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Objective: Tumor hypoxia is a key factor in resistance to anti-cancer treatment. Herein,
this study aimed to characterize hypoxia-related molecular subtypes and assess their
correlations with immunotherapy and targeted therapy in clear cell renal cell carcinoma
(ccRCC).

Materials: We comprehensively analyzed copy number variation (CNV), somatic
mutation, transcriptome expression profile and clinical information for ccRCC from
TCGA and ICGC databases. Based on 98 prognosis-related hypoxia genes, samples
were clustered using unsupervized non-negative matrix factorization (NMF) analysis. We
characterized the differences between subtypes concerning prognosis, CNV, somatic
mutations, pathways, immune cell infiltrations, stromal/immune scores, tumor purity,
immune checkpoint inhibitors (ICI), response to immunotherapy and targeted therapy
and CXC chemokines. Based on differentially expressed genes (DEGs) between subtypes,
a prognostic signature was built by LASSO Cox regression analysis, followed by
construction of a nomogram incorporating the signature and clinical features.

Results: Two hypoxia-related molecular subtypes (C1 and C2) were constructed for
ccRCC. Differential CNV, somatic mutations and pathways were found between subtypes.
C2 exhibited poorer prognosis, higher immune/stromal scores, and lower tumor purity
than C1. Furthermore, C2 had more sensitivity to immunotherapy and targeted therapy
than C1. The levels of CXCL1/2/3/5/6/8 chemokines in C2 were distinctly higher than in
C1. Consistently, DEGs between subtypes were significantly enriched in cytokine-cytokine
receptor interaction and immune responses. This subtype-specific signature can
independently predict patients’ prognosis. Following verification, the nomogram could
be utilized for personalized prediction of the survival probability.
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Conclusion: Our findings characterized two hypoxia-related molecular subtypes for
ccRCC, which can assist in identifying high-risk patients with poor clinical outcomes
and patients who can benefit from immunotherapy or targeted therapy.
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INTRODUCTION

Renal cell carcinoma (RCC) occupies approximately 2% of all
adult cancers globally (Siegel et al., 2019). Clear cell RCC (ccRCC)
is the main histological subtype of RCC (∼80%), with extremely
poor prognosis (Siegel et al., 2019). For local ccRCC, surgery is the
preferred treatment, while immunotherapy, targeted therapy and
chemotherapy have been approved for treatment of advanced or
metastatic ccRCC (Chen et al., 2019). However, not all patients
can respond to above treatments. Recent genomic research has
uncovered a distinct complexity of intra- and inter-tumor
heterogeneity in ccRCC, which has contribution to the varying
prognosis of patients (Gerlinger et al., 2012; Cancer Genome
Atlas Research Network, 2013). It is expected to achieve long-
term survival of ccRCC patients by improving the ability to
identify high-risk patients and further developing personalized
treatment based on multi-omics.

Hypoxia is one of the signs of tumor microenvironment. It has
been widely regarded as an active participator for ccRCC
progression (Jing et al., 2019). Hypoxia-induced changes in
gene expression exert critical effects on various cellular and
physiological functions, thereby ultimately limiting the
prognosis of patients (Vito et al., 2020). The behavior of
tumor cells is highly influenced by their surrounding
microenvironment. Under hypoxic conditions, tumor cells
have remarkably restored their survival and proliferation
(Riera-Domingo et al., 2020). For example, the acidic
microenvironment induced by hypoxia can promote
chemoresistance by inducing epithelial-mesenchymal transition
and stem cell-like phenotypes (Damgaci et al., 2018). Especially,
hypoxia can drive immune escape in the tumor
microenvironment and hinder the success of immunotherapy
(Riera-Domingo et al., 2020). Hence, a better understanding of
hypoxia-related molecular characteristics may contribute to the
progression of cancer immunotherapy research and provide a
theoretical basis for clinical trials to help improve treatment
effects (Zhang et al., 2020). In this study, we aimed to
comprehensively characterize the hypoxia-related molecular
subtypes and their clinical implications for immunotherapy
and targeted therapy of ccRCC via multi-omics data.

MATERIALS AND METHODS

Hypoxia-Related Genes
The “HALLMARK_HYPOXIA” gene sets were downloaded from
The Molecular Signatures Database v7.2 (MSigDB; https://www.
gsea-msigdb.org/gsea/msigdb) using Gene Set Enrichment
Analysis (GSEA) v4.1.0 software (Subramanian et al., 2005),

where there were 200 hypoxia genes that were up-regulated in
response to hypoxia (Supplementary Table 1).

Data Collection and Preprocessing
Level 3 RNA sequencing (RNA-seq), somatic mutation data, copy
number variation (CNV) data and corresponding clinical
information (age, gender, grade, stage, survival status and
follow-up information) for ccRCC were retrieved from The
Cancer Genome Atlas (TCGA, http://cancergenome.nih.gov/)
or the International Cancer Genome Consortium (ICGC,
www.icgc.org). Samples with survival time ≥30 days were
retained. Consequently, 512 ccRCC samples from TCGA were
enrolled as the training set, while 90 samples from ICGC database
were included in the external validation set. The two datasets were
integrated into the entire set and batch effects were corrected with
the “ComBat” algorithm of sva package (Leek et al., 2012).

Clustering Analysis
Before clustering, univariate cox regression survival analysis was
performed to evaluate the correlation between hypoxia genes and
overall survival (OS) in TCGA-ccRCC cohort. Consequently,
genes with p < 0.05 were retained for sample clustering
analysis. Then, unsupervized non-negative matrix factorization
(NMF) clustering was conducted via the NMF package in R on
the TCGA and ICGC datasets, respectively (Gaujoux and Seoighe,
2010). The k value when cophenetic correlation coefficient started
to decline was chosen as the optimal number of clusters. Principal
components analysis (PCA) and t-distributed stochastic neighbor
embedding (t-SNE) were presented to verify the classification
performance on the basis of the transcriptome expression profile
of above hypoxia-related genes. Kaplan-Meier overall survival
(OS) curves were drawn using the survival package in R, followed
by log-rank test.

Mutation Estimation
Amplification and deletion variations were evaluated using the
Genomic Identification of Significant Targets in Cancer (GISTIC)
v2.0 by the genePattern software. Furthermore, somatic mutation
data were extracted and the mutation frequencies were counted
via the MutSigCV algorithm.

Gene Set Variation Analysis
The GSVA algorithmwas used to probe into the distinct signaling
pathways between subtypes on the basis of transcriptomic
expression profile (Hänzelmann et al., 2013). The gene set of
“c2.cp.kegg.v7.1.symbols” was employed as the reference. The
enrichment scores of pathways in each sample were calculated
and their differences between subtypes were analyzed using the
linear models for microarray data (limma) package (Ritchie et al.,
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2015). Differential pathways were screened with the criteria of
false discovery rate (FDR) < 0.05 and |log2 fold change (FC)| >0.2.

Cell Type Identification by Estimating
Relative Subsets of RNA Transcripts
Using the CIBERSORT algorithm, the infiltration levels of 22
kinds of immune cells were estimated for each ccRCC sample in
TCGA database. The differences in the immune infiltration levels
between subtypes were calculated via the Wilcoxon rank-sum
test. Infiltrating immune cells were clustered by hierarchical
agglomerative clustering based on Euclidean distance and
Ward’s linkage.

Estimation of Stromal and Immune Cells in
Malignant Tumors Using Expression Data
The levels of infiltrating stromal and immune cells in ccRCC
tissues were estimated for each sample based on the gene
expression profiles utilizing the ESTIMATE algorithm
(Yoshihara et al., 2013). By combining stromal and immune
scores, ESTIMATE scores were determined. Tumor purity of each
sample was then calculated according to the ESTIMATE scores.

Assessment of Immune Checkpoint
Inhibitors, Response to Immune Therapy
and Tumor Mutation Burden Between
Subtypes
The likehood of response to immunotherapy was assessed by
the Tumor Immune Dysfunction and Exclusion (TIDE; http://
tide.dfci.harvard.edu/login/) website. TMB was defined as the
ratio of total count of variants and the whole length of exons.
The differences in the expression levels of ICIs, TIDE scores
and TMB levels were compared by the Wilcoxon rank-
sum test.

Drug Sensitivity Prediction
The sensitivity of each sample to chemotherapy drugs was
predicted by the Genomics of Drug Sensitivity in Cancer
(GDSC; https://www.cancerrxgene.org/) database (Yang et al.,
2013). The half maximal inhibitory concentration (IC50) was
assessed through ride regression utilizing the pRRophetic package
in R. Furthermore, the predictive accuracy was verified via ten-
fold cross-verification in the TCGA-ccRCC cohort.

Differential Expression and Functional
Annotation Analysis
Differentially expressed genes (DEGs) were filtered between two
molecular subtypes via the egdeR package with the cutoff of FDR
<0.05 and |log2 FC| ≥2. Their underlying functions were
predicted through Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment
analysis via the clusterProfiler package in R (Yu et al., 2012).
The p-value was adjusted by Benjamini-Hochberg method.
Adjusted p < 0.05 was considered significant.

Screening Small Molecule Drugs
The two gene lists of up- and down-regulated tags were uploaded
into the Connectivity map (CMap; http://portals.broadinstitute.
org/cmap/) database (Lamb et al., 2006). Candidate small
molecular drugs were screened according to the enrichment
value and permutation p-value. CMap mode-of-action (MoA)
analysis was exploited to explore potential mechanisms of action.

Establishment of a Signature Based on
DEGs in Two Molecular Subtypes
Prognosis-related DEGs with p < 0.05 were screened by univariate
cox regression survival analysis. The least absolute shrinkage and
selection operation (LASSO) Cox regression model was constructed
via the glmnet package (Friedman et al., 2010). ccRCC patients from
TCGA database were divided into high- and low-risk groups in line
with the cutoff value of risk scores. Kaplan-Meir curveswere portrayed
to compare the differences in OS and disease-free survival (DFS)
between the two groups via the survival package. Time-dependent
receiver operating characteristic curves (ROCs) for one-, three- and
five-years OS and DFS were conducted for assessment of the
predictive power of the risk score using the survivalROC package.
Multivariate Cox regression analysis was carried out to assess the
independency of the risk score for OS and DFS. A forest plot
containing the hazard ratio (HR) and 95% confidence interval (CI)
of each variable was then drawn via survminer package.

Construction of a Nomogram Model
Clinical factors and the risk score were incorporated into a
nomogram for predicting OS and DFS using the rms package
in R. The scores of variables were given based on their regression
coefficients. For each patient, a total score was calculated by
adding up the corresponding individual scores of all variables.
Then, using conversion function, the probability of outcome of
each patient was calculated. The predictive efficacy of the
nomogram was investigated by calibration plots.

Statistical Analysis
All statistical analysis was achieved via R language v4.0.2 (https://
www.r-project.org/). Comparisons between two groups were
presented via Wilcoxon rank-sum test. A two-tailed p-value
<0.05 was considered statistically significant.

RESULTS

Characterization of Two Hypoxia-Related
Molecular Subtypes with Distinct Clinical
Implications for ccRCC
200 hypoxia genes were retrieved from the list
“HALLMARK_HYPOXIA” gene set. In the TCGA-ccRCC (n �
512) cohort, a total of 98 genes were associated with ccRCC
prognosis (all p < 0.05), while the other genes could not impact
ccRCC prognosis (Supplementary Table 2). Based on the
expression profiles of prognostic hypoxia genes, ccRCC samples
from TCGAwere clustered via the NMF package. The optimal value
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FIGURE 1 |NMF identifies two distinct hypoxia-related molecular subtypes for ccRCC in TCGA-ccRCC dataset (A) Factorization rank for k � 2–7 (B) The heat map
of the consensus matrix when the consensus clustering k � 2. The value range is 0–1. The columns and rows are sorted through hierarchical clustering according to the
Euclidean distance of the average link (C) The PCA and (D) t-SNE scatter plots are in support of the classification into two ccRCCmolecular subtypes based on the gene
expression profiles. The colors are indicative of samples from two molecular subtypes (E) The heatmap visualizing the expression patterns of hypoxia genes in the
two subtypes. Samples are clustered according to different clinical features (F) Correlation between subtypes and clinical features (G) Kaplan-Meier OS curves for the
two clusters in TCGA-ccRCC dataset. The assessment of difference was achieved by log-rank test.
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FIGURE 2 | Illustration of copy number and somatic variations and subtype-specific signaling pathways in two hypoxia-related molecular subtypes (A) The
landscape of copy number alterations in C1 and C2 subtypes (B)Oncoplot visualizing the somatic landscape of ccRCC samples in the two subtypes. The top ten genes
are ranked on the grounds of the mutation frequency. Different mutation types are annotated by different colors on the right (C) Heatmap showing subtype-specific
signaling pathways.
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of k was determined on the grounds of cophenetic correlation
coefficient. When starting from k � 2, cophenetic correlation
coefficient started to decrease (Figure 1A). The heatmap
intuitively showed the consensus matrix when k � 2 (Figure 1B).
Hence, ccRCC samples were clustered into two molecular subtypes
C1 (n � 341) and C2 (171). The PCA (Figure 1C) and t-SNE
(Figure 1D) supported the classification into two subtypes. As
depicted in heatmap, there was a distinct difference in expression
patterns of hypoxia genes between subtypes (Figure 1E).
Furthermore, we found the significant differences in status (p �
1.5e-07), stage (p � 4.4e-05), gender (p � 0.002) and grade (p � 1.4e-
08) between subtypes (Figure 1F). The significant prognostic
difference was investigated in TCGA-ccRCC cohort, with shorter
OS time in C2 than in C1 (p � 3.865e-09; Figure 1G). This
classification was confirmed in the ICGC dataset (Supplementary
Figure 1A–E). However, due to small sample size, the prognosis of
patients was not significantly different between subtypes
(Supplementary Figure 1F). Therefore, we integrated the
samples from the TCGA and ICGC datasets into the entire set
after removing batch effects (Supplementary Figure 2A). In the
entire set, the two molecular subtypes with distinct prognosis and
clinicopathological characteristics were confirmed (Supplementary
Figure 2B-F).

Differential CNV and Somatic Variation
Landscape and Subtype-specific Signaling
Pathways Between Subtypes
We visualized the mutation frequencies of CNV in ccRCC samples
from two subtypes (Figure 2A). The chromosome 5 occurred the
most frequent amplification both in the C1 and C2 subtypes.
Meanwhile, the chromosome 2 and 3 harbored the most frequent
deletion sites. The frequency of amplification and deletion in C2 was
more common than that in C1. TheMutSigCV algorithmwas applied
to compare the frequency of somatic mutation between C1 and C2.
Genetic alterations of ccRCC mainly consist of those that control
cellular oxygen induction (such as VHL) as well as maintaining
chromatin states (such as PBRM1). Consistently, among ccRCC
samples, VHL exhibited the most frequent mutations (50%),
followed by PBRM1 (43%) and SETD2 (12%; Figure 2B). We
further probed into subtype-specific signaling pathways by GSVA
(Supplementary Table 3). As depicted in Figure 2C, p53 signaling
pathway was down-regulated C1 compared to C2, and metabolism-
related pathways were up-regulated in C1 than C2.

More Sensitivity to Immunotherapy for
Molecular Subtype 2
Immunotherapy has been approved for the treatment of ccRCC.
However, which group of patients responds to immunotherapy is still
unknown. Here, we firstly assessed the differential sensitivity to
immunotherapy between the two hypoxia-related molecular
subtypes. The infiltration levels of 22 kinds of immune cells for
each sample were detected utilizing the CIBERSORT algorithm. As a
result, C2 displayed the higher infiltration levels of T cells regulatory
(Tregs; p < 0.01), macrophages M0 (p < 0.001), mast cells activated
(p< 0.05), plasma cells (p< 0.001), T cells CD4memory activated (p<

0.001), neutrophils (p < 0.001) compared to C1 (Figure 3A).
Meanwhile, C1 exhibited distinctly higher levels of dendritic cells
resting (p < 0.001), macrophages M1 (p < 0.001), mast cells resting
(p < 0.01), monocytes (p < 0.001), T cells CD8+ (p < 0.05) in
comparison to C2. In Figure 3B, these immune cells were
clustered into four cell clusters by hierarchical agglomerative
clustering based on Euclidean distance and Ward’s linkage. There
was a complex interaction network between different immune cells,
indicating the complexity of tumor immune microenvironment. For
example, the infiltration levels of macrophages M2 were positively
correlated with B cells naïve in ccRCC tissues. The patterns of stromal
scores, immune scores, ESTIMATE scores and tumor purity in each
ccRCC samplewere evaluated viaESTIMATE algorithm.The samples
in C2 subtype had the relatively high levels of stroma, immune and
ESTIMATE scores in comparison to C1 (all p < 0.001; Figure 3C).
Furthermore, we investigated the lower levels of tumor purity in C2
than in C1 (p < 0.001). These suggested that C2 was more likely to
experience a worse prognosis than C1. ICIs have been used for the
first-line therapy ofmetastatic ccRCC (Shah et al., 2019). Nevertheless,
not all patients may benefit from it. The patients’ response to
immunotherapy was predicted by the TIDE algorithm. Higher
expression levels of CD274 mRNA (p < 0.001) were found in C1
compared to C2 (Figure 3D). Meanwhile, LAG3 (p � 0.003), TIGIT
(p � 0.035), IDO1 (p � 0.005) and CTLA4 (p � 0.05) mRNAs
displayed higher expression levels in C2 than C1 (Figure 3D).
Moreover, C2 displayed higher TIDE levels than C1 (Figure 3E;
p � 2.4e-08). As such, our data showed that C2 was more likely to
respond to immunotherapy compared to C1 (Figure 3E; p � 2.4e-08).
High TMB usually indicates poor clinical outcomes and is a powerful
predictor for immunotherapy response in ccRCC (Huang et al., 2020).
However, there was no significant difference in TMB between
subtypes (Figure 3F).

Evaluation of the Expression Levels of CXC
Chemokines in Two ccRCC Molecular
Subtypes
Herein, we assessed the expression levels of CXC chemokines in
ccRCC samples between C1 and C2 (Zeng et al., 2019). As a
result, C2 exhibited the higher expression levels of CXCL1
(Figure 4A), CXCL2 (Figure 4B), CXCL3 (Figure 4C),
CXCL5 (Figure 4D), CXCL6 (Figure 4E) and CXCL8
(Figure 4F) in comparison to C1 (all p < 0.001). Among
them, a previous study has showed that low expression of
CXCL1/2/3/5 was in relationship with a better prognosis for
RCC patients, indicating that these chemokines could contribute
to poor clinical outcomes for patients in C2 (Zeng et al., 2019).

Differential Putative Chemotherapeutic
Response Between Molecular Subtypes
Drug resistance has become a major challenge in chemotherapy,
involving various mechanisms. Hypoxia, as a key factor, affects
cell expression programs and induces treatment resistance (Jing
et al., 2019). Herein, GDSC database was employed to assess the
differences in the sensitivity between the two hypoxia-related
molecular subtypes to eight common chemotherapy drugs
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FIGURE 3 | Differential sensitivity to immunotherapy between two ccRCCmolecular subtypes (A) Radar map showing the differences in proportions of 22 immune
cell types between C1 and C2 molecular subtypes (B) A network of the correlation between the levels of 22 kinds of tumor-infiltrating immune cells in ccRCC samples.
The size of bubble is inversely proportional to p-value (C) Patterns of stromal cell scores, immune cell scores, ESTIMATE scores and tumor purity between subtypes (D)
Expression levels of immune checkpoint markers in the two subtypes (E, F) Box plots showing the correlation between TIDE/TMB levels and molecular subtypes.
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001; ns: no statistical significance.
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including Sorafenib (Figure 5A), sunitinib (Figure 5B), Cisplatin
(Figure 5C), gefitinib (Figure 5D), Vinblastine (Figure 5E),
Vinorelbine (Figure 5F), Vorinostat (Figure 5G) and
Gemcitabine (Figure 5H). Drug response was defined based

on IC50 values. The data suggested that C2 subtype was more
sensitive to most of chemotherapy drugs such as Sorafenib,
Sunitinib, Cisplatin, Vinblastine and Vorinostat compared to
C1 subtype, indicating that patients in C2 subtype were more

FIGURE 4 | Differences in expression patterns of CXC chemokines between two ccRCCmolecular subtypes. As depicted in the box plots, the expression levels of
(A) CXCL1 (B) CXCL2 (C) CXCL3 (D) CXCL5 (E) CXCL6 and (F) CXCL8 are visualized in ccRCC samples between C1 and C2. ***p < 0.001.

FIGURE 5 | Differences in sensitivity to chemotherapy drugs between two ccRCC molecular subtypes. The box plots depicting the estimated IC50 values for (A)
Sorafenib (B) sunitinib (C) Cisplatin (D) gefitinib (E) Vinblastine (F) Vinorelbine (G) Vorinostat and (H) Gemcitabine in ccRCC samples from the two molecular subtypes.
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likely to benefit from above chemotherapy drugs. Meanwhile, C1
subtype had the higher sensitivity to Gefitinib, Gemcitabine and
Vinorelbine than C2 subtype, indicating that patients in C1
subtype might respond to these chemotherapy drugs.

CMap Analysis Identifies Candidate
Inhibitors for ccRCC
1,472 DEGs were identified between C1 and C2 (Figures 6A,B).
Among them, there were 1,203 up- and 269 down-regulated genes in
C2 compared to C1 (Supplementary Table 4). As shown in KEGG
enrichment analysis results, ccRCC-related signaling pathways such as
complement and coagulation cascades, neuroactive ligand-receptor
interaction, cytokine-cytokine receptor interaction and PPAR
signaling pathway were significantly enriched by these DEGs
(Figure 6C). GO function annotation analysis revealed that these
DEGs could possess immune-related functions (Figure 6D). Through
the CMap, we screened out nine small molecule inhibitors
(pilocarpine, quipazine, calmidazolium, dydrogesterone, securinine,
molindone, W-13, TTNPB and NU-1025). Among them, pilocarpine
(enrichment � −0.865 and p � 0.00062) and quipazine (enrichment �

−0.704 and p � 0.01578) could become candidate small molecule
drugs for all ccRCC patients (Figure 6E). According toMoA analysis,
nine mechanisms of actions (acetylcholine receptor agonist, serotonin
receptor agonist, calcium channel blocker, progesterone receptor
agonist, GABA receptor antagonist, dopamine receptor antagonist,
calmodulin antagonist, retinoid receptor agonist and PARP inhibitor)
shared the above small molecule inhibitors, indicating that nine small
molecule inhibitors might suppress ccRCC progression through
mediating these mechanisms of actions.

Development of a Subtype-specific
Prognostic Five-Gene Signature for ccRCC
Totally, 902 prognosis-related DEGs between subtypes were
identified for ccRCC. Under LASSO Cox regression analysis
(Figures 7A,B), a five-gene signature was constructed,
composed of COL7A1, ZIC2, AC116021.1, AC112715.1 and
OTX1. The risk score of each sample was calculated and all
ccRCC patients were separated into high- and low groups in
accordance with the cutoff values of risk scores. The higher the
risk score, the greater the number of patients with dead (Figure 7C)

FIGURE 6 | CMap analysis identifies candidate small molecular inhibitors for ccRCC (A) Heatmap depicting all DEGs between C1 (blue) and C2 (red) (B) Volcano
plots up-regulated genes (red bubbles) and down-regulated genes (green bubbles) in C1 compared to C2 (C)Bar plots of the top ten enriched KEGG signaling pathways
(D) Bar plots of the top ten GO function annotation analysis results including biological processes (BP), cellular component (CC) and molecular function (MF) categories.
Red suggests high enrichment and blue suggests low enrichment (E) Heatmap demonstrating each inhibitor (perturbagen) and its shared mechanisms of action
(rows) via the CMap database.
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or disease status (Figure 7D). High-risk group had the higher
expression levels of these genes than low-risk group (Figures
7C,D). Patients with high-risk score exhibited a poorer OS (p �
2.743e-11; Figure 7E) and DFS (p � 7.838e-09; Figure 7F). As
shown in ROC curves, AUCs for one-, three- and five-years OS were
0.730, 0.706, and 0.741, suggesting the well performance of the risk
score for prediction of OS (Figure 7G). Also, AUCs for one-, three-
and five-years DFS were 0.689, 0.724, and 0.779, confirming its
predictive efficacy for DFS (Figure 7H). Our multivariate cox
regression analysis demonstrated that this signature could
independently predict ccRCC patients’ OS and DFS (Figure 7I).

A Nomogram Integrating Subtype-specific
Signature and Clinical Factors Improves
Predictive Power for ccRCC Prognosis
We constructed a nomogram by combining the five-gene signature
and clinical factors including age, grade, gender, and stage for
predicting ccRCC patients’ OS (Figure 8A) and DFS (Figure 8B).
We further evaluated whether the integration of the five-gene
signature and clinical factors could boost the predictive efficiency
for ccRCC prognosis in TCGA dataset. Calibration plots confirmed
that the nomogram-predicted probabilities of one- (Figure 8C), three-

(Figure 8D) and five-years (Figure 8E) OS had high consistency with
the actual survival. Moreover, the nomogram-predicted probabilities
of one- (Figure 8F), three- (Figure 8G) and five-years (Figure 8H)
DFS was close to the actual survival. Collectively, the nomogram
integrating the five-gene signature, age, grade, gender, and stage could
enhance the predictive power of ccRCC patients’ prognosis.

DISCUSSION

Emerging first-line treatment options such as targeted drugs and
immunotherapy have significantly improved the prognosis of ccRCC
patients with high risk, for whom chemoradiotherapy has shown
limited efficacy (Atkins and Tannir, 2018). It has been widely
recognized the differences in response to therapy due to the
molecular and histologic heterogeneity of ccRCC (Luo et al., 2019).
In this study, we characterized two hypoxia-relatedmolecular subtypes
for ccRCC with distinct clinical outcomes and response to
immunotherapy and targeted therapy based on multi-omics analysis.

Hypoxia is a key feature of the tumormicroenvironment, driving
tumor aggressiveness (Balamurugan, 2016). To adapt to hypoxia, the
expression of hypoxia-related genes changes accordingly. Based on
prognosis-related hypoxia genes, we characterized two molecular

FIGURE 7 | Development of a prognostic five-gene signature for ccRCC in TCGA dataset (A) 20-time cross-validation for tuning parameter selection in the LASSO
Cox model (B) Plots of the LASSO coefficients (C) The risk score rank (up), distribution of survival status (alive or dead; middle) and expression patterns of five genes in
high- and low-risk groups (D) The risk score rank (up), distribution of survival status (diseased or disease-free; middle) and expression patterns of five genes (down) in
high- and low-risk groups (E, F) Kaplan-Meier OS and DFS curve for high- and low-risk groups (G) Time-dependent ROC curves for one-, three- and five-years OS
time (H) Time-dependent ROC curves for one-, three- and five-years DFS time (I) Forest plots showing the multivariate Cox regression analyses results of the risk score
and clinical factors with OS and DFS.
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subtypes with distinct molecular subtypes in TCGA and ICGC
databases. The hypoxia-related classifier may become a practical
and reliable predictive tool, which could complement the current
staging system for predicting ccRCC prognosis. The differences in
survival status, stage, gender, and grade did not reduce the accuracy
of the classifier in predicting patients’ prognosis. Specifically, it has
been acknowledged that male patients exhibit more aggressive
characteristics as well as poorer OS compared to females
(Brannon et al., 2012). Differential somatic mutations and CNVs
were detected between subtypes. Consistent with previous study,

VHL (50%) and PBRM1 (43%) mutations commonly occur in
ccRCC (Carril-Ajuria et al., 2019). The loss of VHL tumor
suppressor gene is the most common genetic feature of ccRCC,
which improves the expression of target genes of hypoxia-inducible
factors (HIFs), thereby affecting metabolism and signal transduction
for ccRCC cells (Zhang et al., 2018).

Despite various gene mutations gain the incidence of ccRCC, the
tumor microenvironment has a critical influence on tumor
development and immune response. In the tumor immune
microenvironment, there were distinct differences immune cell

FIGURE 8 | A nomogram incorporating subtype-specific signature and clinical factors improves predictive efficacy for ccRCC prognosis (A, B) Construction of a
nomogram combining the subtype-specific signature and clinical features for prediction of OS and DFS. Calibration plots displayed the actual and nomogram-predicted
probability of one-, three- and five-years OS (C–E) and DFS (F–H).
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infiltrations between subtypes. Tumor-infiltrating immune cells are
linked to clinical outcomes as well as response to immunotherapy. Our
characterized subtypes were associated with immune infiltration
patterns in ccRCC. Particularly, ccRCC is the tumor type with the
highest infiltration levels of T cells (Şenbabaoğlu et al., 2016). There
were distinct differences in the infiltration of T cell subpopulations
between subtypes. Immune status affects ccRCC patients’ clinical
outcomes. Functional enrichment analysis revealed that DEGs
between subtypes could be involved in immune response.
Compared to C1, C2 had higher stromal/immune scores and lower
tumor purity. Furthermore, high stromal/immune scores and low
tumor purity of ccRCC patients have been found to be significantly
associated with poor prognosis (Xu et al., 2019). Targeted therapeutics,
such as VEGF receptors and mTOR inhibitors, can distinctly prolong
the survival time of metastatic ccRCC patients (Xu et al., 2019).
Nevertheless, most of patients do not have targetable mutations.
Immune checkpoint targets provide another promising treatment
strategy. However, the hypoxic microenvironment of tumors can
reduce immune activity. Here, we found that C2 subtype had
higher levels of ICIs than C1. For example, LAG3+ T cells is a sign
of T cell exhaustion that is a key factor for immunosuppressive
properties and is associated with advanced ccRCC (Wang et al.,
2019). Based on the TIDE algorithm, it was estimated that C2
possessed higher potential response of immune-checkpoint blockade
(ICB) therapy. Thus, ICB therapymay be efficacious for C2 subtype of
ccRCC patients.

Prognostic biomarkers related to the tumor immune
microenvironment may provide promising prospects for
identifying novel molecular targets and improving patients’ clinical
outcomes undergoing immunotherapy (Burger and Kipps, 2006).
DEGs between subtypes were significantly enriched in chemokine-
chemokine receptor interaction. Low expression of CXCL1/2/3/5
chemokines exhibits better clinical outcomes in RCC (Zeng et al.,
2019). Our data showed that the expression of these chemokines in
subtype C1 was significantly lower than that of subtype C2, indicating
that chemokines could promote tumor escape of ccRCC of C2
subtype, thereby leading to poorer prognosis.

Treatment based on individual tumor characteristics provides
the possibility to improve the different clinical outcomes of
patients due to tumor heterogeneity in ccRCC (Hu et al.,
2020). Changes in the cancer genome in response to hypoxia
markedly affect the response to anticancer therapies (Ye et al.,
2019). It is reasonable to predict the treatment response to
chemotherapy, which can reduce the cost of treatment and
improve the prognosis of patients. This study demonstrated
that C2 subtype exhibited higher sensitivity to most of
chemotherapeutic drugs being used [such as sorafenib and
sunitinib have been approved for treating metastatic RCC
(Hsieh et al., 2017)] or developed than C1 subtype, indicating
that patients in C2 could be more suitable for above therapies,
which can provide an available strategy to select patients who
benefit from a particular therapy.

Signatures based on gene expression have not yet been
incorporated into routine clinical practice for ccRCC. Compared
with the traditional method using gene expression levels, LASSO
algorithm eliminates the requirement for data preprocessing, which
has been proven to produce reliable results including cancer

classification (Li et al., 2017). This study constructed a subtype-
specific signature using LASSO Cox regression analysis. Following
validation, this signature could robustly and independently predict OS
and DFS of ccRCC patients. Furthermore, we constructed the
nomogram combining the signature and other clinical factors. The
prediction system can guide the establishment of personalized
examination procedures for ccRCC patients and boost the effective
use of medical resources.

However, this study is based on the retrospective design. This
classifier system will be verified in our future multi-center
prospective research. In conclusion, the two hypoxia-related
molecular subtypes as well as subtype-specific nomogram could
be utilized to guide the current clinical application to maximize
patients’ benefit from immunotherapy or targeted therapy.

CONCLUSION

Collectively, we constructed two hypoxia-related molecular
subtypes with distinct prognosis for ccRCC, which could assist
manage risk assessment and provide valuable insights for the
immunotherapy and targeted therapy strategies of ccRCC.
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GLOSSARY

ccRCC clear cell renal cell carcinoma

CI confidence interval

CMap Connectivity map

CNV copy number variation

DEGs differentially expressed genes

DFS disease-free survival

ESTIMATE Estimation of stromal and immune cells in malignant tumors
using expression data

FC fold change

FDR false discovery rate

GDSC Genomics of Drug Sensitivity in Cancer

GISTIC Genomic Identification of Significant Targets in Cancer

GO Gene Ontology

GSEA Gene Set Enrichment Analysis

GSVA Gene set variation analysis

HR hazard ratio

IBERSORT Cell type identification by estimating relative subsets of RNA
transcripts

IC50 the half maximal inhibitory concentration

ICGC International Cancer Genome Consortium

ICI immune checkpoint inhibitors

KEGG Kyoto Encyclopedia of Genes and Genomes

LASSO least absolute shrinkage and selection operation

limma linear models for microarray data

MoA CMap mode-of-action

MSigDB Molecular Signatures database

NMF non-negative matrix factorization

OS overall survival

PCA principal components analysis

RCC renal cell carcinoma

RNA-seq RNA sequencing

ROCs receiver operating characteristic curves

TCGA The Cancer Genome Atlas

TIDE Tumor Immune Dysfunction and Exclusion

TMB tumor mutation burden

t-SNE t-distributed stochastic neighbor embedding.
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