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ABSTRACT
Objectives  COVID-19 is a heterogeneous disease, and 
many reports have described variations in demographic, 
biochemical and clinical features at presentation 
influencing overall hospital mortality. However, there 
is little information regarding longitudinal changes in 
laboratory prognostic variables in relation to disease 
progression in hospitalised patients with COVID-19.
Design and setting  This retrospective observational 
report describes disease progression from symptom onset, 
to admission to hospital, clinical response and discharge/
death among patients with COVID-19 at a tertiary centre in 
South East England.
Participants  Six hundred and fifty-one patients treated 
for SARS-CoV-2 between March and September 2020 
were included in this analysis. Ethical approval was 
obtained from the HRA Specific Review Board (REC 20/
HRA/2986) for waiver of informed consent.
Results  The majority of patients presented within 
1 week of symptom onset. The lowest risk patients had 
low mortality (1/45, 2%), and most were discharged 
within 1 week after admission (30/45, 67%). The highest 
risk patients, as determined by the 4C mortality score 
predictor, had high mortality (27/29, 93%), with most 
dying within 1 week after admission (22/29, 76%). 
Consistent with previous reports, most patients presented 
with high levels of C reactive protein (CRP) (67% of 
patients >50 mg/L), D-dimer (98%>upper limit of normal 
(ULN)), ferritin (65%>ULN), lactate dehydrogenase 
(90%>ULN) and low lymphocyte counts (81%<lower 
limit of normal (LLN)). Increases in platelet counts and 
decreases in CRP, neutrophil:lymphocyte ratio (p<0.001), 
lactate dehydrogenase, neutrophil counts, urea and 
white cell counts (all p<0.01) were each associated with 
discharge.
Conclusions  Serial measurement of routine blood tests 
may be a useful prognostic tool for monitoring treatment 
response in hospitalised patients with COVID-19. Changes 
in other biochemical parameters often included in a 
‘COVID-19 bundle’ did not show significant association 
with outcome, suggesting there may be limited clinical 
benefit of serial sampling. This may have direct clinical 

utility in the context of escalating healthcare costs of the 
pandemic.

INTRODUCTION
COVID-19 is a heterogeneous disease with 
variable clinical outcomes, ranging from 
asymptomatic carriage to severe pneumonia 
and multi-organ failure.1 2 Understanding 
this heterogeneity and its implications for 
prognosis and therapeutic response is key to 
improving outcomes in COVID-19. Despite 
the rapid development of effective vaccina-
tions,3 4 the clinical repercussions of SARS-
CoV-2 infection are likely to continue to 
impact on health services, and an increased 
understanding of the disease is still necessary.

Large observational studies have charac-
terised the clinical features of hospitalised 
patients with COVID-192 and highlighted 
specific risk factors associated with mortality 
such as older age, male sex and chronic 
comorbidity.5 6Furthermore, robust models 
that predict prognosis of COVID-19 have 
been developed for use both in the general 

Strengths and limitations of this study

	► Close alignment of research and clinical practice in 
a near real-time manner.

	► Longitudinal data collection and sampling 
opportunities.

	► A single-centre study with data collection reflective 
of clinical need rather than a strict protocolised time 
frame.

	► Use of novel artificial intelligence techniques for 
data analysis.

	► Analysis of a ‘first wave’ cohort prior to approval 
for use of COVID-19 specific treatments, including 
dexamethasone.
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population7 and on admission to hospital.8 These models 
have incorporated known phenotypic risk factors but 
also included simple clinical variables such as blood urea 
level and C-reactive protein (CRP). Much has been docu-
mented about the common laboratory parameters in 
COVID-19 and whether these can be used as diagnosis 
aids or to predict outcome.9 However, the focus has been 
solely on admission blood parameters, and little is known 
about how these parameters change during admission 
and whether these changes could help prognosticate.

In addition, little is known about the relationship 
between timing of symptom onset and presentation to 
hospital and subsequent disease trajectory. The WHO 
International Severe Acute Respiratory and emerging 
Infection Consortium (ISARIC) cohort reports the 
median duration of symptoms before admission as 4 days; 
however, there is a wide range of 1–8 days.5 The timing 
of presentation to hospital may have important conse-
quences as it may relate to the underlying pathology of 
the disease.10 For example, initial evidence suggested that 
acute respiratory distress syndrome (ARDS)-associated 
with severe COVID-19 presents in the second week of the 
illness.11 The emerging literature suggest that there may 
be two distinct but overlapping pathological subsets: the 
first triggered by the virus itself and the second by the 
host response.11–13 Therefore, the point at which patients 
deteriorate and require hospitalisation may be key to 
understanding the dominant pathological mechanism at 
play and may have important implications for treatment.

We hypothesise that timing of presentation to hospital 
with COVID-19 may have a bearing on the outcome of 
disease and may relate to an individual’s COVID-19 risk 
profile, as defined by a weighted risk score based on the 
clinical and biochemical features described previously. 
Furthermore, identifying specific changes in common 
laboratory blood markers may provide additional prog-
nostic information and aid clinicians working in the field.

Here we report the clinical characteristics, labora-
tory measures and outcomes of all patients presenting 
with SARS-CoV-2 positive swabs to a tertiary academic 
medical centre in Southampton (UK) from 7 March to 4 
September 2020. We examine timing of presentation to 
hospital against individual patients' COVID-19 risk, and 
determine temporal changes of laboratory blood vari-
ables that predict outcome during hospital admission. 
The granularity of our data and longitudinal nature of 
the analysis adds novelty and depth to the more cross-
sectional analyses in the literature to date. While dynamic 
time warping has been used in modelling and forecasting 
the number COVID-19 cases,14 15 we are the first, to our 
knowledge, to use dynamic time warping to look much 
more closely at the patients, aiming to discover patterns 
in biomarkers trajectories.

Objectives
	► Compare disease progression from symptom onset to 

final outcome between risk groups.

	► Identify features at admission to hospital that are asso-
ciated with outcome.

	► Identify changes in biochemical parameters from 
serial sampling that are associated with outcome.

METHODS
Study design and setting
As part of the Research Evaluation Alongside Clinical Treat-
ment in COVID-19 (REACT) observational and biobanking 
study of 16COVID-19,17 data were collected for COVID-19 
positive patients who were admitted to University Hospital 
Southampton between 7 March and 4 September 2020.

Participants
Patients were included in the study if they were admitted 
to the hospital and were confirmed positive for SARS-
CoV-2 on real-time reverse transcription PCR from a 
nasopharyngeal swab or bronchoalveolar lavage. Patients 
without a definitive outcome (eg, death or discharge), 
either due to ongoing treatment or missing outcome data 
at the time of analysis, were excluded. Possible second 
COVID-19 infections or readmissions with no subsequent 
evidence of death or discharge were also excluded.

Variables
Patients’ characteristics included demographics (age, sex 
and body mass index) and comorbidities (including asthma, 
chronic obstructive pulmonary disease (COPD), cardiac 
disease and others). The following data were collected at 
admission and throughout hospitalisation as part of routine 
clinical care. Laboratory tests included full blood count, 
renal profile, liver profile, CRP, ferritin, D-dimer and lactate 
dehydrogenase (LDH), and vital signs included blood pres-
sure, heart rate, respiration rate and peripheral oxygen 
saturations. Timing, dose and duration of all treatments 
including corticosteroids, anticoagulants, antibiotics, antivi-
rals and antifungals were collected.

Outcomes
The primary outcome was in-hospital mortality. Analysis of 
associations between biochemical parameters at admission 
and outcome was restricted to patients who were hospital-
ised for 2 or more days and had a final outcome within 28 
days of admission. For analysis of changes in parameters, 
additional restrictions were that patients’ last specimens 
must have been taken at least 2 days after admission and no 
more than 4 days prior to final outcome.

Data sources/measurement
Clinical data were captured longitudinally, with change over 
time treated as explicit. All data collected from the cohort in 
the study are kept in a highly secure contemporary encrypted 
data platform BC|Insight (within the Clinical Informatics 
Research Unit, University of Southampton) that was set up 
in a Microsoft Data Centre in South UK. A detailed outline 
of study protocol and methodology is published elsewhere.17

In order to adjust analysis of mortality based on known 
risk factors for COVID-19, weighted risk scores were calcu-
lated for patients at admission (first available value up to 
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and including the day after admission) using available vari-
ables and equivalent weightings, as described previously 
for the 4C mortality score.8 Briefly, the following weight-
ings were applied: age (50–60 years score +2, 60–70 years 
score +4, 70–80 score years+6, >80 years score +7); gender 
(male score  +1); number of relevant comorbidities (1 
score +1, >1 score +2); respiration rate (20–30 score +1, >30 
score  +2); peripheral oxygen saturation (<92% score  +2); 
urea (7–14 mmol/L score +1, >14 mmol/L score +3); CRP 
(50–100 mmol/L score +1, >100 mmol/L score +2). Glasgow 
Coma Scale values were not included in risk score calcula-
tion, as approximately 90% of patients did not have values 
available. Participants were classified based on these scores 
using the same thresholds described previously: low risk 
(weighted risk score 0–3), intermediate (score 4–8), high 
(score 9–14) or very high (score >14) risk.8

Values for individual laboratory tests were classed as low/
normal/high based on the thresholds defined in online 
supplemental table 1.

Statistical methods
Continuous data are summarised as median (IQR), and 
categorical data are summarised as frequency (percentage). 
Differences between cohorts were tested using the Kruskal-
Wallis rank sum test for quantitative variables and using 
Pearson’s χ2 test for count data. Biochemical parameters 
measured at admission were compared with the last avail-
able records using Wilcoxon signed-rank test within groups 
stratified by outcome. Associations between parameters and 
outcome were investigated using logistic regression adjusted 
for age, number of comorbidities and gender. Changes in 
biochemical parameters were also tested using logistic regres-
sion adjusted for age, number of comorbidities and gender 
and including both parameter value as well as the difference 
between first and last available values. P values were adjusted 
for multiple testing using Holm-Bonferroni method. Trajec-
tories of biochemical parameters were clustered using the 
k-means clustering algorithm together with dynamic time 
warping18 19 used as a distance metric, setting the number of 
clusteto r k=4, which was found to be the optimal setting for 
the majority of biochemical parameters on analysis using the 
silhouette and elbow method.20 21

Missing data
Given the real-world nature of the study, there were a number 
of missing data points, and as this paper is mainly descriptive, 
we have not performed any imputation for these missing 
data but describe the data as they stand. For each model the 
number of patients may vary due to missing values.

Bias
The analysis population includes only patients hospitalised 
with COVID-19, and as such, is likely to be biased towards 
more severe COVID-19 infection and/or people at higher 
risk of death due to the presence of known risk factors. Treat-
ment and intervention pathways may have evolved over the 
course of the study period. The analysis does not adjust for 
any differences in interventions between patients over the 

course of the study period. The study period largely predates 
the finding that dexamethasone treatment improves survival; 
while no adjustment is made for differences in interventions, 
dexamethasone use in the population was low and is not 
considered likely to affect the results or their interpretation.

Patient and public involvement (PPI)
Patient and public involvement was sought in the design and 
oversight of the broader Southampton Research Bioreposi-
tory, within which the sampling arm of the REACT COVID 
study is nested, and patient representatives were involved 
in the design and management of the WATCH study,22 on 
which the REACT COVID Database is based. For further 
detail on PPI involvement in the REACT COVID study, 
please see ref 17).

RESULTS
Participants
Six hundred and fifty-one patients who had a confirmed 
case of COVID-19 infection were included in this analysis. 
Five hundred patients had a final outcome of either died or 
discharged. Of these, date of symptom onset was recorded 
for 455 patients: 96 had date of symptom onset after admis-
sion (classed as nosocomial cases) and were excluded from 
further analysis. The analysis population consists of 359 
patients admitted after symptom onset, who had a final 
outcome (died or discharged) recorded.

In order to support comparisons between cohorts, 
weighted risk scores at admission were calculated based 
on weightings described previously for 4C mortality score 
predictor.8 As seen in figure  1, while weighted risk scores 
predict outcome with reasonable accuracy, mortality was 
underestimated in most cases.

Figure 1  Performance of weighted risk score at admission 
as predictor of mortality. Red bars: predicted mortality 
based on a univariate logistic regression model of mortality 
according to weighted risk score at admission. Blue bars: 
actual observed mortality rate for a given risk score at 
admission.

https://dx.doi.org/10.1136/bmjopen-2021-050331
https://dx.doi.org/10.1136/bmjopen-2021-050331
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Descriptive data
Patient characteristics
Patient characteristics are described in table 1. The median 
age of the analysis population was 71 years (interquartile 
range (IQR) : 53–83). The majority of patients (60% overall) 
were male. The most common comorbidities (>25% overall) 
were cardiac disease, renal disease, obesity and diabetes. The 
majority of patients (208) were classified as high or very high 
risk at admission using the modified 4C risk score.8 Thir-
ty-one patients were missing one or more of the parameters 
required to calculate 4C weighted risk scores.

Outcome data
Disease progression
Across all risk groups, the majority of patients were hospi-
talised within 1 week of symptom onset (table 1). Patients 
in the high and very high risk groups were admitted 
sooner after symptom onset compared with the low and 
intermediate risk groups. Time from admission to final 
outcome showed a bimodal relationship to risk (figure 2). 
Most patients in the low risk group (30/45, 67%) were 
discharged within 7 days of admission; most patients in 
the very high risk group (22/29, 76%) died within 7 days 
of admission. Most patients in the intermediate and high 
risk categories (48/75, 64% and 113/179, 63%, respec-
tively) took longer than 7 days to reach final outcome. 
The longest time from admission to final outcome was 
143 days.

Biochemical characteristics at admission
Based on first available values up to and including the 
day after admission, high CRP, D-dimer, Ferritin, LDH 
levels and low lymphocyte counts were common among 
all patients regardless of final outcome (online supple-
mental figure 1). The following abnormal results were 
more common among those who died compared with 
those who were discharged: high urea, high creatinine 
and low haemoglobin.

Abnormal values (below LLN or above ULN) for 
the following laboratory tests at admission were more 
common among higher risk groups: creatinine (eg, 40% 
of low-risk patients vs 86% of very high risk patients), CRP 
(38% vs 100%), ferritin (54% vs 95%), glucose (12% vs 
68%), haemoglobin (13% vs 55%), neutrophils (18% vs 
62%), urea (7% vs 97%) and white cell count (18% vs 
45%). Within risk groups, differences between patients 
who were discharged versus died were broadly consistent 
(online supplemental figure 2).

Prognostic biochemical features at admission
Associations between laboratory values at admission (first 
available value, up to and including the day after admis-
sion) and outcome were evaluated for patients who were 
admitted for two or more days and had a final outcome 
within 28 days of admission (n=308). Potential associ-
ations with final outcome were evaluated separately for 
each parameter using multivariable logistic regression, 
adjusted for age, gender and number of comorbidities. P 

values were adjusted for multiple testing using the Holm-
Bonferroni method. After correction for multiple testing, 
only CRP:lymphocyte (p=0.011) and neutrophil:lympho-
cyte (p=0.0189) ratios at admission were significantly 
associated with outcome, with higher values associated 
with increased mortality (online supplemental table 2). 
Associations between the temporal change of laboratory 
values from admission (first available value, up to and 
including the day after admission) to the nearest avail-
able result to outcome were evaluated for patients who 
were admitted for 2 or more days and had a final outcome 
within 28 days of admission, and the last result was taken 
no more than 4 days prior final outcome (n=209). After 
correction for multiple testing, increases in CRP, LDH, 
neutrophils, neutrophil:lymphocyte ratio, urea and 
white cell count were each significantly associated with 
increased mortality, whereas increases in platelets were 
associated with reduced mortality. For example, a 1 mg/L 
increase in CRP was associated with approximately 
2%–4% increase in the odds of death and vice-versa for a 
1 mg/mL decrease (table 2).

Unsurprisingly, among patients who were discharged, 
CRP levels at discharge were significantly lower than at 
admission (p<0.001), whereas among those who died, 
CRP levels at death were significantly higher than at 
admission (p<0.001). Similar patterns were observed for 
CRP:lymphocyte ratio and neutrophil counts (figure 3). 
Platelet counts at discharge were higher than at admission 
(p<0.001) but were unchanged among patients who died. 
However, decreased urea, white cell counts and neutro-
phil:lymphocyte ratios were seen at discharge compared 
with admission, in partients who were discharged but not 
those who died .

Timing of prognostic changes in biochemical parameters
Clusters of patients with similar trajectories for a given 
biochemical parameter over the first week after admis-
sion were identified using dynamic time warping. 
Low, stable CRP (below 100 mg/L) was associated with 
reduced mortality (cluster 3, 31% mortality) compared 
with high and/or rising CRP (eg, cluster 2, 69% mortality, 
figure 4A). Low and stable urea levels were associated with 
reduced mortality (cluster 2, 18% mortality), whereas 
high and/or rising urea was associated with increased 
mortality (eg, cluster 4, 92% mortality, figure 4B).

In contrast, low and stable platelet counts were asso-
ciated with increased mortality (eg, cluster 2, 59% 
mortality) compared with high and/or rising platelet 
counts (eg, cluster 1: 23% mortality; cluster 3: 30% 
mortality) (figure 4C). Increasing LDH values were asso-
ciated with higher mortality (cluster 3, 67%) compared 
with low and stable LDH (clusters 1 and 4, 35% and 17%) 
or declining LDH (cluster 2, 33%, figure 4D). Neutrophil 
counts that persisted above normal range were associated 
with higher mortality (figure  4E). No obvious relation-
ships between patterns of white blood cell counts and 
lymphocyte counts were observed (figure 4F,G).

https://dx.doi.org/10.1136/bmjopen-2021-050331
https://dx.doi.org/10.1136/bmjopen-2021-050331
https://dx.doi.org/10.1136/bmjopen-2021-050331
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DISCUSSION
Key results
We apply a dynamic time warping approach to deeply 
understand clinical characteristics and biomarker trajec-
tory patterns of patients with COVID-19. We demonstrate 
that increasing comorbidity and age are associated with 
and predictive of adverse outcome with SARS-CoV-2 infec-
tion, in line with the 4C risk score,8 23 24 providing reassur-
ance of the translatability of our findings from a small, 
single centre cohort, despite the omission of Glasgow 
Coma Scale. Through our analysis, we highlight that 
serial measurement of some routine blood tests may be a 
useful prognostic tool for monitoring treatment response 
in hospitalised patients with COVID-19. However, others 
may provide limited clinical benefit, which may have 
important implications for resources and healthcare costs 
within the pandemic.

Symptom onset has a role in increasing understanding 
of the natural history of SARS-CoV-2 infection, yet many 
studies focus on day of hospital admission rather than 
symptom onset for calculation of time to outcome.25 
We demonstrate that the majority of patients requiring 
hospitalisation for SARS-CoV-2 infection present to 
hospital within 7 days of symptom onset. This is in line 
with findings from a Belgian study, demonstrating a 
mean time from symptom onset to hospitalisation of 
5.74 days.26 A potential explanation for this could be 
found in the description of disease phases in SARS-CoV-2 
infection, with rapid progression through early infection, 
pulmonary phase to hyperinflammation stage driving 

presentation relatively early in their disease course for 
those patients who require hospitalisation.27 This may be 
driven by a higher viral load in those patients who develop 
severe disease more rapidly, with support for this hypoth-
esis coming from work demonstrating a higher and more 
persistent viral shedding in those patients with severe 
disease when compared with those with mild disease.28 
In terms of time to outcome in those patients requiring 
hospitalisation, those with a low-risk score or a very high-
risk score reach their outcome generally within 7 days of 
admission. This is reflective of the literature, in terms of 
meta-analyses findings of a median length of stay of 5 days 
outside of China.25 This is likely due to those in the low-
risk group having sufficient physiological reserve to over-
come the infection rapidly and those in the very high risk 
group having minimal reserve and therefore succumbing 
quickly, due to a combination of changes in the immune 
cell repertoire, epigenome and inflammasome response 
to infection.29 Those in the medium-risk and high-risk 
groups demonstrate a more variable and prolonged time 
to outcome, highlighting the groups in which the risk 
scores may be less accurate in predicting outcome. This is 
of clinical relevance as healthcare services become more 
stretched as the current wave progresses.

Consistent with previous reports, most patients 
presented with high levels of CRP, D-dimer, ferritin and 
LDH and low lymphocyte counts.30 31 However, when 
adjusted for repeated measures, age, comorbidity and 
how unwell patients were at admission, only neutro-
phil lymphocyte ratio was predictive of outcome. The 
literature is suggestive of a greater range of tests being 
predictive of outcome, and this may be a result of our 
more complex statistics correcting for confounders more 
accurately. It may also be that within a relatively small 
sample size, these additional predictive tests did not 
reach statistical significance. The neutrophil:lymphocyte 
ratio as predictive of outcome raises interesting questions 
as to the pathobiology driving morbidity and mortality in 
SARS-CoV-2 infection. It may be that the rise in neutro-
phils is associated with subclinical bacterial coinfection, 
which is supported by a higher CRP:lymphocyte ratio at 
admission and rising through the course of admission 
predicting worse outcome. However, a number of reviews 
have demonstrated detectable bacterial infection to be 
relatively low.32–34 The increased neutrophil:lymphocyte 
ratio may also be a direct response to the combination 
of viral infection and increased inflammation that are 
seen with worse outcomes with SARS-CoV-2 infection13 
and have been demonstrated in other human corona-
virus infections.35 The viral response is thought to directly 
drive increasing neutrophil numbers and the reduction 
in lymphocytes thought to be a subsequent response to 
resulting oxidative stress and inflammation.36

The granularity of our data allowed an in-depth inves-
tigation of change over time that adds novelty to this 
work. During the course of hospitalisation, changes in 
CRP, LDH, neutrophil counts, neutrophil:lymphocyte 
ratio, urea, white cell count and platelet counts were all 

Figure 2  Time from admission to outcome according 
to risk group at admission. Patients were grouped 
based on weighted risk scores at admission: low (0–3), 
intermediate,4 5 7–9 high10–15 and very high (>14). Risk scores 
at admission could not be calculated for some patients due 
to one or more missing features (‘data missing’ group).
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significantly associated with outcome. This adds novelty 
and depth to existing larger but cross-sectional work in 
the literature. The platelet change is likely reflective of 
the coagulopathy and microthrombosis that has been 
described in SARS-CoV-2 infection37 and reflective of 
the literature,38 although the role of anticoagulation in 
SARS-CoV-2 infection remains under investigation39 40 
and exact pathological mechanisms are unclear.41 The 
prognostic capability of this is of relevance to clinical 
practice and adds novelty to existing data, with many 
hospitals repeating a broad panel of ‘COVID bloods’ on a 
regular basis with little to guide interpretation of results. 
This is of relevance in the context of the current national 
shortage of blood tubes and also has cost per admission 
implications. We demonstrate that simple and inexpen-
sive full blood count (FBC), renal profile and CRP are 
able to provide good prognostic information, and this is 
useful in the context of escalating healthcare costs of the 
pandemic.42

Generalisability
The study period largely predates the finding that dexa-
methasone treatment improves survival: only 2% of the 
study population received dexamethasone. Furthermore, 
anecdotal evidence suggests that treatment pathways for 
COVID-19 infection have evolved and become more stan-
dardised since the start of the pandemic. It is not yet clear 
whether these findings are applicable in a postdexameth-
asone era and in relation to new variants and vaccination 
statuses.

Limitations and future potential
There are limitations to our study. Omission of Glasgow 
Coma Scale (GCS) values systematically underestimates 
risk compared with the ISARIC study validation data for 
the 4C mortality score, the maximum risk score in this 
analysis was 19, compared with 21 for 4C mortality score. 
However, we demonstrate good correlation between 
our adapted risk score and the 4C risk score, suggesting 

Table 2  Prognostic biochemical changes between admission and outcome

Parameter Units
Total,
n

Deaths,
n

Discharges,
n

OR for mortality per 
unit increase (95% CI) P value

Adjusted p 
value

ALT increase U/L 158 55 103 1.003 (0.996 to 1.01) 0.369 1.000

AST increase U/L 56 14 42 1.023 (1.002 to 1.044) 0.029 0.264

Bilirubin increase µmol/lL 162 56 106 1.147 (1.023 to 1.287) 0.019 0.186

Creatinine increase mmol/L 185 62 123 1.004 (0.999 to 1.009) 0.095 0.650

CRP increase mg/L 182 61 121 1.028 (1.018 to 1.037) 0.000 0.000***

CRP:lymphocyte 
increase

– 166 58 (35) 108 (65) 1.015 (1.009 to 1.021) 0.000 0.000***

D-dimer increase – 67 25 42 1.003 (1.001 to 1.004) 0.004 0.052

Eosinophils increase 10e9/L 188 65 123 0.559 (0.141 to 2.218) 0.408 1.000

Ferritin increase ng/L 101 36 65 1.0 (1.0 to 1.0) 0.803 1.000

Glucose increase mmol/L 122 58 64 1.176 (1.032 to 1.34) 0.015 0.166

Hb increase g/L 189 65 124 0.976 (0.95 to 1.003) 0.084 0.650

LDH increase U/L 92 30 62 1.006 (1.003 to 1.009) 0.000 0.005**

Lymphocytes increase 10e9/L 189 65 124 0.864 (0.51 to 1.465) 0.588 1.000

Neutrophils increase 10e9/L 189 65 124 1.353 (1.164 to 1.574) 0.000 0.002**

Neutrophil:lymphocyte 
ratio increase

– 166 58 108 1.343 (1.175 to 1.534) 0.000 0.000***

Platelets increase 10e9/L 189 65 124 0.989 (0.984 to 0.993) 0.000 0.000***

Potassium increase mmol/L 178 59 119 1.193 (0.592 to 2.405) 0.621 1.000

Sodium increase mmol/L 185 62 123 1.112 (1.026 to 1.205) 0.010 0.114

Trigycerin increase – 51 14 37 0.091 (0.006 to 1.347) 0.081 0.650

Troponin increase ng/L 96 29 67 1.441 (1.123 to 1.849) 0.004 0.053

Urea increase mmol/L 185 62 123 1.165 (1.074 to 1.263) 0.000 0.003**

WCC increase 10e9/L 189 65 124 1.219 (1.093 to 1.358) 0.000 0.005**

Investigated using logistic regression adjusted for age, number of comorbidities and gender. P values were adjusted for multiple testing using 
Holm-Bonferroni method. ALT, alanine transaminase; AST, aspartate aminotransferasee; CRP, C-reactive protein; Hb, Haemoglobin; LDH, 
lactate dehydrogenase; WCC, white cell count
*Significance based on adjusted p value: * when p value <0.05, **when p value <0.01, ***when p value <0.001.
WCC, white cell count.
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reasonable validity in our results. This analysis does not 
adjust for differences in treatments, in particular for 
changes in treatment pathways as understanding of the 
disease and treatment effectiveness evolved over the 
course of the study period. With regards to symptom onset, 
there may be recall bias. The single-centre, relatively small 

data set is a limitation to this work; however, the reflection 
of published findings in our data set provide reassurance 
that additional novel findings would be extrapolatable 
to a larger population. The pragmatic nature of data 
collection alongside clinical treatment is both a strength 
and a weakness; it may result in missing data points, but 

Figure 3  Changes in biochemical parameters between admission and last available specimen. Green line: increase; red line: 
decrease of parameter value for each individual patient. Biochemical parameters measured at admission were compared with 
the last available records using Wilcoxon signed-rank test within groups stratified by outcome.
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Figure 4  Clustered trajectories of parameter values over the first 7 days after admission: trajectories of biochemical 
parameters were clustered using the k-means clustering algorithm together with dynamic time warping18 19 used as a distance 
metric, pragmatically setting the number of cluster k=4: (A) CRP; (B) urea; (C) platelet counts; (D) LDH; (E) neutrophil counts; 
(F) white cell counts; and (G) ymphocyte counts. Each line represents an individual patient: blue: discharged; red: died; black 
dashed line is a centre of the cluster and green area is normal range. Note: clustering was performed for each parameter 
separately, that is, CRP cluster #1 does not contain the same patients as urea cluster #1. CRP, C reactive protein; LDH, lactate 
dehydrogenase.
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adjustments have been made for these inconsistencies in 
the analysis. Furthermore, there may be systematic biases 
in the collection of data; for example, sicker patients may 
have more laboratory results, especially close to their date 
of final outcome. However, the fact that data are collected 
alongside routine clinical management allows for more 
directly translatable findings. Future work would involve 
investigation of the role of viral load in the context of these 
findings in order to better understand the pathological 
mechanisms that are key in driving a more severe disease 
phenotype and with serial cytokine sampling of airways 
and blood to investigate the role of hyperinflammation 
in this. A mechanistic modelling of the pathobiology of 
SARS-CoV-2 infection would allow greater understanding 
of the pathological processes driving these prognostic 
responses and may also facilitate more targeted novel 
treatment trials for this disease43 .44–49 Importantly, we 
have demonstrated the utility of a new approach, based 
on dynamic time warping analysis, for rapidly charac-
terising emerging COVID-19 clinical cohorts and their 
trajectories. Further characterisation and validation of 
this approach is now required to understand whether it 
has potential to be used to promptly delineate the impact 
of vaccines, treatments and emerging SARS-CoV-2 strains 
on clinical characteristics of COVID-19 disease and 
outcomes in the future.

CONCLUSIONS
We implement a new dynamic time warping approach 
to gain a deeper understanding of patient clinical trajec-
tories and outcomes in a COVID-19 hospital cohort. We 
demonstrate that serial monitoring of specific biochem-
ical parameters does provide additional information to 
single testing at admission that is immediately clinically 
translatable but could be limited to less expensive, readily 
available testing, adding novelty to existing literature. The 
demonstration of factors predictive for outcome raise 
questions as to the mechanism of severe illness in SARS-
CoV-2 infection and demonstrates the need for further 
mechanistic modelling, which is now underway.
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