Giga Science, 6, 2017, 1-10

GlgA)”

C[EN P E Advance Access Publication Date: 7 March 2017
‘:(:\.\ Research

RESEARCH

Gregory Kiar!?, Krzysztof . Gorgolewski®, Dean Kleissas?,
William Gray Roncal*>, Brian Litt®’, Brian Wandell®8,
Russel A. Poldrack?, Martin Wiener?, R. Jacob Vogelstein,
Randal Burns® and Joshua T. Vogelstein®?*

1Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA, Center for Imaging
Science, Johns Hopkins University, Baltimore, MD, USA, 3Department of Psychology, Stanford University,
Stanford, CA, USA, “Johns Hopkins University Applied Physics Lab, Columbia, MD, USA, *Department of
Computer Science, Johns Hopkins University, Baltimore, MD, USA, ®Department of Bioengineering, University
of Pennsylvania, Philadelphia, PA, USA, "Department of Neurology, Hospital of the University of Pennsylvania,
Philadelphia, PA, USA, 8Center for Cognitive and Neurobiological Imaging, Stanford University, Stanford, CA,
USA and °Department of Psychology, George Mason University, Fairfax, VA, USA

*Correspondence address: 3400 North Charles Street, 317 Clark Hall, Baltimore, MD, 21218, USA. Tel: +(410) 516-3826; Fax: +(410) 516-4594;
E-mail: jovo@jhu.edu

Modern technologies are enabling scientists to collect extraordinary amounts of complex and sophisticated data across a
huge range of scales like never before. With this onslaught of data, we can allow the focal point to shift from data collection
to data analysis. Unfortunately, lack of standardized sharing mechanisms and practices often make reproducing or
extending scientific results very difficult. With the creation of data organization structures and tools that drastically
improve code portability, we now have the opportunity to design such a framework for communicating extensible scientific
discoveries. Our proposed solution leverages these existing technologies and standards, and provides an accessible and
extensible model for reproducible research, called ‘science in the cloud’ (SIC). Exploiting scientific containers, cloud
computing, and cloud data services, we show the capability to compute in the cloud and run a web service that enables
intimate interaction with the tools and data presented. We hope this model will inspire the community to produce
reproducible and, importantly, extensible results that will enable us to collectively accelerate the rate at which scientific
breakthroughs are discovered, replicated, and extended.
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Neuroscience is currently in a golden age of data and computa-
tion. Through recent technological advances [1], experimental-
ists can now amass large amounts of high quality data across es-
sentially all experimental paradigms and spatiotemporal scales;
such data are ripe to reveal the principles of brain function and
structure. In fact, many public datasets and open-access data
hosting repositories are going online [2,3].

Concurrent with this onslaught of data is a desire to run anal-
yses, not just on data collected in a single lab, but also on other
publicly available datasets. Various tools have been developed
by the community that solve a wide variety of computational
challenges on all types of data, enabling difficult scientific ques-
tions to be answered. With the ability to perform analyses often
dependent only upon access to data and code resources, neuro-
science is now more accessible, with a lower barrier to entry.

However, there is no tool or framework that enables research
to be performed and communicated in a way that lends itself
to easy extensibility, much less reproducibility. Currently, reper-
forming and extending published analyses whether through
data or code is often unbearably difficult: (i) data may be closed-
access; (ii) data may be organized in an ad hoc fashion; (iii) the
code may be closed-source or undocumented; (iv) code may have
been run with undocumented parameters and dependencies;
and (v) analyses may have been run with code compiled for spe-
cific hardware. These properties make validating and extending
scientific claims challenging.

A focus on reproducibility is already commonplace in a va-
riety of disciplines. In genomics, Bioboxes [4] provide a frame-
work for reproducible and interchangeable analysis containers,
and tools are exploiting scalable computing solutions and being
published with reproduction instructions [5,6]. Commentaries
on reproducible research provide suggestions to researchers on
how to tackle the challenges that are present in their scientific
settings [7,8]. While these works have accelerated reproducibil-
ity and extensibility in their fields, the methods proposed do not
scale to the cloud or enable real-time interactivity and have yet
to be thoroughly applied to the burgeoning field of computa-
tional neuroscience.

The notion of a universally web-viewable laboratory [9] is also
growing in popularity, and many initiatives have been success-
ful in contributing to this vision. In plant biology, CyVerse [10]
provides infrastructure for tools, data, and education. In neuro-
science, platforms such as LONTI'’s Pipeline [11] and neuGRID [12]
alleviate the burden of managing captive computing resources
and integrating them with datastores, while NeuroDebian [13]
provides quick and easy access to a variety of neuroimaging
tools. Leveraging the NeuroDebian platform, NITRC has encour-
aged a transition to the cloud by releasing an Amazon Machine
Image (AMI) preloaded with commonly used packages. In par-
allel, many groups have strived to breach the frontier through
such efforts as developing sophisticated resource estimation-
based deployment strategies [14], and these have shown the
great potential for a cloud-based approach to neuroimaging [15].
Each of these projects has made valuable contributions to the
progress towards accessibility and portability of neuroscience
research.

We propose a solution to these gaps in the form of a frame-
work that leverages publicly documented and deployable cloud
instances with specific pipelines installed and configured to
extend published findings: an implementation we simply term
‘science in the cloud,’ or, SIC (Latin for “thus was it written”). SIC
instances have several fundamental components, as summa-

rized in Fig. 1. To address data access, we put data in the cloud.
To address data organization, we utilize recently proposed data
standards. To address closed-source and undocumented code,
we generate open-source code and interactive demonstrations.
To address software and hardware dependencies, we utilize
virtualization, automated deployment, and cloud computing.
SIC puts these pieces together to create a computing instance
launched in the cloud, designed not only for generating re-
producible research, but also enabling easily accessible and
extensible science for everyone. SIC is designed to minimize
the bottlenecks between publication and novel discoveries;
leveraging the experience of the community, we propose a
solution for transitioning to a universal, and “future-proof,”
deployment of software to the cloud.

We introduce and document an example use case of SIC with
the ndmg pipeline, thus entitled SIC:ndmg. We have developed
a capability that enables users to launch a cloud instance and
run a container that analyzes a cohort of structural and diffu-
sion magnetic resonance imaging scans by (i) downloading the
required data from a public repository in the cloud, (ii) fully pro-
cessing each subject’s data to estimate a connectome for each
subject’s associated imaging data, and, optionally, and (iii) plot
quality control figures of various multivariate graph statistics.

There are six key decisions that must be made when follow-
ing SIC: data storage, data organization, interactive demonstra-
tions, virtualization, deployment, and computing. The selection
made for each of these components will have a significant im-
pact on available selections for the others. The final product will
be a highly interdependent network of tools and data. Table 1
shows a summary of the selections made for each of the criteria
with rationales for the decisions. In general, the tools selected
were those that provided the most command-line/Application
Programming Interface (API) support for their service and had
the most complete documentation or online support commu-
nity, enabling setup with relative ease.

There are several options when storing data in a publicly acces-
sible location, such as a cloud storage service or public reposi-
tories. Depending on the nature of the data being stored, differ-
ent concerns (such as privacy) must be satisfied. For instance,
sensitive data (i.e., not anonymized/de-identified) requires au-
thentication for access, whereas de-identified data does not. It
is our recommendation to host de-identified data in the cloud
and store linking metadata privately on HIPPA (or equivalent)-
compliant organization datastores. Researchers who may not
wish to release their data prior to publication are encouraged
to store their data with secure protocols. The datastore should
also be accessible through an API, or another interface enabling
developers to access the data programmatically. Depending on
the desired organization, autonomy is also a valuable feature,
affording the developer full control on how the data is stored,
as opposed to working within the confines of an existing infras-
tructure. The type of virtualization (described below) used may
alsoinfluence the types of shared datastores that will be natively
compatible with the application. Considering the above, Ama-
zon's S3 service was used in this SIC implementation, because it
satisfied all of these requirements. While Google’s Cloud Engine
or Microsoft Azure also satisfy these requirements, the decision
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Figure 1: Framework for science in the cloud illustrating the six necessary components for SIC. Cloud data storage enables universal access to data products. Data
organization structures enable consistent tools and user interactions across datasets. Interactive demonstrations allow users to participate in live scientific analyses.
Virtualization enables tools to be deployed reliably and consistently. Deployment tools organize resources provided by computing platforms and enable users to run
analyses at scale. Together, these tools create a framework for discovery that is optimized for extensible science.

Table 1: There are six key components that must be selected for SIC.

Hurdles Available tools

1) Data storage S3, Dropbox, Google Drive

BIDS [16], Neurodata Without
Borders [17], MINC [18]

2) Data organization

3) Interactive demo’s  Jupyter, R Notebook, Shiny
Docker, Virtualbox [19], VMware [20]

Batch/ECS, Kubernetes [21], MyBinder
[22], CBRAIN [23], Nextflow [24]

EC2, Google Compute Engine [25],
Microsoft Azure [26]

4) Virtualization

5) Deployment

6) Computing

Pros of selection

API, pay-by-usage Amazon tools

Documented, validator,
active community

Versatile, accessible

No additional dependencies

Scalable, flexible

Cons of selection

Requires familiarity with

New, not yet fully adopted

Optimized for Python

Lightweight, self-documented -

Restricted to Amazon’s cloud

Requires technological expertise

Bold indicates the selections made here, with their positive and negative qualities compared to some alternatives.

to use S3 was made based upon our existing domain knowledge
and familiarity with each of these systems.

The newly publicly available data then needs to be organized in
accordance with a data specification that enables users to nav-
igate the repository successfully. Such standards include both
file formats, which can be interpreted by programs, as well as
folder organizations, which enable grouping of data by subject,
observation, type, etc. Depending on the modality of data being
used, there are different structures that can be adopted. In the
case of MRI, the BIDS [16] specification is a well-documented
and community-developed standard that is intuitive and allows
data to be both easily readable by humans and navigated by
programs. Organizations such as “Neurodata without Borders”
[17] would serve as additional options for physiology data,
but are unsuitable for this application. Formats such as MINC
[18] focus heavily on metadata management but less on file
hierarchy, making them useful though not fully sufficient for
this application. Though some standards may consider securely
handling identifying information, we recommend only storing
de-identified data publicly to avoid possible security risks.

To encourage use of data and the tools used to analyze it, inter-
active demonstrations that enable users to visualize and work
with some subset of the data are extremely valuable. Various
programming languages have different types of demonstration
environments available that either enable full interactivity or are
precompiled to display code and results. A popular tool for inter-

active development and deployment of Python code is Jupyter,
and thus was the tool used here. The popularity of this tool
hopefully increases the average user’s familiarity with the inter-
face, lowering the barrier to entry for interacting with SIC:ndmg.
If a developer is more familiar with another programming lan-
guage, there is no particular reason why one would select Jupyter
over an equivalent package in R, such as R Notebook.

Developing and distributing virtualized environments contain-
ing all necessary code products guarantees consistent depen-
dencies and application setup, and therefore minimizes user
effort to obtain expected performance. These virtual environ-
ments should be able to be deployed on any operating system
and have minimal hardware-dependent code. A key desiderata
is that the virtualization system minimizes unnecessary over-
head for the application. Though it does not affect run-time
performance, a repository of public machine images is an at-
tractive feature for this model as it enables sharing configura-
tions. Docker [27] was chosen because it satisfies these practical
requirements, and the accessibility of Docker Hub enables im-
ages to be quickly found and deployed. Virtual machines such
as those created in Virtual Box [19] or VMware [20] provide lots
of range in terms of operating systems that can be launched
and allow native access to the machine through a GUI. How-
ever, though these are great features, they are unnecessary for
this application. An additional attractive feature of Docker is
that translating a README file (which enumerates dependen-
cies or installation instructions) to a Dockerfile forces developers
to improve their documentation and increases the useability of
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Figure 2: Structure of the ndmg pipeline connectome estimation. Taking as input diffusion and T1 weighted MRI, ndmg first aligns the diffusion data to a reference
atlas by means of the T1 image. Tensors are then computed from the aligned diffusion volume. Fiber streamlines are generated by performing tractography on the
tensors. Finally, the fibers are mapped between ROIs that then become nodes in the graph.

their tool. Though this is certainly extra work for the developer,
the process requires only knowledge of the documented Docker
schema and the editing of plain-text files, which we believe to
be a relatively low cost to the developer.

Deployment platforms allow users to define a specific set of in-
structions that can be launched on a single machine or multiple
machines simultaneously. In physical hardware configurations,
a cluster’s scheduler would play this role; in the cloud, such tools
are able to take advantage of computing resources across differ-
ent locations and services, and enable scaling with the amount
of processing required. Middleware such as Kubernetes [21], Tu-
tum, or Nextflow [24] can enable a user to distribute their jobs
across a cluster existing in different computing environments
(i.e., separate clouds). When using a single cloud, such as Ama-
zon or Google, native applications support managing resources
efficiently. In the case of SIC:ndmg, we elected to deploy entirely
in Amazon’s cloud; therefore, we used Amazon’s Batch to launch
the pipeline distributed across multiple computing nodes, and
Amazon’s ECS to deploy a distributed and scalable SIC service.
Tools such as CBRAIN [23], LONI [11], and MyBinder [22] also en-
able distributed deployment of code, but are more specialized in
the requirements of the tools and services that can be launched
and are thus more restrictive.

Cloud computing services enable users to launch customized
machines with specific hardware configurations and specifica-
tions, making them versatile for different varieties and scales
of analyses. The more general the hardware that can be used,
the more accessible the tool is for a user to adapt and use in
their own environment. Selecting the commercial cloud for de-
ployment as opposed to data center resources enables greater
accessibility and transparency to users, is more scalable, and
enables parallel jobs to be run in completely isolated resources.
Cloud deployments also provide consistent performance across
nodes, and have a much lower start-up cost than utilizing lo-
cal computing resources. Since there were no specific hardware
requirements in this application, and there existed previous in-
house experience with the service, Amazon’s EC2 was selected
in this usecase. The benefit of using EC2 is that deploying code
at different scales and locations is trivially extendable, so imple-
mentations can be easily taken from prototype to deployment.
Amazon’s cloud enables launching computing resources based
on AMIs with preinstalled dependencies, increasing the flexibil-
ity of the processes which can be launched.

Further details of our specific implementation and methods
are provided in Appendix A.

We demonstrate a working example of SIC, SIC:ndmg. The ndmg
pipeline [28] is an open-source, scalable pipeline for human
structural connectome estimation from diffusion and structural
MR images (collectively referred to hereafter as ‘multimodal
MRI’, or M3RI for brevity). The result is a portable and easily ex-
tensible tool for scalable connectome generation. A live demon-
stration is presented that enables reader interaction with the
pipeline at the cost of a simple URL click, and data products
of the tool are presented in both the context of ‘reproducibil-
ity’ and ‘extensibility. This tool enables quantitative structural
analyses of the human brain to be performed on populations of
M3RI scans, and can lead to discoveries of the relationship be-
tween brain connectivity and neurological disease.

The analysis transforms ‘raw’ M3RI data into graphs. Kiar et al.
(in preparation) describes the pipeline in detail; here we provide
a brief overview. The pipeline (Fig. 2) consists of four main steps:
registration, tensor calculation, tractography, and graph gener-
ation. Note that the choices below are made for expediency and
simplicity; other choices might be beneficial depending on con-
text. Table 2 summarizes the duration and cost of each step for
a given dataset processed and stored in the cloud.

Table 2: Approximate cost and time breakdown per subject of the
ndmg pipeline running in Amazon EC2 with data stored in S3 and
computation with m4.large machines at spot pricing of $0.0135 per
hour (Accessed on 2017/01/04).

Operation Time per session Cost per session
(min) (1/100 USD)

data storage - 1.048/month

data I/O - 0.000

Total - 1.048/mo

Registration 25 0.563

Tensor calculation 2 0.045

Fiber tractography 5 0.112

Graph generation 30 0.675

Total 62 1.395

The values were obtained by processing data from the NKI1 dataset with 40 ses-
sions. The reader should note that Amazon S3 data I/O is not free, as it may
appear, but is simply inexpensive for data this size.



Registration in ndmgis performed in several stages using FSL
[29]. First, the diffusion image is self-aligned and noise-corrected
using the eddy-correct function. Second, the transform is com-
puted, which aligns the BO volume of the diffusion image to the
structural scan using epi_reg. Third, the transform between the
structural image and a reference atlas is computed with flirt.
Finally, the transforms are combined and applied to the self-
aligned diffusion image. The tensor calculation and tractogra-
phy steps are performed with the DiPy package [30]. A simple
tensor model fits a 6-component tensor to the image, and de-
terministic tractography with the EuDx algorithm is run, pro-
ducing a set of streamlines. Graph generation takes as input the
fiber streamlines, and maps them to regions of interest (ROIs)
defined by a prebuilt parcellation (such as those packaged with
FSL or generated with brain segmentation algorithms) and re-
turns an ROI-wise connectome. An edge is added to the graph
for each pair of nodes along a given fiber. The final step is com-
puting (multivariate) graph statistics on the estimated connec-
tomes. The statistics computed are [31]: number of non-zero
edges, degree distribution, eigen sequence, locality-statistic 1,
edge weight distribution, clustering coefficient, and between-
ness centrality. These statistics provide insight into the struc-
ture of the brain graphs, and provide a low-dimensional feature
by which the graphs for different scans can be compared to one
another. To provide a preliminary quality control step, we plot
the graph statistics [31] for each graph (Fig. 4).

A demonstration of SIC:ndmg is available at http://science
inthe.cloud/. This instance is running a Jupyter server that con-
tains the demonstration notebook, sic.ndmg.ipynb. Launching
the notebook pulls up an interface, which resembles that of
Fig. 3A.

For demonstration purposes, a downsampled subject is
used in this notebook that reduces analysis time from
~1 h/subject/core to ~3 min/subject/core. The ndmg pipeline
has two levels of analysis: graph generation and summary statis-
tic computation. Graph generation is the process of turning
diffusion and structural MR images into a connectome (i.e.,
brain graph), and the summary statistic computation produces
a graph of several graph features on each produced connectome
and plots them together. Running through the notebook (Fig. 3A)
chronologically will produce the brain graph, display the graph
(Fig. 3B), compute summary statistics (Fig. 3C), and then plot the
statistics.

(A)
Demonstration Notebook

ZJupyter sic_ndmg gess o
File Edit View Insert Cell Kermnel Help

B+ % @ B 4 & M B C | Makdown $ £ Cell

SIC for ndmg Pipeline

ndmg contains two types of analysis: connectome generation a

Run Connectome Generation

The first step of ndmg tums 'raw’ Nifti images into connectome:
heavily for this wh

Produced Connectome

In addition to the live demonstration, SIC:ndmg was used to pro-
cess the NKI1 [32] dataset consisting of 40 M3R scans. Instruc-
tions on setting up a cluster and running this analysis can be
found in Appendix A. The NKI1 dataset is made publicly avail-
able through CORR [32], but has been organized in accordance
to the BIDS [16] specification and rehosted on our public S3
bucket, mrneurodata. The dataset consists of MPRAGE, DWI, and
fMRI scans, where each subject has been scanned at least twice
for each modality. More information about the subjects in this
dataset and the scanning parameters used can be found on the
CORR website.

Running the  Docker-hosted scientific  container
bids/ndmg:v0.0.41-2 on the NKI1 dataset produced Fig. 4,
costing <$1, as is summarized in Table 2. Table 3 summarizes
the parameters used as inputs to SIC:ndmg to generate the
graphs. Fig. 4 provides insight into the variance of the dataset
through a variety of different metrics. According to published
work on these summary statistics [31], this dataset and pipeline
combination produces expected results. A key benefit of this
visualization is that it has high information density, showing
us distributions for a variety of features for a large number of
graphs, as opposed to more common 1-dimensional features
[33]. This figure was produced by the parameters summarized
in Table 4.

The demonstration in the previous section executed the ex-
act same pipeline that was used to generate Fig. 4. The sole dif-
ference between execution of the demonstration and this imple-
mentation, aside from the data being processed, is the specific
Docker container being used. The reason for this difference is
that the demonstration is required to run as a web service, so
additional packages and setup are required.

A crucial property of SIC is the simplicity it affords users to per-
form extensible science. Extensibility in this context can occur
on several levels, including changing or adding (i) data, (ii) anal-
yses, or (ii) visualizations. Fig. 5 shows an example of such ex-
tensibility. A different dataset, the KKI2009 dataset [34], was pro-
cessed using modified code, plotting the degree distribution on a
log scale, with an additional plot added for cumulative variance
analysis. The container used for this analysis on Docker hub is
bids/ndmg:v0.0.41-2. Further details and instructions about how
to extend SIC:ndmg specifically are available in Appendix B.

(B) (€) L.
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The second step of ndmg tums connectomes into quality plots of
subject. This analy

Ty running it
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Figure 3: States of the demonstration notebook in the cloud. (A) A Jupyter notebook displaying descriptions and code snippets to be run for both connectome estimation
and summary statistic computation. (B) After running connectome generation, an adjacency matrix will appear to provide a visualization. (C) Summary statistic
computation calculates several graph features and plots them in a multipanel figure. The demonstration notebook is running version v0.0.39 of ndmg.
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Docker image.

Table 3: Command line arguments for connectome generation

Parameter Value

Data input directory /data/raw

Data output directory /data/connectome
Analysis level participant
Bucket name mrneurodata

Path on bucket NKI24

Table 4: Command line arguments
computation

for summary statistic

Parameter Value
Data input directory
Data output directory
Analysis level

/data/connectome/graphs
/data/qc
group

Though the exemplar application used to demonstrate the value
of SIC was the one-click ndmg pipeline, the framework is not re-
stricted to this tool, or even one-click tools at all. For instance,
a recent manuscript presented the notion of BIDS Apps [35]:
containerized neuroimaging applications that operate on data
stored in the BIDS data structure. These apps enable complex
workflows to be executed, often taking in configuration files to
allow for complicated parameter sets to be delivered more con-
veniently than via the command line. Such containers are a ter-
rific usecase for SIC, and can be seamlessly interchanged with
one another in a given deployment. SIC can use tools such as
FreeSurfer or ANTs in certain processing steps with no soft-

ware changes. Developing pipelines within the SIC framework
enhances their reproducibility and the extensibility of publica-
tions using them, potentially increasing their scientific impact.

The SIC framework does not need to be confined to mono-
lithic tools and containers. With further work, this concept
can be integrated into a platform in which users are able to
launch a variety of analyses on a variety of datasets. The self-
documenting and reproducible web-calls that launch cloud con-
tainers performing computational tasks have potential to dras-
tically improve the feedback loop between a scientist and their
peers. This enables analyses to be easily replicated and refined,
thus expediting scientific discovery. Tools such as Binder [22] ac-
complish this beautifully for Python, but the benefits of SIC are
that this model can be applied not only to any containerizable
application, but big data as well.

The distinct advantage of using Docker for virtualization as
opposed to virtual machines is the lack of both computational
and data overhead. Though virtual machines can be used for
pipeline deployment, they are based upon hard drive files which
can bloat the host system. Virtual machines also require com-
putational overhead to distribute processes to the host system,
which Docker interfaces with directly. In many applications, vir-
tual machines are a wise or even necessary tool of choice, though
when the sole objective is the execution of a pipeline followed
by termination of the environment, the benefits of minimal over-
head often outweigh those of the additional features which may
be available through virtual machines. Tools that aid in the de-
ployment of virtualized environments such as Vagrant can be
paired with a method of virtualization, whether Docker or oth-
erwise, and they provide further documentation describing the
process for launching an environment containing a given tool
for execution.

The selections made in SIC:ndmg regarding the six tech-
nological components highlighted above were chosen based
on what the authors perceived to be most widely used and
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Docker image.

supported in the active online community. Other tools enumer-
ated in Table 1 provide alternative features that can make SIC
instances appear and run quite differently when developed sep-
arately, but ultimately provide a comparable experience for the
user. For instance, the decision to store data independently from
a public repository (such as NITRC [36], LONI’s IDA [37], LORIS
[38], or ndstore [39]) leaves the onus of data organization on the
developer rather than the repository, but in either case the user
is able to access the data they need. This decision in particu-
lar was made so that the developer would have complete con-
trol over their data and implementation. However, hosting data
within an environment such as those listed would have the ad-
vantage of enabling use of the infrastructure already built to
support these platforms, such as performing meta-analyses and
tracking provenance of the data itself, and is an exciting avenue
for future work. While functionality for deploying in parallel to
the cloud was developed with Amazon’s Batch directly for in-
terfacing with their cloud, alternative deployment tools such as
Kubernetes are attractive options, because they provide clear
visualizations of running processes and process versions and
would enable SIC to deploy pipelines across multiple computing
clouds or clusters. Deployments making use of local datacenters
as opposed to the cloud are identical in execution to those in the
cloud, once Docker (or the virtualization engine of choice) is in-
stalled on the shared resources and a scheduling framework is
available.

This manuscript proposes a model for extensible and ac-
cessible development that did not strain those who have al-
ready been developing or using reproducible tools, but rather en-
hanced their ability to do so. Domain knowledge, such as that of
Docker, is not uniform across disciplines, and this may discour-
age developers from complying with this methodology. However,
it is our belief that the proposed framework does not require
additional development beyond what already goes into creating
and using a reproducible tool. For instance, in the case of Docker,

a Dockerfile simply documents the instructions which are to be
executed upon booting a brand-new computer and installing a
given tool and its dependencies. Documenting this process is es-
sential for developers, and many tools contain a README file
describing the installation process. Once a Docker container ex-
ists, the process of reexecuting and testing these instructions
often requires far fewer keystrokes and ambiguity in the in-
structions is eliminated. There are certainly start-up costs when
transitioning to new tools such as virtualization platforms, but it
is our view that the gained transparency and portability within
SIC greatly outweighs the costs.

In summary, the SIC framework presents a standard of relia-
bility and extensibility for scientific data distribution and anal-
ysis. SIC is an important building block towards a global scien-
tific community, regardless of scientific discipline, and provides
a practical implementation of the idiom that science is done by
‘standing on the shoulders of giants.

This project stemmed from a sequence of three different initia-
tives. First, the Global Brain Workshop brought together a collec-
tion of 60+ scientists who converged on a set of grand challenges
for global brain sciences. There was universal agreement that
a global framework [40] would be instrumental in transitioning
neuroscience from a data deluge to a data delight. Then, at the
Open Data Ecosystem for Neurosciences, the working group on
reproducibility decided that an example of a reproducible and
extensible framework would be highly informative for ourselves
and the greater community. Finally, the inaugural Stanford Cen-
ter for Reproducible Neuroscience Coding Sprint brought leaders
in neuroimaging from around the globe to chart a path forward
with standardizing a process for containerizing both open- and
closed-source tools [35].
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Outlined here are the required steps to reproduce both the anal-
ysis of data in the cloud, as well as the live demonstration note-
book server. In the command blocks that follow, all commands
preceded by a $ should be executed. Commands that are exe-
cuted in a single line but were too long to fit on the page end
with \ and are carried over to lines that have been indented. Be-
low, the assumption is that the commands are being executed
on a Unix-based machine with access to a terminal. If one is
working with a Windows operating system, installing a GNU en-
vironment such as Cygwin will enable the user to have a similar
experience.

Through use of the AWS Batch tool, a scalable computing clus-
ter is able to be launched in the cloud and jobs can be submitted
to it for analysis via the command line. The process that must
be followed is: create a computing environment, create a job-
submitting queue, create a job definition, and finally, submit jobs
to the cluster. We discuss how to accomplish each of these steps,
and provide the scripts that were used for the deployment pre-
sented in this manuscript. One prerequisite for the instructions
that follow is that the data in question for processing is made
available at a read- and write-able S3 bucket in the BIDS data
format.

Following the AWS BatchGetting Started tutorial, one can cre-
ate a cloud computing cluster for themselves, establish a job-
accepting queue, define jobs, and submit jobs to the queue, all
within the web console. Though these operations can be done
via the command line as well, they will only need to be per-
formed once so it is not significantly advantageous to script
these steps.

At each of these steps there are several decisions that must
be made regarding the size of the cluster, the number of cores,
what container image to use in your job definition, and more.
The definitions used to setup the ndmg pipeline and cluster can
be found in the SIC Github repository.

Once the cluster is live and a job definition for the ndmg pipeline
has been created, jobs can start being submitted to the queue.
When submitting a job to the cluster, one must first take the
existing task definition for the process they are trying to run, and
then override relevant portions of this definition for the desired
usecase. For instance, if one wishes to run a single subject from
the NKI1 dataset stored on our public S3 bucket, they may create
a job submission that summarizes this. This step can be done
either from within the console or via the command line. To use
the command line interface, one must first install the Amazon
CLI tool and configure it with their user credentials to ensure
that processes launched via the command line and web console
are linked.

If one wishes to launch many jobs at once, the ndmg package
contains a script that accepts an S3 bucket, a path to the dataset
on that bucket, and will then launch all of the subjects within
that dataset on the previously created cluster. Currently, this
functionality does not exist within the Docker container version
of ndmg, as it requires supplying authentication information to
Amazon. However, passing this information to the Docker con-
tainer safely and securely is a feature that the developers hope
to eventually make available. To use this script, one must have
installed the ndmg package in Python, and then may type the
following line from a terminal window:

$ ndmg_cloud -bucket s3_bucket_-name -bids_dir \
path_on_bucket —credentials path_to_creds.csv

As well as receiving output to the terminal, opening the Batch
web console to view that the jobs have been launched can serve
as confirmation that this is completed. Once the processing is
complete, the outputs will be pushed back to the provided S3
bucket and the results can be analyzed.

The interactive SIC:ndmg notebook can be a valuable way to ex-
perience the ndmg pipeline and walk through the steps it takes,
from generating graphs to plotting them and producing sum-
mary statistics. This interactive notebook is contained within
its own Docker container, and automagically launches the ser-
vice upon creating an instance of the container. We will walk
through the brief process of launching this container on your
local machine so that you may interact with it or change it
yourself.
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Setting up your machine

The only required setup for running locally is to install Docker.
Docker has installation helpers for all operating systems avail-
able on their website. Once Docker is installed, it is important
to make sure that the port 8888 is open for Docker. For Mac
0S X and Linux, this should be the case automatically, but for
Windows it currently must be opened through the networking
options of VirtualBox.

Launching the docker container

The user can launch the service with a single command from
a terminal with access to Docker. This terminal is the standard
terminal on Linux or Mac OS X, and can be the Powershell or pro-
vided terminal when installing Docker. The following command
launches this service:

$ git clone https:/github.com/neurodata/sic ~/sic
$ cd ~/sic/code/jupyter

$ docker build -t neurodata/sic.

$ docker run -d -p 8888:8888 neurodata/sic

You can interact with the demo via a web browser. Navigate
to localhost:8888 in the browser of your choosing to see this
service live.

As this is a living and breathing project undergoing develop-
ment, changes are being made regularly. The reproduction in-
structions given in Appendix A will reproduce the exact results
presented within this manuscript. There are several ways de-
scribed below that enable staying up-to-date with the project
and performing one’s own analyses using this tool.

To achieve state-of-the-art performance from the ndmg
pipeline, the version of the container being used should be
updated to the latest release. In the job definition created above,
specifying that the container image being used is bids/ndmg:

latest as opposed to bids/ndmg:v0.0.41-1, for instance, will
ensure that the most recent version of the code is being used.

The ndmg pipeline processes data according to the BIDS data
specification. To use the tool with an alternate dataset, it first
needs to be organized according to this specification. This can be
validated using the BIDS Validator. Once the data are organized,
they can either be uploaded to an S3 bucket and processed with
a command similar to that in Section A.1.2 (updating the bucket
name and path to data on the bucket), or kept locally with the
bucket and remote_path values omitted, if one wishes to run the
pipeline locally.

All of the code for this project is open-source and resides in a
Github repository. To test the pipeline with different sets of pa-
rameters, it can be cloned and the source code can be modified
directly. The repository can be cloned to the HOME directory with
the following.

$ git clone https://github.com/neurodata/ndmg ~/ndmg

Once adjustments have been made and the new pipeline is
ready to be tested, the package can be reinstalled by executing
the setup.py file contained within the repository.

$ cd ~/ndmg
$ python setup.py install

Much like changing parameters, once the repository is cloned
it is possible to swap out algorithms or implementations for
various parts of the pipeline. Examples of tools which could
be replaced include registration or tractography. Again, once
this is completed, the pipeline must be reinstalled prior to
execution.
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