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Abstract: Light therapy is used to treat sleep and circadian rhythm disorders, yet there are limited
studies on whether light therapy impacts electroencephalographic (EEG) activity during sleep.
Therefore, we aimed to provide an overview of research studies that examined the effects of light
therapy on sleep macro- and micro-architecture in populations with sleep and circadian rhythm
disorders. We searched for randomized controlled trials that used light therapy and included EEG
sleep measures using MEDLINE, PubMed, CINAHL, PsycINFO and Cochrane Central Register of
Controlled Trials databases. Five articles met the inclusion criteria of patients with either insomnia
or delayed sleep–wake phase disorder (DSWPD). These trials reported sleep macro-architecture
outcomes using EEG or polysomnography. Three insomnia trials showed no effect of the timing or
intensity of light therapy on total sleep time, wake after sleep onset, sleep efficiency and sleep stage
duration compared to controls. Only one insomnia trial reported significantly higher sleep efficiency
after evening light therapy (>4000 lx between 21:00–23:00 h) compared with afternoon light therapy
(>4000 lx between 15:00–17:00 h). In the only DSWPD trial, six multiple sleep latency tests were
conducted across the day (09:00 and 19:00 h) and bright light (2500 lx) significantly lengthened sleep
latency in the morning (09:00 and 11:00 h) compared to control light (300 lx). None of the five trials
reported any sleep micro-architecture measures. Overall, there was limited research about the effect
of light therapy on EEG sleep measures, and studies were confined to patients with insomnia and
DSWPD only. More research is needed to better understand whether lighting interventions in clinical
populations affect sleep macro- and micro-architecture and objective sleep timing and quality.

Keywords: circadian rhythm disorder; electroencephalography; insomnia; light therapy; sleep
disorder; quantitative EEG analysis

1. Introduction

Light is the most potent zeitgeber for the entrainment of human circadian rhythms [1–4].
In the past, human circadian rhythms were clearly regulated by the periodic 24 h light/dark
cycle of the sun [5,6], but the introduction of electric (artificial) light in modern industri-
alized societies over the last two centuries has significantly altered light exposure of the
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population [7,8]. Many people now receive lower levels of daytime bright light [9], due
to longer periods of time being spent indoors, spending up to 90% of time per day under
electric lights [10–12]. Additionally, people are also exposed to an increased amount of
electric light at night [13]. Various characteristics of electric light sources (such as intensity,
timing, duration and spectral composition) may disrupt circadian rhythms [14–17], with an
individual’s master circadian oscillator in the brain, the suprachiasmatic nucleus (SCN),
being particularly sensitive to short-wavelength light (peak around 480 nm) [15,18–20] and
evening light exposure [21,22]. Whilst light therapies have been shown to have a small to
medium effect on improving sleep and circadian rhythm disorders [23], the effect of electric
light on brain neurophysiology assessed with electroencephalography (EEG) is still not
fully understood.

Research has shown that increased exposure to light at night further compounds the
adverse effects of inadequate daytime bright-light exposure [24–27]. In modern industrial-
ized societies, the amount of electric light at night has been rising consistently at an average
rate of 6 to 10% every year [13,28,29]. This potentially has a negative impact on circadian
and sleep–wake physiology, as melatonin secretion and core body temperature rhythms are
significantly altered with bright-light exposure at night [30–32], alongside increased sleep
onset latency (SOL) [30,33,34] and decreased sleep quality [31,35]. Furthermore, the use
of blue-enriched light-emitting electronic devices such as computers, tablets, televisions,
mobile phones and video game consoles has risen significantly in the last two decades, with
research showing that around 90–95% of individuals aged 13 to 64 years use an electronic
device at least once per week prior to bedtime [36,37]. The use of electronic devices before
bedtime is associated with delayed bedtime [37,38], longer SOL [39,40] and decreased total
sleep time (TST) [39,41].

The potential for the intensity, spectral composition and timing of light exposure
to alter sleep, both negatively and as a beneficial therapy, has prompted investigators
to quantify its effects on objective sleep metrics. Intervention studies using light with
various attributes have reported inconsistent effects on sleep in healthy individuals, night
shift workers and patients with depression [42–45]. A systematic review found that light
therapy was generally effective at reducing sleep problems, but the effect sizes were small
to medium [23], and the analysis did not assess the effect on EEG-derived sleep measures.
The majority of light therapy studies appear to have only examined the influence of the
timing and composition of light on circadian variables or clinical symptoms and not on
objective sleep. The accuracy of the subjective sleep assessment tools depends on an
individual’s recall and perception of sleep [46]. Studies reported many discrepancies
between subjective and objective sleep outcome measures [47,48]. Contrary to subjective
sleep assessment tools, EEG directly quantifies brain activity, and the visual examination of
EEG signals during sleep is commonly used to determine sleep stages [49–51] and diagnose
sleep disorders [52]. EEG-derived sleep measures enable the detection of more fine-grain
micro-architecture and sleep stage changes [53]. Objective sleep outcome measures can
provide more insights into sleep quality and quantity that are not identified in subjective
sleep outcome measures [48,54]. Furthermore, participants in light therapy studies might
be aware of the intervention and control light conditions (intensity, timing, duration and
spectral composition), which could have potentially impacted subjective sleep outcome
measures. EEG-derived metrics are less likely to be affected by nocebo effects.

1.1. Rationale

To our knowledge, there are no existing systematic or scoping reviews examining the
effect of light therapy on EEG-derived sleep in patients with sleep or circadian rhythm
disorders. We used a scoping review, as we wanted to identify and map the existing
research on light therapy and EEG-measured sleep.
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1.2. Objective

The aim of this scoping review was to examine the effect of light therapy on sleep
macro-architecture and micro-architecture (EEG spectral power density) in patients with
sleep or circadian rhythm disorders in randomized controlled light intervention trials.

2. Methods
2.1. Protocol and Registration

We conducted this review using the methods of Arksey and O’Malley [55] and reported
according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
extension for scoping reviews (PRISMA-ScR) [56]. A review protocol was not registered.

2.2. Eligibility Criteria

Studies with original data were included based on the following inclusion criteria,
modelled on the PICOT format for an interventional question and specifying the study
type (T).

1. Population: Participants with a sleep or circadian rhythm disorder.
2. Intervention: The intervention light therapy had to include either:

a. Intensity of light greater than or equal to control light condition;
b. Clock time (outside of regular light hours).

The study had to include any type of light therapy (daylight or electric) as a stand-
alone treatment. If the study used light therapy as an adjunctive to other interventions
such as sleep hygiene or caffeine, the non-light intervention component must have been
used equally in the control and intervention groups.

3. Comparison: The control light condition had to include either:

a. Intensity of light less than or equal to intervention light condition;
b. Clock time (regular light hours).

4. Outcome: Sleep macro- or micro-architecture assessed with EEG or polysomnography
recordings. Both nighttime and daytime sleep were included. Time in bed (TIB), TST,
wake after sleep onset (WASO), sleep efficiency (SE), SOL and the duration of non-
rapid eye movement (NREM) and rapid eye movement (REM) sleep were included as
macro-architecture measures of sleep. Sleep micro-architecture was measured using
EEG power spectral analysis, including any of the frequency bands (delta, theta, alpha,
sigma and beta).

5. Study type: Laboratory or clinic-based studies where randomization had been used
to assign participants to conditions (parallel trials) or the order in which they were
exposed to conditions (cross-over trials).

2.3. Information Sources and Search

A search was carried out in five databases: MEDLINE, PubMed, Cumulative Index to
Nursing and Allied Health Literature (CINAHL), Cochrane Central Register of Controlled
Trials and PsycINFO. We searched for studies published from the inception date of the
databases to May 2021. The following search terms were used to identify the relevant
studies: (1) light therapy: “phototherapy” or “photo therapy” or “light exposure” or “light
therapy” or “light treatment*” or “light intervention*” or “heliotherapy” or “bright light”
or “blue light” or “white light” or “natural light” or “sunlight” or “polychromatic light”
or “monochromatic light” or “artificial light” or “light”; (2) sleep and circadian rhythm
disorders: “advanced sleep phase syndrome*” or “delayed sleep wake phase disorder*”
or “delayed sleep phase syndrome*” or “circadian rhythm sleep disorder*” or “non 24 h
sleep wake disorder*” or “shift work sleep disorder*” or “sleep wake cycle disorder*” or
“shift work disorder*” or “insomnia*” or “early awakening” or “insomnia disorder*” or
“nonorganic insomnia*” or “sleep initiation dysfunction*” or “transient insomnia*” or “jet
lag syndrome” or “jet lag disorder*” or “jet lag” or “jetlag”; (3) sleep: “sleep*”. The search
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was restricted to articles published in the English language only. The search terms and
strategies were adjusted depending on the database being used. The reference lists of the
selected primary studies and past reviews were checked for any relevant papers that were
not retrieved by our search strategy. The search syntax for each database is presented in
Supplementary Material S1.

2.4. Selection of Sources of Evidence

All duplicates were removed from the initial article yield, and one author (TP) screened
the titles and abstracts of all remaining articles against the inclusion/exclusion criteria.
The remaining full-text articles were then screened, and excluded articles were assigned
reasons for exclusion.

2.5. Data Charting Process and Data Items

Data extraction was performed by one author (TP) and recorded into a tabulated form.
Relevant data included the study design, primary outcome, study location, sample size,
participants (age, gender, diagnosis), characteristics of intervention and control lighting
conditions, sleep EEG outcome measures and results. Extracted data were verified by an
additional author (CP or CG). Any discrepancies in data extraction were discussed and
resolved by consensus.

2.6. The Critical Appraisal of Individual Sources of Evidence

We did not conduct a critical appraisal of individual sources of evidence for this
scoping review.

2.7. Synthesis of Results

Relevant information was recorded into the tabulated forms and was used to summa-
rize and report the findings from different light therapy studies in patients with a sleep or
circadian rhythm disorder. The standardized tabulated forms were useful for conducting
a comparative analysis, identifying important themes from the data and synthesizing
key elements.

3. Results
3.1. Selection of Sources of Evidence

The initial search yielded 6006 records from the databases: MEDLINE (n = 1123),
PubMed (n = 3621), CINAHL (n = 326), PsycINFO (n = 741) and Cochrane Central Register
of Controlled Trials (195). After duplicate records were removed, there were 4521 articles
to review against the eligibility criteria. Following screening, 84 articles were subject to
full-text screening. After reviewing the full-text articles, five studies met all eligibility
criteria. Figure 1 shows the article selection flowchart.
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Figure 1. PRISMA flow diagram of search process and numerical outcomes. Abbreviations: EEG:
electroencephalography, PSG: polysomnography, SAD: seasonal affective disorder.
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3.2. Characteristics of Sources of Evidence

All five studies were conducted in the USA and published between 1990 and 2009 [57,58].
Four of the five studies were carried out using a randomized parallel-study design [58–61],
with the remaining one being a randomized cross-over design [57]. The number of participants
across all studies ranged from 7 to 102 [59,61]. Three studies enrolled older adults (mean
age > 60 years) [58–60], and one study enrolled both young adults (age range = 20–40 years)
and older adults (age range = 60–79 years) [61]. The age of participants was not reported
in one study [57]. The duration of light administration for intervention and control groups
varied from 45 min to 4 hours [58,61]. Light exposure sessions ranged from four days to three
months. Most studies (four out of five) collected data during overnight sleep. Only one study
carried out data collection during daytime multiple sleep latency tests [57]. The included
studies incorporated two population groups: patients with insomnia and delayed sleep–wake
phase disorder (DSWPD).

3.3. Results of Sources of Evidence

The characteristics of the included trials are outlined in Table 1. The effects of light
therapy on EEG sleep measures are presented in Table 2.

3.4. Synthesis of Results
3.4.1. Insomnia Studies

The relationship between the timing (afternoon versus evening) of bright-light expo-
sure (>4000 lx) and sleep outcomes in older adults (≥60 years) with sleep maintenance
insomnia was reported in two studies [59,60]. The evening light exposure group (21:00–
23:00 h) had a significantly higher SE compared to the afternoon light exposure group
(15:00–17:00 h) [60] (Table 2). In contrast, another study with an identical experimental
protocol did not find any differences between the afternoon and evening light therapy
exposure times for TIB, TST, WASO, SE, SOL and sleep stage duration [59]. The effect of
light intensity (3000–4000 lx versus 1–65 lx) and timing of light exposure (early morning
or daytime versus evening) in patients (>54 years) with insomnia and/or depression was
reported in two studies [58,61], with no significant differences in sleep (TST, WASO, SE and
sleep stage duration) reported.

3.4.2. DWSPD Study

Only one study compared the effect of exposure to polychromatic light (2500 lx) for
two hours in the early morning (06:00–09:00 h) combined with light restriction in the
evening with exposure to polychromatic light (300 lx) for two hours in the early morning
(06:00–09:00 h) on sleep latency in patients with DSWPD (Table 2) [57]. Six multiple sleep
latency tests were performed during the day (09:00 and 19:00 h), and the study showed
that administering polychromatic light (2500 lx) in the morning and restricting light in the
evening significantly increased sleep latency in the morning (09:00 h and 11:00 h) [57].

3.4.3. Sleep EEG Micro-Architecture

There were no studies that examined the impact of light therapy on sleep micro-
architecture (power spectral analysis) in patients with a sleep or circadian rhythm disorder.
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Table 1. Characteristics of randomized studies comparing the effect of light therapy on macro-architecture of sleep EEG.

Patients with Delayed Sleep Phase Syndrome and Insomnia

Authors, Date,
Country Design Primary Outcome Sample Size Sex Age (Mean ± SD,

Range) Population Intervention Light Control Light
Sleep

Macro-Architecture
Variable Reported

Rosenthal et al.
(1990), USA

Cross-over
RCT

Duration: 2 weeks

MSLT, core body
temperature

I: 15, C: 17, sex not
specified NR Delayed sleep

phase syndrome

Illuminance: 2500 lx
Clock time: 06:00–09:00 h

for 2 h
CCT: NR

Wavelength: NR

Illuminance: 300 lx
Clock time:

06:00–09:00 h for 2 h
CCT: NR

Wavelength: NR

SOL

Murphy and
Campbell (1996),

USA

Parallel pseudo-RCT
Duration: Twice per
week for 3 months

Core body
temperature and

performance tasks

8 F, 8 M
(13 completers)

73.1 y,
(60–82 y) Insomnia

Illuminance: >4000 lx
Clock time: 21:00–23:00

CCT: NR
Wavelength: NR

Illuminance: >4000
lx

Clock time:
15:00–17:00

CCT: NR
Wavelength: NR

SE (%)
-Averaged 2 nights

Suhner et al. (2002),
USA

Parallel RCT
Duration: Twice per
week for 3 months

Sleep EEG and core
body temperature

7 F, 8 M
(I: 9 completers, C: 5

completers)

71.5 y,
(63–84 y) Insomnia

Illuminance: >4000 lx
Clock time: 21:00–23:00

CCT: NR
Wavelength: NR

Illuminance: >4000
lx

Clock time:
15:00–17:00

CCT: NR
Wavelength: NR

TIB (min)
TST (min)

WASO (min)
SE (%)SOL (min)

S1 (% TST)
S2 (% TST)
S3 (% TST)
S4 (% TST)

REM (% TST)
-Averaged 2 nights

Youngstedt et al.
(2005), USA

Parallel RCT
Duration: 4 days for

each condition

Mood, sleep EEG
and melatonin

49 F, 23 M (older
adults)

15 F, 15 M (young
adults)

(60–79 y)
(Older adults)

(20–40 y)
(Young adults)

Insomnia and/or
depression

Healthy

Illuminance: 3000 lx
Clock time:

Intervention 1: 1–3 h
after awakening and 2 h

before bedtime
Intervention 2: 6–10 h

after awakening
CCT: NR

Wavelength: NR

Illuminance: 1 lx
Clock time:
6–10 h after
awakening
CCT: NR

Wavelength: NR

TST †

WASO †

SE †

-Averaged 4 nights
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Table 1. Cont.

Patients with Delayed Sleep Phase Syndrome and Insomnia

Authors, Date,
Country Design Primary Outcome Sample Size Sex Age (Mean ± SD,

Range) Population Intervention Light Control Light
Sleep

Macro-Architecture
Variable Reported

Friedman et al.
(2009), USA

Parallel RCT,
single-blinded

Duration: 12 weeks

Sleep EEG and
melatonin

36 F, 25 M
(49 completers)

63.6 ± 7.1 y,
(54–78 y) Insomnia

Illuminance: ~4000 lx
Clock time:

Intervention 1: 15 min
after awakening for

45 min
Intervention 2: 1 h before

bedtime for 45 min
CCT: NRWavelength: NR

Illuminance: ~65
lx

Clock time:
Control 1: 15 min

after awakening for
45 min

Control 2: 1 h before
bedtime for 45 min

CCT: NR
Wavelength: NR

TIB (min)
TST (min)

WASO (min)
SE (%)
S1 (%)
S2 (%)
S3 (%)
S4 (%)

REM (%)
-Averaged 2 nights

Abbreviations: C: control; CCT: correlated color temperature; EEG: electroencephalography; F: females; I: intervention; M: males; MSLT: multiple sleep latency test; NR: not reported; RCT:
randomized controlled trial; REM: rapid eye movement sleep stage; S1: stage 1 sleep according to the criteria of Rechtschaffen and Kales (1968); S2: stage 2 sleep according to the criteria
of Rechtschaffen and Kales (1968); S3: stage 3 sleep according to the criteria of Rechtschaffen and Kales (1968); S4: stage 4 sleep according to the criteria of Rechtschaffen and Kales
(1968); SD: standard deviation; SE: sleep efficiency; SOL: sleep onset latency; TIB: time in bed; TST: total sleep time; WASO: wake after sleep onset; y: year. Key: †: outcomes were not
numerically quantified.
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Table 2. Differences in macro-architecture of sleep EEG measures in light therapy conditions com-
pared to control light conditions.

Patients with Delayed Sleep Phase Syndrome and Insomnia

Author/s, Date
Macro-Architecture Measures

TIB TST WASO SE SOL NREM REM

Rosenthal et al. (1990) o ↑
Murphy and Campbell (1996) • ↑

Suhner et al. (2002) • ns ns ns ns ns ns
Youngstedt et al. (2005) • ns ns ns
Friedman et al. (2009) • ns ns ns ns ns

Abbreviations: NREM: non-rapid eye movement sleep stage; REM: rapid eye movement sleep stage; SE: sleep
efficiency; SOL: sleep onset latency; TIB: time in bed; TST: total sleep time; WASO: wake after sleep onset.
Key: upwards arrow denotes a statistically significant increase in sleep EEG measure in intervention light
conditions compared with control light conditions; downwards arrow denotes a statistically significant decrease
in sleep EEG measure in intervention light conditions compared with control light conditions; ns: no significant
difference between intervention and control light conditions; •: nighttime sleep EEG measure; o: daytime sleep
EEG measure.

4. Discussion

This scoping review found only a small number of studies that examined the effect of
light therapy on sleep macro-architecture in patients with a sleep or circadian rhythm dis-
order [57–61]. Studies were conducted in patients with insomnia [58–61] and DSWPD [57]
only. No studies investigated the effect of light therapy on sleep micro-architecture using
EEG power spectral analysis.

4.1. Summary of Evidence
4.1.1. Patients with Insomnia

Our scoping review identified four light therapy studies in patients with insomnia.
Three of those studies did not show any beneficial effects of light therapy on EEG sleep in
patients with sleep maintenance or primary insomnia [58,59,61]. In contrast, only one study
showed a positive effect of evening light therapy on SE in patients with sleep maintenance
insomnia [60]. Lack et al. (1996) found that patients with sleep maintenance insomnia had
significantly advanced circadian rhythms compared with healthy individuals [62]. Light
therapy in the evening can delay the circadian rhythms of core body temperature and
melatonin secretion [63,64]. Light therapy administered in the evening may re-establish a
more normal phase relationship between circadian rhythms and sleep, resulting in higher
SE in patients with sleep maintenance insomnia [60]. A possible explanation for inconsistent
effects across studies could be variations in light therapy compositions (intensity, timing,
duration and spectral composition), study settings (laboratory study versus field-based
study), age-related structural changes in the visual and circadian systems, interindividual
variations in light sensitivity, prior photic history and the endogenous period of the human
circadian clock.

There are structural alterations in the visual and circadian systems associated with
ageing [65–67]. Older adults may have higher ocular lens absorption [68], a smaller
pupil size [69], lower lens transmittance [70] and a reduced number of circadian pho-
toreceptors [65], resulting in reduced sensitivity to zeitgebers, particularly short-wavelength
light [66,71]. The transmission of light from the eye to the SCN can be altered in older
adults due to neurodegeneration of the SCN [67,72] and eye conditions such as glaucoma
and macular degeneration [66]. These conditions may have impacted the outcomes due
to the reduced photic input perceived by the SCN and/or the SCN being less responsive
to light.

There is also a large interindividual variability in light sensitivity [22,73,74]. One
recent study showed that individual variations in sensitivity to evening light for melatonin
suppression are greater than 50 times [22]. Such a variation in light sensitivity plays a role
in circadian and other physiological responses to light. However, none of the reviewed
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studies considered individual variations in sensitivity to light when designing light therapy
for patients with insomnia. The sensitivity of the circadian system to light can also be
influenced by prior photic history. For example, the administration of higher intensity of
light during the day reduces melatonin suppression and circadian phase shift in response
to light at night [75,76]. Conversely, exposure to dim light during the day increases
melatonin suppression and circadian phase shifts induced by the evening or nighttime
light exposure [77,78].

Interindividual differences in the endogenous period of the human circadian clock are
due to variations of the different proteins (in terms of, e.g., levels, phosphorylation kinetics,
degradation) that compose the molecular clock [79–81]. An individual with an intrinsic
period longer than 24 h requires a daily phase advance in order to stay synchronized to the
24 h light/dark cycle. In contrast, an individual with an intrinsic period shorter than 24 h
requires a daily phase delay. Individuals with shorter circadian periods tend to be more
phase-delayed and less phase-advanced by the photic stimulus than individuals with longer
circadian periods [82]. The efficacy of light therapy will also depend on the characteristics
of each individual’s endogenous clock. However, none of the reviewed studies adjusted
light therapy on an individual’s endogenous clock, which has likely contributed to the lack
of noticeable effects of light therapy on electrophysiological sleep.

None of the reviewed studies considered spectral composition of light, which is
critical in quantifying light acting on the circadian system via melanopsin-containing
intrinsically photosensitive retinal ganglion cells [83,84]. Instead, they only reported
photopic illuminance (lx), which quantifies the light affecting the visual system via rods
and cones. The human circadian system is most sensitive to short-wavelength light (peaked
around 480 nm), unlike the visual system with the peak sensitivity at 555 nm [20,83].
Thus, photopic illuminance (lx) does not allow the investigators to accurately compare
the effect of lighting interventions with different spectral compositions in the human
circadian system [83]. Future studies should measure and report melanopic illuminance
(or melanopic irradiance) to allow comparison of the outcomes from different studies and
replicating experimental designs [85].

A previous meta-analysis found a positive effect of light interventions on insomnia
symptoms [23]. In contrast to our review, which only included randomized controlled
studies with EEG-derived sleep outcomes, that meta-analysis included both randomized
and non-randomized studies with subjective and objective sleep outcome measures (actig-
raphy or polysomnography) [23]. Further studies with larger sample sizes and robust
study designs are required to determine the ideal intensity, duration, timing and spectral
composition of light therapy for the treatment of insomnia.

4.1.2. Patients with DSWPD

There was only one study that examined the effect of light therapy on DSWPD patients
using daytime multiple sleep latency tests [57]. Bright light increased sleep latency by 4 to
5 min at 09:00 h and 11:00 h, in a within-arm analysis. However, this study did not report
nocturnal sleep, had a small sample size (n = 15 for intervention light condition, n = 17
for control light condition) and was reported before clinical trial reporting guidelines and
registrations were established. Typically, light therapy in DWSPD aims to phase shift the
circadian clock. The administration of light therapy in the morning seems to be a reasonable
and promising non-pharmacological intervention to advance the delayed sleep phase and
improve sleep quality in patients with DSWPD. It should be noted that despite this limited
empirical evidence, light therapy has been recognized as a treatment option for patients
with DSWPD by the American Academy of Sleep Medicine [86]. Further interventional
studies with robust study designs are required.

4.1.3. Lack of Sleep EEG Micro-Architecture Outcomes

This scoping review could not find any research examining sleep EEG micro-architecture
in sleep and circadian rhythm disorder patients. However, studies conducted in healthy indi-
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viduals have reported that exposure prior to bedtime to blue monochromatic light (460 nm),
blue-enriched polychromatic light (27.6 lx) or bright polychromatic light (2500 lx) compared
with exposure to green monochromatic light (550 nm), and blue-depleted polychromatic
light or dim light (6 lx) reduced delta activity (slow-wave activity) (0.75–4.5 Hz) during
the first NREM sleep period [42,87,88] and increased delta activity in the third or fourth
sleep cycle [42,87]. These findings suggest that low-intensity blue-enriched light prior to
bedtime can negatively impact homeostatic sleep pressure by decreasing EEG spectral
power during the early sleep period. However, other studies have not shown any effect of
light therapy on the EEG power spectra once people without a sleep or circadian disorder
fall asleep [40,89–91]. It is somewhat surprising that this has not been investigated to
date in clinical populations, as the sleep EEG micro-architecture provides more insights
into objective sleep quality that are not identified in macro-architectural sleep reports [92].
We recommend that studies should be conducted to determine the effects of light ther-
apy on EEG spectral power density during sleep in patients with a sleep or circadian
rhythm disorder.

4.2. Strengths and Limitations

The strengths of this scoping review are that this is the first review assessing the effect
of light therapy on EEG-derived sleep measures in patients with sleep or circadian rhythm
disorders and that it was carried out according to the PRISMA-ScR framework. This review
found limited empirical evidence about the effect of light therapy on EEG sleep measures
and highlighted the need for more research in this area. There are some limitations to this
review. We limited our search to studies published in English. We also only examined sleep
and circadian rhythm disorders, whereas there are studies examining the effect of light
therapy on mental health outcomes [93–95], neurodegenerative diseases [96,97] and mild
cognitive impairment [98]. However, these were not focuses of this review.

5. Conclusions

Overall, the effect of light therapy on EEG sleep measures in patients with a sleep or
circadian rhythm disorder is still an understudied area of research. We could not draw
firm conclusions on the effects of light therapy on sleep macro-architecture in patients with
insomnia due to a lack of consistent findings across studies. There were no studies that
examined the effect of light therapy on sleep micro-architecture (power spectral analysis) in
patients with a sleep or circadian rhythm disorder. Well-designed and adequately powered
studies are required to determine an effective mixture of intensity, spectral composition,
duration and timing of light therapy for sleep macro and micro-architecture measures in
different clinical populations. Such studies will provide more consistent evidence on which
to base effective light treatments.
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