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ABSTRACT Typhoid fever is an invasive bacterial disease of humans that disproportion-
ately affects low- and middle-income countries. Antimicrobial resistance (AMR) has been
increasingly prevalent in recent decades in Salmonella enterica serovar Typhi (S. Typhi),
the causative agent of typhoid fever, limiting treatment options. In Australia, most cases
of typhoid fever are imported due to travel to regions where typhoid fever is endemic.
Here, all 116 isolates of S. Typhi isolated in Victoria, Australia, between 1 July 2018 and
30 June 2020, underwent whole-genome sequencing and antimicrobial susceptibility test-
ing. Genomic data were linked to international travel data collected from routine case
interviews. Travel to South Asia accounted for most cases, with 92.2% imported from
seven primary countries (the top two were India, n = 87, and Pakistan, n = 12). A total of
17 S. Typhi genotypes were detected in the 2-year cohort, with 48.2% genotyped as part
of global AMR lineages. Ciprofloxacin resistance was detected in two lineages, 3.3 and
4.3.1.2, all from cases with reported travel to India. Nearly all multidrug and extensively
drug resistant isolates (90%) were from cases with reported travel to Pakistan in geno-
types 4.3.1.1 and 4.3.1.1.P1. Extended spectrum beta-lactamases, blaCTX-M-15 and
blaSHV-12, were detected in cases with travel to Pakistan and India, respectively. Linking
epidemiological data with genomic studies of S. Typhi provides an opportunity to
improve understanding of the emergence, spread and risk of drug-resistant S. Typhi
infections and to better inform empirical treatment guidelines in returned travelers.

KEYWORDS antimicrobial resistance, genomics, typhoid

T he prevention, treatment, and control of typhoid fever remains a significant public
health challenge in the 21st century (1). Salmonella enterica serovar Typhi (S.

Typhi) is the causative agent of typhoid fever (2) and is estimated to cause 10.9 million
infections and 116,800 deaths globally each year (3). This burden of disease dispropor-
tionately affects children , 5 years in low-middle income countries (2, 3). In high
income countries, cases of typhoid fever most commonly occur as a result of recent
international travel to regions where S. Typhi is endemic (4–6). Antimicrobial therapy is
the mainstay of treatment for typhoid fever, however successive waves of antimicrobial
resistance (AMR) in S. Typhi raises the specter of untreatable typhoid fever, especially
with oral antimicrobials (1, 5). Recently, genomic studies have started to provide critical
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insights into the international spread and mechanisms of antimicrobial resistance in
Salmonella Typhi (6–15).

Multidrug resistance (MDR) to the initial first line drugs for treating typhoid fever,
ampicillin, co-trimoxazole, and chloramphenicol, first appeared in the 1960s (5). AMR
was a significant driver in the global dissemination of the lineage 4.3.1 (haplotype 58)
soon after it emerged in the late 1980s/early 1990s (8, 16). Initially MDR was associated
with IncHI1 plasmids and has been detected globally (8, 10, 17). The subsequent inte-
gration of a MDR composite transposon into the chromosome at different IS1 sites is a
key feature of sublineage 4.3.1.1 (8).

Resistance to fluoroquinolones emerged in the late 1990s (5). A hallmark of the sec-
ond sublineage of the global clone, 4.3.1.2, are triple-point mutations in quinolone re-
sistance determining regions (QRDRs) that confer resistance to ciprofloxacin and has
been associated with fluoroquinolone treatment failure in South Asia (18, 19). Reduced
susceptibility to ciprofloxacin results from single- or double-point mutations in QRDR
(19). These point mutations have limited to no fitness cost and so are maintained in pop-
ulations even once the selective pressure of fluoroquinolone use has ceased (19, 20).

Alarmingly, resistance to extended spectrum beta-lactams and azithromycin has
been reported recently in S. Typhi (4, 14, 21–23). Extended spectrum beta-lactamases
(ESBLs) have been largely associated with mobilization on IncY plasmids, although the
recent study of Nair et al. showed different types of chromosomal integration of
blaCTX-M genes (4). A new sublineage of extensively drug resistant (XDR) S. Typhi,
4.3.1.1.P1, emerged from Pakistan (14). This XDR threat is a sublineage of the MDR
4.3.1.1 that has acquired an IncY plasmid carrying blaCTX-M-15 and qnrS1 genes and
together with the single QRDR point mutation, gyrA-S83F, these confer resistance to
ESBLs and ciprofloxacin (4, 14). Azithromycin is the only remaining oral therapeutic
option for these XDR S. Typhi (5). Further, point mutations in the acrB gene have been
shown to confer resistance to azithromycin, the last remaining oral therapeutic that is
broadly efficacious in South Asia for typhoid fever (12, 22–24). These new resistance
profiles are associated with South Asia, however S. Typhi isolates resistant to extended
spectrum beta-lactams or azithromycin have been detected in returned travelers from
these regions (4, 15, 25).

In Australia, typhoid fever is a nationally notifiable disease, and vaccination is rec-
ommended for travelers to regions where typhoid is prevalent (26). Moreover, as
almost all cases of typhoid in Australia are acquired overseas, the appropriateness of
empirical therapy is dependent on the resistance profiles of S. Typhi in the region
where the infection was acquired. The increasing prevalence of XDR and azithromycin
resistant cases of typhoid fever in South Asia highlights the need for enhanced
genomic surveillance of S. Typhi globally. Here, to better understand the genomic epi-
demiology and resistance determinants of imported S. Typhi we undertook a 2-year
study of S. Typhi cases reported in Victoria, Australia. Our results inform approaches for
optimizing genomic surveillance of S. Typhi and empirical treatment approaches based
on region of travel.

RESULTS
Comprehensive 2-year cohort. Between 1 July 2018 and 30 June 2020, a total of 116

S. Typhi isolates were received at the state reference laboratory, MDU PHL in Victoria,
Australia (Fig. 1). The 116 S. Typhi were subject to routine whole-genome sequencing
(WGS), which commenced for all serovars of Salmonella enterica from 1 July 2018. The
number of cases was consistent between 2 years (first timespan, 1 July 2018 to 30 June
2019, n = 57; second timespan, 1 July 2019 to 30 June 2020, n = 59). These data represent
a sampling fraction of 96.7% of the S. Typhi cases notified in Victoria, Australia, over the 2-
year study period and provide an unbiased and comprehensive cohort of the S. Typhi
causing infections.

Genotypes and epidemiological characteristics of S. Typhi. The S. Typhi isolates
from the 116 cases of typhoid fever were assigned to one of 17 genotypes using
GenoTyphi (8, 24), and linked to the reported international travel available for each of
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the patients (Fig. 1A, Fig. S1c). Travel was reported to seven countries with the vast ma-
jority reporting travel to India (87/116, 75.0%). Of the 87 cases with reported travel to
India, the most common genotypes were 4.3.1.2 (n = 31), 3.3 (n = 21) and 2.5 (n = 10)
(Table S1). Pakistan was the next most frequent destination for travelers (12/116,
10.4%) with the majority of isolates part of the global sublineages 4.3.1.1 (n = 5) or
4.3.1.1.P1 (n = 4). Fewer than five cases were associated with reported travel to each of
Samoa, Cambodia, Mexico, Myanmar and Indonesia. No travel was reported for 9/116
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FIG 1 Summary of the 116 Salmonella enterica serovar Typhi (S. Typhi) isolates from the 2-year study period. A: Distribution of
116 S. Typhi isolates with reported international travel. Pie graphs represent the proportion of isolates with reported travel to
different countries or no reported travel. The graphs are colored by membership to GenoTyphi lineages. Blank map sourced from
https://commons.wikimedia.org/wiki/File:BlankMap-World-Flattened.svg. B: Patient characteristics of individuals which the S. Typhi
were isolated. The histograms show number of cases of male and female patients, stratified by age (years). C: Membership to the
different GenoTyphi lineages over the 2-year study period.
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(7.8%) although one case had confirmed contact with a returned traveler from India
and another, AUSMDU00019653, confirmed contact with a chronic carrier.

Epidemiological data including age, sex and date of sample collection was available
for all 116 cases (Fig. 1B and C). The proportion of cases from males was slightly higher
than from females (66/116, 56.9%), however this difference was not significant (P = 0.16,
two-sided test of proportions). The number of cases from males and females was consist-
ent over the 2 years (n = 25 from females each 12-month period and n = 34 and n = 32
from males in the first and second timespan, respectively). The median age of all cases
was 25 years (interquartile range [IQR] 8-32 years. This was consistent between males
and females with the median age for males being 24 years (IQR 7.25–33) and for females
being 27 years (IQR 10–31). There were some differences in the most common geno-
types detected between the two timespans (Fig. 1C). Lineage 4.3.1.2 was the most com-
mon in both sampling frames, however lineage 3.3 (associated with returned travelers
from India) decreased in prevalence while lineage 2.5 increased (also associated with
returned travelers from India).

Investigation of the isolate from the chronic carrier, AUSMDU00017205, and the epi-
demiologically linked case, AUSMDU00019653, found little genomic difference between
the two isolates. The isolate from the chronic carrier was received in early June 2018
with the linked case received 4 months later in September 2018. Both were genotyped
as 2.2.2, had 17 pairwise SNPs and with no AMR mechanisms detected, were susceptible
to all drugs. Pangenome analysis of the two isolates found they shared 4,546/4,547
genes with the difference a hypothetical protein.

Antimicrobial resistance profiles in S. Typhi. Different AMR profiles characterized
the S. Typhi genotypes detected in the Australian cohort (Fig. 2, Fig. S1 in the supple-
mental material). A total of 10 out of 116 (8.6%) cases were either MDR (n = 7) or XDR
(n = 3). The XDR isolates were genotyped as 4.3.1.1.P1, while the MDR isolates were
either 4.3.1.1 (n = 6) or 4.3.1.1.P1 (n =1). No genes associated with carbapenem resist-
ance were detected in any of the S. Typhi. Ciprofloxacin resistance resulting from triple
point mutations in QRDR was detected in two lineages, 4.3.1.2 (16/34, 47.1%) and 3.3
(2/22, 9.1%).

Third-generation cephalosporin resistance mediated by ESBLs was rare in the 2-year
cohort, detected in 4/116 (3.4%) of S. Typhi (Fig. 2). All four of these ESBL isolates were
phenotypically resistant to cefotaxime and no other isolates were phenotypically resistant
to this drug. The three XDR isolates in 4.3.1.1.P1 with reported travel to Pakistan all had
the same ESBL gene, blaCTX-M-15, the acquired fluoroquinolone resistance gene, qnrS1, a
single QRDR mutation, gyrA-S83F, and the MDR profile (Fig. 2B). The IncY replicon gene
was detected in two of the three XDR isolates, AUSMDU00025222 and AUSMDU00026490.
Subsequent alignment of the short-read data of the three XDR isolates to the IncY p60006
plasmid, reported by Klemm et al. (14) from the XDR S. Typhi outbreak in Pakistan in 2018,
found AUSMDU00025222 and AUSMDU00026490 had . 95% alignment to the reference.
In contrast, AUSMDU00044460 only had 55.7% alignment to the IncY plasmid and the ab-
sence of the IncY replicon gene, suggestive of integration into the chromosome as has
been previously reported by Nair et al. (4). Inspection of assembly graphs in Bandage (27)
was unable to confidently infer the integration from short read data alone. The AMR pro-
file of AUSMDU00044460 is different to those previously characterized in integrating into
the chromosome with the absence of genes mediating resistance to streptomycin and
presence of blaTEM-1 (4, 8, 14).

The S. Typhi isolate AUSMDU00044634 had a unique ESBL profile in the Australian
data. This isolate genotyped as 4.3.1.2 and was from a case with reported travel to
India. Only a single AMR gene was detected, blaSHV-12, that mediates resistance to
extended spectrum beta-lactams. AUSMDU00044634 also had a single point mutation
detected, gyrA-S83Y, conferring reduced susceptibility to ciprofloxacin; and the IncX3
plasmid replicon. Both AUSMDU00044634 and the Klebsiella pneumoniae pIncX-SHV
plasmid (the plasmid replicon reference sequence) had .92% alignment to the refer-
ence IncX plasmid, pLHST2018, from a S. Typhi strain collected in India in 2018 (28).
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The pLHST2018 plasmid also carries the qnrB7 quinolone gene which was absent in
the AUSMDU00044634 genome. Further, the IncX plasmid replicon and blaSHV-12
gene are rare in S. Typhi. This profile has only been reported in three S. Typhi isolates
on TyphiNET; all from samples collected in India in 2016, although these three public
isolates also had triple point mutations in QRDRs and the qnrB gene.

Point mutations known to confer resistance to either ciprofloxacin or azithromycin
were screened for in all isolates. No known point mutations were detected for azithro-
mycin resistance and no isolates were phenotypically resistant to azithromycin. Only
11 isolates had no point mutations in QRDRs, and with no other AMR determinants
detected, were completely susceptible to all drugs (Table S1 in the supplemental mate-
rial). These were found in isolates from cases with reported travel to Indonesia (n = 2),
India (n =2), Cambodia (n = 1), Mexico (n =1), Samoa (n = 1), Pakistan (n =1), or no
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travel (n =3). None of these 11 isolates genotyped as part of the global clone (4.3.1 and
related sublineages).

Nearly all isolates were either classed as resistant to ciprofloxacin (18/116; 15.5%) or to
have reduced susceptibility to ciprofloxacin (87/116; 75.0%). The triple mutation profile of
gyrA-S83F, gyrA-D87N and parC-S80I was associated with lineage 4.3.1.2 (16/34, 47.1%),
whereas the profile gyrA-S83F, gyrA-D87V, and parC-S80I was associated with lineage 3.3
(2/22, 9.1%) (Fig. 2A, Table S1 in the supplemental material). Double point mutations were
detected in three isolates all genotyped as 4.3.1.2, gyrA-S83F, parC-E84G (n = 2) and gyrA-
S83Y, parC-E84G (n = 1). The remaining 84/116 (72.4%) genomes had a single mutation
detected; the most common being gyrA-S83F in 65 isolates (Fig. 2, Fig. S1).

High-risk AMR lineages in returned travelers. Reported country of travel was a
key marker for high-risk genotypes and AMR profiles (Fig. 3, Fig. S1A to S1D in the sup-
plemental material). Three of the four most prevalent lineages in the Australian data
were associated with AMR profile and country, 3.3 and 4.3.1.2 with ciprofloxacin resist-
ance and travel to India, and 4.3.1.1 with MDR and travel to Pakistan. All isolates in the
fourth most common lineage 2.5 had a single point mutation gyrA-S83F and 6/10
(60%) had the IncFIB plasmid replicon detected. The pangenomes of these four line-
ages was similar, with plasmids likely to be the key difference in accessory genome
content within the lineages (Fig. S1E and Table S1 in the supplemental material).
Detailed statistical analysis of stratified data based on genotype prevalence, country,
and AMR profile was not able to be conducted due to small numbers in the Australian
data. However, previously reported AMR patterns associated with genotype lineage
and country of travel were found in the Australian S. Typhi cohort.

Triple mutations associated with ciprofloxacin resistance were found only in isolates
from cases with reported travel to India. The main sublineage was 4.3.1.2 although ge-
notype 3.3 also had isolates with triple QRDR mutations. This represents 20.7% of all
cases with reported travel to India, noting that most had at least a single QRDR muta-
tion. The 4.3.1.2 lineage was the most common genotype in the Australian cohort, with
47.1% having an AMR profile of ciprofloxacin resistant. The 4.3.1.2 lineage was most
common in the TyphiNET data for Indian S. Typhi genomes from both local and travel-
associated cases, with triple point mutations detected in 10.5 and 35.6%, respectively.

In contrast, travel to Pakistan was associated with XDR and MDR isolates of S. Typhi
that were part of lineage 4.3.1.1.P1 and lineage 4.3.1.1 respectively. Thus, nine of 12
(75.0%) of all returned travelers from Pakistan were at least resistant to chlorampheni-
col, ampicillin, and co-trimoxazole, and for 25% of cases, the only remaining effective
oral therapeutic was azithromycin. The high levels of AMR detected in the Australian
data with travel to Pakistan was reflected in the S. Typhi genomes associated with
Pakistan reported on TyphiNET, with 52.6% being typed as 4.3.1.1.P1 and XDR.

DISCUSSION

In this study we undertook an unbiased 2-year cohort study of S. Typhi cases that
demonstrated the value of enhanced regional surveillance provided through greater
integration of epidemiological and genomic data. We show that high risk lineages,
associated with MDR, XDR and ciprofloxacin resistance mechanisms, strongly correlate
to country of reported travel. Ongoing integrated analysis will be critical with the pros-
pect of increasing resistance to azithromycin, the last broadly effective oral therapeutic
(22), and increasing cases of XDR S. Typhi that have been reported globally (9, 14, 24).

The two main travel destinations associated with Australian cases of typhoid fever
are India and Pakistan in South Asia, and it is from this region that new AMR patterns in
S. Typhi are largely emerging (9, 15, 23). The current therapeutic guidelines for typhoid
fever in Australia recommend use of ceftriaxone or azithromycin for infections acquired
in Southeast Asia or the Indian subcontinent in the first instance, and quinolones if con-
firmed as susceptible (29). We note the Australian data are biased by local travel patterns
and that vaccination status of cases are not routinely collected (vaccination is recom-
mended for travelers to typhoid endemic regions). Despite these limitations, these data
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demonstrate that enhanced genomic surveillance of vaccine preventable invasive bacte-
rial pathogens provides opportunities for more targeted treatment guidelines in the
future. For example, the ESBL resistant isolate of 4.3.1.2 is not susceptible to one of the
two recommended drugs in Australia based upon travel history, but it is susceptible to
most oral therapeutics including co-trimoxazole. Further, the relatively high rates of ESBL
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resistance in returned travelers from Pakistan, would suggest that a broader-spectrum
antimicrobial, such as a carbapenem (for severe disease) or azithromycin, are more
appropriate initial antimicrobials for these cases at present.

Notably, we detected known AMR profiles that have been previously found to be
associated with different lineages and countries, including when the AMR profiles were
rare and newly emerging (14, 15, 21, 28). This is best as exemplified by the characteri-
zation of the IncX plasmid with the blaSHV-12 gene detected in an isolate from an
Australian case with recent travel to India, which was also identified from another iso-
late collected in India (28). It has only been reported in three isolates on TyphiNET and
only a single S. Typhi genome in the recent 860 cases from Public Health England was
also found to have the blaSHV-12 gene (15). This demonstrates the very early detection
of a new AMR profile through regional surveillance. It is likely that this profile resulted
from a plasmid acquisition event from another member of the Enterobacterales circu-
lating in India; most likely K. pneumoniae, which most commonly carry blaSHV ESBL
genes, usually on plasmids (30). As such, it is anticipated that additional plasmid acqui-
sition events will continue to occur within lineages of S. Typhi. This has previously
been suggested as the means of ESBL resistance for a recent S. Typhi isolate collected
in the Demographic Republic of the Congo in 2015 that was genotyped as lineage
2.5.1 (31). This demonstrates the role for routine surveillance within public health labo-
ratories to provide an early warning signal of potential new threats.

Importantly, while no carbapenemase resistance genes were detected in the
Australian cohort, and have not been detected in S. Typhi at all to date, the potential
prospect of MDR, azithromycin, or ciprofloxacin resistant S. Typhi acquiring a plasmid
with carbapenemase genes would be dire. Particularly as resistance to ESBLs and azi-
thromycin have both emerged in the past few years, highlighting the rapid pace at
which S. Typhi is acquiring AMR mechanisms. Both Escherichia coli and K. pneumoniae
are ubiquitous in the gastrointestinal tract and may harbor carbapenemase resistance
plasmids (such as blaNDM-carrying E. coli, commonly detected in the community in
South Asia) (32), and, given the right selective pressures, such plasmids would be
retained upon acquisition. Detecting these new AMR profiles as they emerge, charac-
terizing the underlying genetic mechanism and genotype, and linking these data to
travel history will be critical for ongoing surveillance and response to S. Typhi and may
inform public health and clinical practices.

The ongoing pandemic and coincident increase in antimicrobial therapy for patients
with severe COVID-19 infections may escalate the levels of AMR in countries such as
India, which has high incidence of COVID-19 (33–35), may represent a serious threat to
public health both locally and globally. While noting that international travel will be lim-
ited in the near future as a result of the ongoing pandemic, efforts can be made to pre-
pare the emergence of these threats. Internationally, Pathogenwatch (9, 36) and
TyphiNET, have been developed to analyze and report on all public S. Typhi genomes,
providing breakdowns of AMR and genotypes by country, and already are valuable
resources. In Australia, the newly established AusTrakka platform (https://www.cdgn.org
.au/austrakka) is the nationally recognized platform for real-time analysis of integrated
pathogen genomic data for public health purposes. AusTrakka provides a central plat-
form for the secure sharing of data at both within and between different state and terri-
tory jurisdictions, and S. Typhi will be included on the platform. As such, ongoing
genomic surveillance efforts on integrated platforms both nationally and internationally
will be key for S. Typhi.

This study provides a comprehensive baseline for future genomic surveillance of S.
Typhi in Australia and the surrounding region. Integrating genomic and epidemiologi-
cal data for prospective surveillance will ensure emerging drug-resistant S. Typhi
threats are identified early, and treatment guidelines can be appropriately adjusted.
Global efforts to address the ongoing threat of typhoid, and emerging drug-resistant
clones, remain critically important.
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MATERIALS ANDMETHODS
National surveillance for typhoid fever. The National Notifiable Disease Surveillance System

(NNDSS) was established in Australia in 1990. The NNDSS coordinates the surveillance for communicable
diseases. Notifications of disease, such as typhoid fever, are made to the appropriate health authority in
each jurisdiction in the federated nation and these data are then in turn supplied to the Australian
Government of Health. The raw counts of typhoid fever by State and Territory and Year were obtained
from http://www9.health.gov.au/cda/source/rpt_4.cfm on 6 January 2021.

Study setting. In Australia, typhoid fever is a notifiable disease and S. Typhi isolates in Victoria are
forwarded from diagnostic laboratories to the Microbiological Diagnostic Unit Public Health Laboratory
(MDU PHL), the bacterial public health reference laboratory for the state of Victoria, for further character-
ization. Since July 2018, all Salmonella isolates received at the MDU PHL have been subject for whole-ge-
nome sequencing (WGS). An unbiased sampling approach was taken to include all 116 S. Typhi isolates
received between 1 July 2018 to 30 June 2020. International travel data was for individual cases was
obtained from routine case interviews conducted by the Victorian Department of Health.

Ethics. Data were collected in accordance with the Victorian Public Health and Wellbeing Act 2008.
Ethical approval was received from the University of Melbourne Human Research Ethics Committee
(study number 1954615.3).

Whole-genome sequencing and quality control. The original sample received at MDU PHL was sub-
cultured to a Nutrient Agar (NA) plate and streaked to achieve single colonies. The NA plate was then incu-
bated 37°C for 18–24 hr. A single colony is harvested, using a 1ml sterile inoculating loop, and is emulsified
into 200 ml lysis buffer. The genomic DNA of 116 isolates was extracted from a single colony using a
QIAsymphonyTM DSP DNA Virus/Pathogen Kit (Qiagen) according to manufacturer’s instructions, and WGS
was performed using Illumina NextSeq with 150 bp paired-end reads. Genomes had a phred score of 33
and a depth score of$50.

Phylogenetic analysis of S. Typhi isolates. The 116 S. Typhi genomes were mapped to the stand-
ard S. Typhi reference CT18 (NCBI accession: AL513382) using Snippy (v4.6.0) (https://github.com/
tseemann/snippy) using a minimum fraction of 0.9 and a minimum coverage of 10 reads at each base.
Phage and repeat regions were masked from the final alignment using coordinates available in Ingle et
al. 2019 (6), filtered for recombination using Gubbins (v2.4.1) (37) and the final SNPs extracted with SNP-
sites (38). A maximum likelihood (ML) phylogenetic tree was inferred using IQ-Tree (v1.6.12) (39) from
the SNP alignment of 3,040 bases using a generalized time-reversible model 1 constant sites and rapid
bootstrapping (40). The final tree was mid-point rooted with phangorn (v2.7.1) (41) and visualized with
ggtree (v3.0.2) (42). Ape (v5.5) (43) was used to drop tips from the full tree to generate the framework
tree.

S. Typhi isolates were genotyped using GenoTyphi (https://github.com/katholt/genotyphi) (7) using
the vcf files from Snippy output. GenoTyphi assigns isolates into the established extended typing frame-
work with the global lineage (associated with haplotype H58) further delineated into sublineages associ-
ated with MDR (4.3.1.1), ciprofloxacin resistance (4.3.1.2), and XDR (4.3.1.1.P1) S. Typhi (13, 44). GenoTyphi
detects known point mutations in the QRDRs in gyrA and parC genes and also detects the known point
mutations (R717Q and R717L) associated with reduced susceptibility to azithromycin in acrB. Isolates with
3-point mutations in QRDR regions were defined as ciprofloxacin resistant isolates.

Genome assemblies and screening of accessory genomes. S. Typhi genomes were assembled using
SPAdes (v 3.14.1) (45). The genome assemblies of all isolates were screened for acquired AMR determinants
using the AMRFinder (46) database (https://github.com/ncbi/amr/wiki/AMRFinder-database) as implemented
in the abriTAMR tool (https://github.com/MDU-PHL/abritamr). Plasmid replicons were detected using the
PlasmidFinder database (47) with ABRicate (https://github.com/tseemann/abricate) using a minimum identify
of 90% and minimum coverage of 90%. Isolates were serotyped in silico with SISTR (48). Tidyverse (v1.3.1)
(49) was used to wrangle the data and ggplot2 (v3.3.5) used to visualize the data.

Determination of antimicrobial resistance profiles. Isolates with resistance determinants to ampi-
cillin, chloramphenicol, and co-trimoxazole were defined as MDR. Isolates that, in addition to the MDR
profile, also had a gene conferring resistance to ESBLs, the presence of qnrS1 and at least one QRDR
point mutation were defined as XDR. The designation ESBL was for S. Typhi isolates where an ESBL re-
sistance gene was detected and the absence of other mechanisms (known AMR genes, triple point
mutations in QRDRs, or a single point mutation in acrB) that would result in resistance. Isolates were
classed as ciprofloxacin resistant if 3-point mutations in QRDRs were detected, while 1- or 2-point muta-
tions in QRDRs (where no other AMR mechanisms were detected) resulted in a reduced susceptibility to
ciprofloxacin profile. To visualize the relationship of the AMR profile to membership to GenoTyphi global
lineage and country of reported travel was visualized as a Sankey plot with networkD3 (v0.4).

Exploration of accessory genome content. Differences in the accessory genome of the genotype
lineages with $10 isolates were explored with Panaroo (v1.2.7) (50). Briefly, the .gff files from the anno-
tated genomes assemblies were used as input to panaroo using the strict clean-mode and default
parameters.

The presence of IncY and IncX plasmids were investigated in more detail for the isolates where blaCTX-M-15

and blaSHV-12 were respectively detected. Three isolates, AUSMDU00025222, AUSMDU00026490 and
AUSMDU00044460 were aligned to the IncY plasmid, p60006 (accession: LT906492) of a S. Typhi isolate col-
lected in Pakistan (14). AUSMDU00044634 was aligned to IncX plasmid, pLHST2018 (accession: CP052768), of
a S. Typhi isolate collected in India (28) using snippy (v4.6.0). The publicly available pIncX-SHV (accession:
JN247852) from K. pneumoniae collected in Italy (30) was also aligned using the –ctgs option in snippy.

Investigation of infection linked to chronic carrier. One isolate, AUSMDU00019653, was epidemio-
logically linked to a chronic case reported outside the 2-year cohort. The relatedness of AUSMDU00019653
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to the isolate from the chronic case, AUSMDU00017205, was investigated first through mapping-based
approaches to reference CT18 described above with pairwise SNP-distances determined with snp-dists
(v0.7.0) (https://github.com/tseemann/snp-dists). AUSMDU00017205 was assembled as above and the
pangenome of the two genomes was explored with Panaroo (v1.2.7) (50). AUSMDU00017205 was charac-
terized for known AMR mechanisms and GenoTyphi lineage as above.

Comparison of Australian S. Typhi with public data on TyphiNET. Details on publicly available S.
Typhi data that have been characterized for GenoTyphi lineage, AMR mechanisms and are accompanied
by geographical data were downloaded from TyphiNET on 10th August 2021. The most frequent geno-
types from India (the most common destination for travelers in the Australian data), prevalence of the
XDR profile with genotype and country, and combination of IncX and blaSHV-12 were compared with
the Australian data.

Cefotaxime and azithromycin susceptibility testing. Antimicrobial susceptibility testing for cefo-
taxime and azithromycin were performed for all isolates using agar dilution. Clinical and Laboratory
Standards Institute (CLSI) 2019 breakpoints were used for interpretation. Isolates with a MIC $4 mg/ml
defined as cefotaxime resistant. Isolates with a MIC $32mg/ml defined as azithromycin resistant.

Data availability. Details and the accession numbers of the sequence data of genomes included in
our analysis are available in Table S1 in the supplemental material, and the reads of isolates sequenced
at MDU PHL are available on the NCBI Sequence Read Archive (BioProject PRJNA319593).

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 0.1 MB.
SUPPLEMENTAL FILE 2, XLSX file, 0.02 MB.
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