designating the species containing an IMHB!,

The DMS dispersion plots for set A1 shown in Fig. 1 were
recorded in a N, environment that was modified with 1.5% (mole
ratio) methanol vapor at DMS cell temperatures of 150 °C and
300°C. The search for appropriate DMS conditions to effect
isomer separation was a critical aspect of this study as isomer
separation is indicative of differences in the isomers’ relative
interaction potentials. DMS experiments conducted using a pure
N, environment, or a N, environment seeded with water, yielded
hard sphere (Type C) behavior for all species”®19, and hence no
separation between isomers. A N, environment that was seeded
with isopropyl alcohol vapor, on the other hand, yielded only
strong-clustering (type A) behavior for all isomers”%10, Conse-
quently, methanol—a protic solvent having properties inter-
mediate of the previous two solvents tested—was chosen as the
chemical modifier. Even so, at a temperature of 150 °C three sets
of isomers (including set Al) could not be unambiguously
separated into their isomeric components. However, at elevated
temperatures the Gibbs’ energy of binding for the ion-solvent
clusters is reduced to the point where one can clearly distinguish
between molecules exhibiting IMHBs and those not exhibiting
IMHBs with DMS (Fig. 1)7%10.

In all 16 IMHB sets studied, the isomer exhibiting an IMHB
displayed DMS behavior indicating weaker ion-solvent inter-
actions than did the non-IMHB-containing analogue(s). This is
worth additional consideration as our study probes protonated
forms of the targeted molecules, whereas the EPSA technique
which identified the IMHB-containing molecules is presumed
to probe the neutral compounds?7-28, To support our experi-
mental work, a detailed computational study was conducted in
parallel'?. In most cases, protonation was found to occur at or
very near the site of IMHB formation proposed in the EPSA-
based study?’. Consequently, the principal site of solvent
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Fig. 2 DMS dispersion plots of molecule set €3. Measurements were
recorded in an N, environment seeded with methanol vapor (1.5% mole
ratio) at T=150°C, T=225°C, and T=300 °C. The dispersion data of
C3a are plotted in black and that of €3b is plotted in red. Molecule C3a
exhibits an IMHB (highlighted in green), whereas molecule €3b does not.
Protonation sites, as determined by DFT calculations, are highlighted in red.
Errors are calculated as in Fig. 1, but are omitted for clarity

interaction is the same irrespective of whether the molecule is
in a protonated gas-phase state or in a neutral condensed phase
state. We have made this same observation in previous work?. In
four cases (sets C2, C3, C4, and C5), the site of protonation was
comparatively distal to the site of IMHB formation'®. In these
instances, as one might expect, the DMS behaviors of isomers
were relatively similar and separation was more difficult to affect.
We hypothesize that, as the site of protonation (and hence solvent
interaction) is relatively distant from the site of IMHB formation
in these species, it is necessary that the degree of solvent clustering
for these molecules be relatively large to ensure that the hydrogen-
bonding network of the protic solvent can interact with the site of
IMHB formation. Experimentally, there are two ways to test this
hypothesis; one can either vary the partial pressure of solvent
vapor to influence the size of ion-solvent clusters formed during
the low-field portion of the SV duty cycle, or one can vary the
temperature of the gas to achieve this same outcome (i.e., vary the
Gibbs’ energy of solvent binding). Figure 2 shows the dispersion
plots recorded for the C3 isomer set at temperatures of 150 °C,
225°C, and 300 °C for an N, environment that was modified with
1.5% methanol vapor. At 300 °C, where the size of the ion-solvent
clusters is expected to be relatively small, both isomers exhibit
nearly identical dispersion plots. However, as the temperature of
the collision gas is reduced, and the average size of the solvent
clusters increases, we observed improved separation between the
two isomeric species. Note also that the isomer which exhibits the
IMHB (C3a) displays a more weakly clustering behavior than the
non-IMHB isomer (C3b).

In addition to the 33 IMHB-containing molecules, 24 acrylamide
CRGs were studied, which were selected from an -earlier
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examination of the intrinsic reactivities of these species’3. These
molecules can be classified into four different molecular topologies:
(I) unsubstituted aromatic derivatives, (II) substituted aromatic
derivatives, (III) substituted derivatives which do not contain
heteroatoms, and (IV) substituted derivatives which contain
heteroatoms. A more detailed description of these four structural
motifs and the DFT-optimized geometries of all 24 derivatives are
available as Supplementary Datal®. In the case of the acrylamide
CRGs, a N, environment (1 atm, 150 °C) that was seeded with 1.5%
isopropyl alcohol vapor provided the widest distribution of analyte
behavior (ie., a distribution of type A, B, and C behavior). The
dispersion plots for these species and all others included in this
study are provided as Supplementary Figures 23-4610.

Analysis via supervised machine learning. Although it is satis-
fying that DMS measurements can, for example, discriminate
between isomeric species that do or do not contain IMHBs, the
ultimate goal of this work is to demonstrate the use of DMS as a
tool for quantitatively determining condensed phase physico-
chemical properties of molecules. To this end, we have introduced
supervised machine learning (ML) as a means of inferring the
relationships/correlations between molecular properties and DMS
behavior. Preliminary efforts involved a survey of a few ML
models*2. Model selection is based on finding a compromise
between bias and variance while avoiding over-fitting. Briefly, bias
in a ML model can result from preselecting a functional
description for your data, while high variance in a ML model will
yield very different results depending on how data are partitioned
into training and test sets. Over-fitting a model leads to poor
applicability outside the range of molecules used for training.
Decision Tree**-based models are unbiased learners and in par-
ticular Random Forest Regression** yields results with low var-
iance and shows a low susceptibility to over-fitting. Further
details of our ML study are provided in Supplementary Method!°.
In our previous work on methylquinoline-8-ol derivatives, we
were able to identify a weak correlation between the turn-around
point in the dispersion plot of specifically type B systems and cell
permeabilities>*>. As other types of DMS behavior do not show
such a turn-around point, generalizing these findings across all
molecular types is not trivial. To remedy this shortcoming,
machine learning was used to infer relationships between
physicochemical properties and the entire DMS SV/CV datasets.
(i.e. data corresponding to the entire dispersion plot are utilized).
Specifically, we train our ML model using Random Forest with
500 random decision trees. In general, we were able to observe a
relatively strong correlation between the observed DMS behavior
of drug candidates and physicochemical properties. This is in line
with expectation since many properties are to a large extent
dependent on molecular size and on the solvent interactions, i.e.,
propensity for desolvation and transport across the hydrophobic
lipid bilayer!3-1°. Tt therefore stands to reason that including the
molecular collision cross section (CCS) as a descriptor in the ML
database should improve the accuracy and precision of the ML
model. To do this, CCSs were calculated with the updated
MobCal code reported by Campuzano et al.#® using DFT-
optimized molecular structures!®4748, A comparison of ML fits
for cell permeability that include only DMS data with analogous
ML fits that include DMS data and calculated CCSs are provided
in Supplementary Methods, Supplementary Figures 47-5010,
Although the fit containing only the DMS data exhibit a strong
correlation with the experimentally determined RRCK rates of
cell permeability (R2=10.889), inclusion of the CCSs for the
protonated drug molecules results in a significant improvement
(R? =0.989). On the other hand, if only CCS values are used to
predict permeability we observe no significant correlation!?.

To investigate the performance of our model outside the
training data, we use an iterative leave-one-out method whereby
one molecule is selected to be left out of the training set and the
resultant ML model is used to predict the properties for only this
molecule. The selected molecule is then exchanged with another
from the set, ML training is repeated, properties are calculated for
the new molecule, and so on. This methodology is akin to an N-
fold cross-validation procedure (where N is the number of
molecules in the set of compounds). Figure 3b, d shows fits for
CCS and pKb, respectively. To monitor the evolution of test set
and training set error as a function of training size for each
property set, learning curves are created. To create the learning
curves, the data is split into 10-folds and the ML model is trained
using between 1 to 6-folds and tested on the remaining folds.
Test/train folds are iterated through the dataset to determine
errors for all molecules. Figure 3a, ¢ shows learning curves for
CCS and pKb, respectively. Fits as well as learning curves for
LogD*?0, EPSA?728, and cell permeability are provided in
Supplementary Methods, Supplementary Figures 51-56'0. The
CC:s fits (Fig. 3a, b) use only DMS data for the ML input, whereas
the pKb fits (Fig. 3¢, d) employ DMS data and calculated CCS
values as inputs. In general, ML predictions for test set molecular
properties correlate strongly with those derived experimentally by
other means. Moreover, the error in test set predictions tends
toward the error in the original measurements as database size
increases. Additionally, learning curves show that testing on a
larger dataset is required to confirm that these errors converge.
Note that many of the properties determined using this
methodology are either difficult to accurately compute from first
principles, or ab initio methods for computing the property in
question are yet to be developed. A brief description of
computational approaches with comparison to our calculations
is given as a Supplementary Discussion!©.

In the case of CCS fits, absolute errors tended to increase with
increasing molecular size. However, the percent error in CCS was
relatively constant across the dataset. For the 89 species studied, we
find an average error of ca. 1.5% (Fig. 3b) for determining CCS via
the ML model'’. Note that the fits shown in Fig. 3 include data for
multiple small molecule drugs of varying size and variable
chemistry. This suggests that ML models constructed from DMS
data may be broadly applicable across a wide range of molecular
topologies. Fits to pKb (52 molecules, Fig. 3d), EPSA (43 molecules)
10, and logD (34 molecules)!” involve a smaller subset of the ML
database for which these condensed phase properties are available.
Regardless of this limitation, correlation with DMS data are
relatively strong. Because of this, we are optimistic that DMS
behavior can also be used to predict these properties once a more
extensive ML training database is constructed.

In summary, through application of supervised ML and
consideration of molecular size (viz. CCS), one can correlate
dynamic gas-phase clustering behavior within the DMS environ-
ment with condensed phase physicochemical properties. This
suggests that DMS behavior is affected by the molecular
interaction potentials of the analyte and collision gas within the
DMS cell. This is demonstrated by, e.g., the fact that DMS can
separate isomeric species based on the presence or absence of an
IMHB; species that exhibit IMHBs display weaker ion-solvent
clustering behavior than do the non-IMHB-containing analogues.
The strong correlations observed between the DMS data and
molecular physicochemical properties is appealing as it suggests
that DMS might find use as a fast and accurate means of
simultaneously screening molecular properties such as polar
surface area, distribution coefficients, solubility, and cell perme-
ability. This, in conjunction with the fact that DMS measure-
ments can be conducted in minutes using only nanograms of
sample, makes properties determination via DMS an attractive
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Fig. 3 Random forest regression ML fits for CCS and pKb along with learning curves. Learning curves for CCS a and pKb ¢ show the evolution of mean
absolute error for test set (black) and training set (red) as the size of the ML training set is increased. MAE for test set is shown in black while that for
training set is shown in red. Random forest results for CCS and pKb are shown in b and d, respectively. Individual points are colored based upon the

molecular set as indicated in the figure. The red solid line in b and d is a plot of y = x. Error bars (2¢) are calculated from the standard deviation of the fitted

parameter

possibility for drug discovery. To advance this technology, it is
necessary to develop an extensive database of DMS behaviors and
properties for a wide range of molecules. Our work is ongoing in
this regard.

Methods

Differential mobility spectrometry details. Drug candidates were provided by
Pfizer Inc. and were used without further purification. HPLC-grade methanol
(Caledon Laboratory Chemicals, Georgetown, ON) was also used without further
purification. Distilled deionized water (18 MQ) was produced in-house using a Mil-
lipore (Billerica, MA) Integral 10 water purification system. In each experiment, an
analyte solution (10 ng/mL) was infused at a rate of 15 pL/min into DMS-MS
instrument via an ESI source operating at 5.5 kV, with a source temperature of 300 °C,
nebulizing gas pressure of 20 psi, and auxiliary gas pressure of 20 psi. The DMS cell
(SelexION™, SCIEX, Concord, ON) system was mounted on a 5500 QTRAP®
system (SCIEX), between a TurboV TM ESI source and the mass spectrometer’s
sampling orifice. Nitrogen was used as the curtain gas (3.5 L/min), throttle gas (0 or
0.7 L/min), and target gas (~3 mTorr) for the MS/MS experiments.

Computational details. To determine the most stable molecular geometries, a
custom-written basin hopping (BH) search algorithm was used to map the
potential energy surface (PES) of each drug candidate. The BH algorithm has been
described in detail elsewhere!®>1. Briefly, we first identified the most likely site(s) of
protonated for each molecule by generating all possible tautomers/protomers and
optimizing them individually at the BELYP/LANL2DZ level of theory. For the most
stable structures, atomic partial charges were calculated using the ChelpG partition
scheme®2. The cluster PES was then modeled using the Universal Force Field”3. To
search the PES, the dihedral angles associated with single bonds were randomly
distorted by —5°>0 >+ 5° at each iteration of the BH code. In total, ~20,000
geometries were sampled for each molecule. Unique structures were identified
based on zero-point corrected energy and geometry. Unique structures were then
carried forward for geometry optimization at the PM?7 level of theory for all
molecules. To verify that calculations at the PM7 level produced appropriate
geometries, the following subset of molecules were also geometry optimized at the
B3LYP/6-3114+-+G(d,p) level of theory: Ala, Alb, A4a, A4b, Bla, B1b, C4a, C4b,
C4c, Dla, D1b.

For all molecules in the above subset, PM7 calculations produced the same
global minimum structure and the same relative energy order of tautomers/
protomers as did the B3LYP/6-311++G(d,p) calculations. In addition to geometry
optimizations, normal mode analyses were also conducted to ensure that each
structure was a local minimum on the PES.

Machine learning details. Supervised machine learning was conducted using the
Orange3 Python package®. The labeled molecules were entered into a database
which also included DMS data and calculated collision cross-sections (CCSs) as
determined using the updated MobCal code reported by Campuzano et al.#. The
Random Forest Regression employed 500 random decision trees and determined
molecular properties via leave-one-out. This procedure trains the ML model using
all molecules in the data except one, and then determines the property for the
omitted molecule. This procedure is repeated for every molecule in the set. A series
of correlation plots showing how the random forest (RF) model improves with
additional data are shown in Supplementary Figures 47-50.

To produce learning curves, the database is split in to training and test sets. A
ML model is produced from the training set and the mean absolute errors for the
training and test sets are determined by applying the model to both. The plots
provided in Fig. 3a, ¢, and Supplementary Figures 51-53 are produced by splitting
the database, by molecular identity, into training sets consisting of 10, 20, 30, 40,
50, and 60% of the full database. The test set consists of data for the remaining
molecules. The species selected for training are chosen randomly from the full
database. Furthermore, for each of the fractional splits described above, the mean
absolute error for each set is calculated using 10 different randomly chosen test sets
and the reported error is determined as the average. i.e. 10 different test/train splits
are constructed for each of the 10, 20, 30, 40, 50, and 60% cases, meaning in total
the database is split 60 different ways to produce the learning curves given below.
Error bars are calculated as one standard deviation of the average mean absolute
error.

Data availability

All relevant data for this publication are included in the manuscript and/or as
supplementary material. In addition, the database is included as a data file with
accompanying description. The custom-written basin hopping code is available
from the authors upon request.
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