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Objectives: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder

and the most common form of dementia in the older people. Some types of mild

cognitive impairment (MCI) are the clinical precursors of AD, while other MCI forms

tend to remain stable over time and do not progress to AD. To discriminate MCI

patients at risk of AD from stable MCI, we propose a novel deep-learning radiomics

(DLR) model based on 18F-fluorodeoxyglucose positron emission tomography (18F-FDG

PET) images and combine DLR features with clinical parameters (DLR+C) to improve

diagnostic performance.

Methods: 18F-fluorodeoxyglucose positron emission tomography (PET) data from the

Alzheimer’s disease Neuroimaging Initiative database (ADNI) were collected, including

168 patients with MCI who converted to AD within 3 years and 187 patients with MCI

without conversion within 3 years. These subjects were randomly partitioned into 90 %

for the training/validation group and 10 % for the independent test group. The proposed

DLR approach consists of three steps: base DL model pre-training, network features

extraction, and integration of DLR+C, where a convolution network serves as a feature

encoder, and a support vector machine (SVM) operated as the classifier. In comparative

experiments, we compared our DLR+C method with four other methods: the standard

uptake value ratio (SUVR) method, Radiomics-ROI method, Clinical method, and SUVR

+ Clinical method. To guarantee the robustness, 10-fold cross-validation was processed

100 times.

Results: Under the DLR model, our proposed DLR+C was advantageous and yielded

the best classification performance in the diagnosis of conversion with the accuracy,

sensitivity, and specificity of 90.62 ± 1.16, 87.50 ± 0.00, and 93.39 ± 2.19%,

respectively. In contrast, the respective accuracy of the other four methods reached

68.38 ± 1.27, 73.31 ± 6.93, 81.09 ± 1.97, and 85.35 ± 0.72 %. These results

suggested the DLR approach could be used successfully in the prediction of conversion

to AD, and that our proposed DLR-combined clinical information was effective.
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Conclusions: This study showed DLR+C could provide a novel and valuable method

for the computer-assisted diagnosis of conversion to AD from MCI. This DLR+C method

provided a quantitative biomarker which could predict conversion to AD in MCI patients.

Keywords: deep learning radiomics, 18F-fluorodeoxyglucose positron emission tomography, mild cognitive

impairment, Alzheimer’s disease, classification

INTRODUCTION

Alzheimer’s disease (AD) is the most common type of dementia.
Alzheimer’s disease is an irreversible, progressive neurological
brain disorder expected to increase significantly in the coming
years due to aging and improvement in general health care (Ferri
et al., 2006; 2020 Alzheimer’s disease facts figures, 2020). Because
mild memory decline and cognitive deficits appear before AD
clinical manifestation (Braak and Braak, 1996; Delacourte et al.,
1999), increasing attention has been focused on mild cognitive
impairment (MCI). As a preclinical stage of AD, MCI is a board
and heterogeneous phenotypic spectrum that has no evident
cognitive behavioral symptoms, but can show subtle prodromal
signs of dementia (Albert et al., 2011; McKhann et al., 2011).
Because of its heterogeneous presentation (Schneider et al.,
2009), MCI patients may remain stable, or develop AD or
other forms of dementia (Bennett et al., 2003; Sanford, 2017).
Therefore, it is crucial to exploit specific risks factors and
biomarkers that can predict the progression to AD fromMCI.

Currently, structural and functional neuroimaging modalities,
such as magnetic resonance imaging (MRI) and positron
emission tomography (PET), have been used to develop
biomarkers for prediction conversion to AD in patients with
MCI (Brooks and Loewenstein, 2010; Vos et al., 2012; Richard
et al., 2013; Lange et al., 2015; Liu et al., 2017; Zhou et al.,
2019). Numerous studies using 18F-fluorodeoxyglucose positron
emission tomography (18F-FDG PET) have shown that there are
metabolic alterations detected inMCI patients (Caroli et al., 2012;
Pagani et al., 2017). Furthermore, FDG PET was found to be
the only technique that can significantly improve the predictive
value of demographic covariates regarding the development of
AD. It further proved to be a better predictor of conversion
than MRI (Shaffer et al., 2013). Specifically, FDG PET alone
has shown accuracies in predicting the progression of MCI to
AD ranging between 70 and 83% (Lange et al., 2015; Liu et al.,
2017; Zhou et al., 2019; Wang et al., 2020). For example, Lange
et al. (2015) performed voxel-based statistical testing by the
statistical parametric mapping software (SPM8) and obtained an
AUC of 0.728 with default settings. Zhou et al. (2019) applied
radiomics analysis methods to extract radiomic features in MCI
conversion-related regions of interest (ROIs), and the accuracy
of prediction reached 0.733. Liu et al. (2017) analyzed FDG PET
by using independent component analysis (ICA) and Coxmodels
to extract independent sources of information from whole-brain
data, and obtained an accuracy of 0.688 in the FDG PET single
modality model.

The aforementioned methods retain some limitations,
however. Radiomics based on ROI depend mostly on prior

knowledge. The voxel-level analysis considered information
across the whole brain, but modeling based on each voxel
inevitably results in heavy computing workload. Further,
although ICA eliminates the need for a priori knowledge of the
effects on underlying brain anatomy and uses whole-brain data,
instead of a region-of-interest approach, it requires hand-coding
and tedious designing processes, which is analogous to the
radiomics method and voxel-level analysis.

Deep-learning radiomics (DLR), a newly developing method,
can provide quantitative and high-throughput features from
medical images by supervised learning (Gillies et al., 2016; Wang
et al., 2019a). This algorithm implemented via deep neural
networks automatically embeds computational features to yield
end-to-end models that facilitate discovery of relevant highly
complex feature, avoiding hand-coding, and a priori knowledge.
Wang et al. (2019a) applied this DLR method to shear wave
elastography images and presented excellent performances in
predicting the stages of liver fibrosis. Moreover, Zheng et al.
(2020) used DLR to predict axillary lymph node status in
early-stage breast cancer, and clinical parameter combined DLR
(DLR+C) yielded the best diagnostic performance with an
AUC of 0.902. This methodology has recently extended to
other medical applications, such as neurodegenerative diseases
(Lu et al., 2018b; Basaia et al., 2019; Spasov et al., 2019a).
However, when applied to analyze medical images, there is
a scarce-sample problem with DLR. Therefore, in this study
we hypothesized that the DLR method might be effective in
the diagnosis of conversion to AD in patients with MCI, and
DLR+C might be able to provide more valuable information
and improve identification of patients likely to convert to
AD. We proposed a novel computer-aided diagnosis approach
for the conversion to AD from MCI, based on DLR and
evaluated the diagnostic performance of DLR features combined
clinical information.

METHODS AND MATERIALS

The framework of this study, comprising six steps, is shown in
Figure 1. First, we preprocessed the collected PET data, mainly
including partial volume effects (PVE) correction, normalization,
and smoothing. Then, several deep learning (DL) models were
pre-trained to select the optimal Base DL model for DLR feature
extraction. Subsequently, DLR+Cwere employed to classifyMCI
converters (MCI-c) and MCI non-converters (MCI-nc) using
the Support vector machine (SVM). Simultaneously, we also
designed a comparative experiment for analysis. The details are
described in subsequent sections.
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FIGURE 1 | (A) Collection of images and clinical scales. (B) Image preprocessing. (C) Base DL model pre-training. (D) Feature extraction and fusion. (E) Classification

based on SVM. (F) Comparative experiment.

Subjects
The FDG-PET image data used in the preparation of this study
were obtained from the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) database (http://adni.loni.usc.edu/).
Alzheimer’s Disease Neuroimaging Initiative was launched
in 2003 by the National Institute on Aging, the National
Institute of Biomedical Imaging and Bioengineering, the Food
and Drug Administration, private pharmaceutical companies,
and non-profit organizations, as a $60 million, 5-year public–
private partnership. The primary goal of ADNI has devoted
to test whether serial MRI, PET, other biological markers, and
clinical and neuropsychological assessment can be combined to
measure the progression of mild MCI and early AD. Up-to-date
information is provided on http://www.adni-info.org.

In this study, we collected 168 MCI-c and 187 MCI-nc PET
Scan data from ADNI 1, ADNI 2, and ADNI GO cohorts in the
ADNI database. Eligible participants with MCI underwent FDG-
PET scanning and clinical cognitive evaluations at the baseline
and were clinically followed-up during at least 36 months.
Detailed eligibility criteria for these participants are as follows:
(1) For MCI-nc, participants were evaluated for at least 3 years
(including a 3 year time point) from the time of initial data
collection. Scan data for MCI-nc were collected at baseline 3
and these participants did not convert to AD during the 3 years
follow-up period. (2) For MCI-c, the evaluation time may be less
than 3 years. Scan data for MCI-c were not all collected at the
baseline. Participants with a bidirectional change of diagnosis
(MCI to AD, and back to MCI) within the follow-up period
were excluded.

All subjects were divided into two groups, a Training &
Validation Group and an independent test group. Our Training
& Validation Group contained 152 subjects with MCI-c, and 169
MCI-nc subjects. We used the FDG-PET scan data from this

group to establish and test the validity of our predictive models.
Our test group consisted of 16 MCI-c subjects and 18 MCI-
nc subjects, and it was used to evaluate the diagnostic value of
the predictive models. Demographic data including age, gender,
sex, education, and neuropsychological cognitive assessment tests
including the dementia rating scale (CDRSB), as well as the
apolipoprotein E (APOE) ε4 genotyping characteristics of the
dataset, are shown in Table 1.

FDG-PET Images Acquisition and
Preprocessing
The PET acquisition process is detailed in the online information
of the ADNI project. In 290 cases, dynamic 3D scans with six 5-
min frames were acquired 30min after injection of 185 ± 18.5
MBq FDG, and all frames were motion-corrected to the first
frame and then summed to create a single image file. In the
remaining cases (n = 65), patients were scanned for a static
30-min acquisition period.

Individual PET scan preprocessing (Ding et al., 2021;
Dong et al., 2021) was performed by statistical parametric
mapping (SPM12) software (Wellcome Department of Imaging
Neuroscience, Institute of Neurology, London, United Kingdom)
using Matlab2016b (Mathworks Inc., Sherborn, MA, USA). First,
PET images were co-registered with their corresponding T1-
weighted images and then corrected for PVE based on the
Muller–Gartner algorithm, where PVE correction was applied
to the images to minimize the PVE on PET measurements
(Gonzalez-Escamilla et al., 2017). Thereafter, through linear
and non-linear 3D transformations, the images were spatially
normalized to a PET template in the Montreal Neurological
Institute (MNI) brain space. The normalized PET images were
then smoothed by a Gaussian filter of 8mm full-width at half-
maximum (FWHM) over a 3D space to blur the individual
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TABLE 1 | Demographic and statistics of clinical assessments at time of data collection.

Groups Gender (M/F) Age (years) EDU MMSE MoCA APOEε4 positive rate CDRSB

Training/Validation Groups

MCI_c (n = 152) 86/66 74.2 ± 7.0 16.0 ± 2.7 26.5 ± 2.2 21.0 ± 2.9 65.1% 2.4 ± 1.0

MCI_nc (n = 169) 96/73 72.2 ± 7.4b 16.1 ± 2.6 28.1 ± 1.6b 23.9 ± 2.5b 34.9% 1.2 ± 0.7b

Test Groups (n = 48)

MCI_c (n = 16) 9/7 71.4 ± 7.8 16.3 ± 2.5 26.3 ± 2.0 21.5 ± 2.1 75.0% 2.5 ± 1.1

MCI_nc (n = 18) 13/5a 71.3 ± 8.7 15.8 ± 2.8 27.7 ± 1.8b 23.2 ± 3.8 44.4% 0.9 ± 0.6b

All data except APOEε4 positive rate were presented as mean ± standard deviation. EDU, education; MMSE, Mini-mental State Examination; MoCA, Montreal Cognitive Assessment;

CDRSB: clinical dementia rating sum of boxes.
a,bGroup-level two-sample t test are conducted for Age, Education, MMSE, MoCA, and CDRSB; Group-level chi-square test are conducted for Gender.

anatomical variations and to increase the signal-to-noise ratio
for subsequent analysis. Finally, individual PET images were
intensity normalized to the global mean brain uptake and
automatically parcellated into 90 ROIs defined by the automated
anatomical labeling (AAL) atlas. The processed images had a
spatial resolution of 91 × 109 × 91 with a voxel size of 2 × 2
× 2 mm3. Lastly, each three-dimensional PET image was sliced
and tiled into two-dimensional images, then being resized to 224
∗ 224 pixels for subsequent DL model pre-training.

Deep-Learning Radiomics Model
Figure 2 shows the pipeline of our proposed DLR method. The
method is composed of three steps: (1) Base DL model pre-
training, where we pre-trained several DL models and chose the
optimal as the final DL model, to extract high-throughput DLR
features of PET images; (2) Feature Fusion; and (3) Classification.
Based on aforementioned DLR fusion features, SVM was used as
the classifier to discriminate conversion to Alzheimer’s disease
in patients with MCI. Detailed technical demonstrations are
described in the following sections.

Base DLR Model Pre-training
The Base DLR model acts as a feature encoder, which has
a significant impact on classification. In this study, five
convolutional neural networks (CNNs) namely AlexNet, ZF-
Net, ResNet18, InceptionV3, and Xception, were introduced
for pre-training to find the most suitable model for identifying
conversion to AD from stable MCI patients.

In general, the complexity of the CNNs depends on two
factors, namely “depth” and “width.” The advantage of DL is
that it can learn more representative features with the help of
its neural network with numerous layers and broad width. But
DL is flawed with highly dependence on data. Consequently,
deeper networks do not necessarily reach better performance.
This is mainly because the multi-layer back propagation of
the error signal can easily lead to the gradient “dispersion”
or the gradient “disappears” (He et al., 2016), based on the
stochastic gradient descent when training. Especially for the
sparse sample characteristics of medical images, the deeper
network performs poorly, leading to overfitting. Considering
above factors, to compare model performance, we introduced
five CNNs, specifically AlexNet and ZF-Net with simple network

structures, ResNet18, InceptionV3, and Xception with more
network layers.

AlexNet, containing five convolutional layers and three
fully-connected layers with learnable weights, competed in the
ImageNet challenge in 2012 and achieved a top-five error of
only 15.3% (Wang et al., 2019b; Rehman et al., 2020). There
are several advanced techniques in AlexNet compared with
traditional neural networks, including employing the rectified
linear unit (ReLU) function and a pool operation. ZF-Net is based
on AlexNet with only some changes in the convolutional kernel
and step size, with no significant breakthrough in the network
structure. Instead, based on the traditional CNN framework, the
network structure of InceptionV3, Xception, and ResNet18 are
more complex and deeper, and have their own unique network
characteristics. The greatest advantage of the ResNet framework
lies in adding identity mapping that is performed by the shortcut
connections, the outputs of which are added to the outputs of
the stacked layers (Chen et al., 2019). Therefore, the ResNet
addressed the degradation problem and added neither extra
parameters nor computational complexity. The advantage of
Google’s Inception structures is that there are good performance
especially under strict constraints on memory and complexity
of computational problems (Khosravi et al., 2018). For example,
GoogLeNet (Szegedy et al., 2015) used five million parameters
and the amount of parameters has significant reduction when
compared with AlexNet (Krizhevsky et al., 2017). For this,
Inception networks are always chose when a huge of data need
to be processed at reasonable time and computational cost.
And Inception V3 is one version of attempts to scale up deep
networks, in which the fully connected layer of the auxiliary
classifier is also-normalized based on Inception V2. In addition,
Xception is an improved model based on Inception V3, whose
main improvement is to use depth wise separable convolution to
replace the Inception module.

There were two steps included in the entire training process,
the forward computation and the backward propagation. Before
modeling, the three-dimensional PET image of each subject was
sliced and tiled into two-dimensional images, then being resized
to 224 × 224 pixels and normalized. The pathology type was
encoded to one hot, which was the label. Thereafter, in the
training stage, data was fed into the network to update model
parameters via backward propagation with the SGD algorithm,
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FIGURE 2 | The overall pipeline of DLR model. The pre-trained ZF-Net model acted as an feature encoder of the input images. Then the DLR features combined

clinical parameters were classified by a SVM classifier.

a first-order gradient-based optimization algorithm that has
been proven to be computationally efficient and appropriate for
training deep neural networks. The outputs of the network were
used as classification results, and the cross-entropy of the outputs
was calculated as the loss function. More specifically, the output
of the network for each individual PET image could be a binary
value, in which one represented the highest probability of being
MCI-c subjects, while zero represented highest probability of
being MCI-nc subjects.

We employed several DL frameworks in this study. In the
pre-training, we set the learning rate into 1e−2 and applied
the SGD optimizer to update model parameters with a batch
size of 8. The maximum number of iterations was set into 100.
Note that we used Dropout and Early Stopping in this step
to alleviate overfitting of our models, and we also adopted a
learning rate decay strategy, setting the learning rate decay step
to 10. Furthermore, a strategy called online data augmentation
was used to prevent overfitting of small datasets, which meant
horizontal flipping and Gaussian noise addition for input images
in the training/validation group. Above all, pre-training of deep-
learning models was processed on a GPU (graphics processing
unit, GTX 1080 Ti acceleration of PyCharm 3.5).

DLR Features
Contrasting with hand-crafted and engineered features designed
in previous medical experiences, DLR learned the high-
throughput image features in a supervised manner, which could
make full use of embedded information in PET images. After
screening the optimal Base DL model, we replaced the FC layer
with an SVM as classifier and fused the clinical information and
network features to collaboratively make decisions.

Specifically, to obtain DLR features, the feature maps were
first extracted from the last convolution layer of the convolution
network, and they were transformed to raw values by taking the
maximum values of each feature map with global max pooling.
Afterwards, these extracted features, defined as DLR features,

were combined with clinical parameters (CDRSD, Age, MMSE,
etc.) as input data for future classification.

Classification
In this study, the enrolled subjects were randomly divided
into one training/validation group and one independent test
group at a ratio of 9:1, as shown in Table 1. The training
group was then used to optimize the model parameters. We
also randomly chose 10% of the training group to form a
validation group to guide the choice of hyper parameters. We
conducted training of several deep-learning models, including
AlexNet, ZF-Net, ResNet18, InceptionV3, and Xception, and
compared the classification performance for screening the
optimum DLR. To evaluate classification performance, we
repeatedly conducted 10-fold cross-validation in the training
group. Subsequently, the extracted DLR features were combined
with clinical scales, which were together named as DLR+C
features serving as input. SVM served as a classifier to perform
the classification. The training/validation group was used to train
and validate the model, while the test group was used as an
independent test dataset to verify the predictive performance of
our proposed DLR+C approach. The model was trained and
validated with 10-fold cross-validation 100 times. The linear
kernel function was used to detect feature generalization ability
and classification reliability.

The mean [± standard deviation (SD)] accuracy, sensitivity,
and specificity were used to evaluate the results. The
mathematical expression of the three parameters was as follows:

Accuracy =
Tn+Tp

Tn+Tp+Fn+Fp

Sensitivity =
Tp

Tp+Fn

Specificity = Tn
Tn+Fp

(1)
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where Tn, Tp, Fn, and Fp denote true negatives, true positives,
false negatives, and false positives, respectively.

Simultaneously, a receiver operating characteristic (ROC)
curve was produced to intuitively compare the results of
the different approaches, and the area under the curve
(AUC) of the ROC was computed to quantitatively evaluate
classification performance.

Comparative Experiment
To verify the superiority of the proposed DLR+C method
in this research, we deployed the following four comparative
experiments. They were all built with SVM classifiers, but with
different input data. (1) Radiomics method: radiomic features
of ROI in the brain (Supplementary Material 1, Zhou et al.,
2019); (2) Standard uptake value ratio (SUVR) method: mean
voxel uptake ratio of the whole brain according to AAL template;
(3) Clinical method: Demographic data, neuropsychological
cognitive assessment tests, as well as the APOE ε4 genotyping
characteristics of all subjects. (4) SUVR+ Clinical method.

Likewise, during the comparative experiments, the 10-fold
cross-validation was performed in the training/validation group
with 100 repetitions with the linear kernel. The test group was
used to independently verify the generalization ability of the
above model.

Decision Score
To more efficiently describe the discrimination ability of our
proposed DLR+C method, we conducted a statistical analysis
of the decision scores. A decision score could be output after
the SVM model decision analysis to represent the class scores of
MCI-nc orMCI-c. In the experiment, we calculated separately the
decision scores of MCI-nc and MCI-c subjects of the test group.
We used the scores to perform the t-test between MCI-nc and
MCI-c to observe intergroup differences.

Statistical Analysis
Demographic and clinical characteristics were compared
between groups using a two-sample t-test or the chi-square
test. All statistical analyses were performed using SPSS Version
22.0 software (SPSS Inc., Chicago, IL, USA) and Matlab2016b
(Mathworks Inc., Sherborn, MA, USA). All p-values < 0.05 were
considered significant.

RESULTS

Base DLR Model Selection
To find the suitable Base DLR model for MCI-c vs. MCI-nc
classification, the performances of AlexNet, ZF-Net, ResNet18,
InceptionV3, and Xception in classifying MCI categories were
compared. The classification performances on AlexNet, ZF-Net,
ResNet18, InceptionV3, and Xception models are summarized
in Table 2, including the classification accuracy, sensitivity,
specificity, AUC, and execution time. Specially, the accuracy,
sensitivity, specificity, AUC, and execution time of the ZF-Net
were 74.12 ± 2.32, 70.63 ± 3.02, 77.22 ± 4.10%, 0.756, and
231.20 s, respectively. Finally, among these five models, the ZF-
Net model proved to be the suitable model which not only had

the best classification performance in the independent test group,
but also had a shortermodel training time. Therefore, ZF-Net was
selected as the basic model to extract DLR features for further
study. The ROC curves of the DLR pre-training models in the
classification of MCI-c andMCI-nc were presented in Figure 3A.

Clinical Information Integration
When ZF-Net was selected as the Base DLR model with the best
performance, clinical information was added to the diagnostic
model. Consistently with the method described above, the model
incorporating clinical information was called ZF-Net+ C, where
C represents clinical information. The method of adding clinical
information was to directly fuse clinical information with the
extracted DLR features from the last convolution layer of the
convolution network. Thereafter, the fused features were fed
into the SVM classifier. The ZF-Net + C, which integrated the
deep features and clinical information offline, proved to be the
best in terms of classification performance. Detailed results are
summarized in Table 3.

Classification Performance
Table 3 lists the detailed results of five different methods
including the SUVR method, Radiomics-ROI method, Clinical
method, and DLR+C method in classification of MCI-c and
MCI-nc subjects. Among five methods, the DLR+C method
showed the best performance with accuracy of 90.62 ± 1.16%,
sensibility of 87.50 ± 0.00%, and specificity of 93.39 ± 2.19%
in the independent test group. The performance of the SUVR
method, radiomicsmethod, clinical method, and SUVR+Clinical
method were all poorer than our proposed method, with
accuracies of 68.38 ± 1.27, 73.31 ± 6.93, 81.09 ± 1.97, and 85.35
± 0.72% in the independent test group, respectively.

Figure 3B presents the ROC curves of the five models in
classification of MCI-c and MCI-nc. The average AUCs (±SD)
of SUVRmethod, Clinical method, SUVR+Clinical method, and
DLR+C method were 0.68 ± 0.01, 0.81 ± 0.02, 0.85 ± 0.01, and
0.90± 0.01, respectively, in the independent test group.

Decision Score
In our proposed DLR+Cmethod, the performance of the output
decision scores with the SVM linear kernel classification in the
test group is shown in Figure 4. Decision scores of MCI-c were
significantly higher than those of MCI-nc (linear: 0.82 ± 0.32 vs.
0.11 ± 0.19, P < 0.001). The results indicate that decision scores
from the SVM output could effectively classify MCI-c and MCI-
nc with significant differences, and could be used as a quantitative
biomarker for classification between MCI-nc and MCI-c groups.

DISCUSSION

In this study, we proposed and applied a DLR+C method
based on 18F-FDG PET images to predict conversion to AD
from stable MCI. Compared with other four traditional methods
including Radiomics-ROI method, Clinical model or the voxel-
level analysis, our proposed DLR+C model showed significant
superiority in classification of MCI-nc and MCI-c subjects,
demonstrating that the DLR+Cmodel can be used for effectively
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TABLE 2 | Performance of different classification approaches in mutiltasking classification.

Model Accuracy (%) Sensibility (%) Specificity (%) AUC Execution time (s)

AlexNet 74.11 ± 2.88 73.12 ± 2.86 75.00 ± 4.48 0.746 ± 0.03 225.20 ± 72.59

ZF-Net 74.12 ± 2.32 70.63 ± 3.02 77.22 ± 4.10 0.756 ± 0.04 231.20 ± 69.56

InceptionV3 73.53 ± 4.60 69.37 ± 6.22 77.22 ± 6.65 0.733 ± 0.05 1090.00 ± 278.2

ResNet18 67.94 ± 2.92 68.75 ± 4.17 67.22 ± 3.15 0.680 ± 0.03 330.40 ± 55.71

Xception 69.71 ± 3.68 70.63 ± 4.22 68.89 ± 4.68 0.698 ± 0.04 665.50 ± 174.70

The methods are conducted with 10-fold cross-validation and their results are given as mean ± standard deviation.

Bold values indicate classification results of the optimal model ZFNet for Base DLR Model Selection.

FIGURE 3 | ROC curve comparison in classification of MCI-c and MCI-nc. (A) ROC curve of five different Base DL pre-training models. (B) ROC curve of four different

comparative experiments.

learning superior feature representation from small neuroimging
data and avoid hand-coding and ROI segmentation based on
a prior knowledge. Further, we validated that DLR+C had
the potential to serve as a quantitative biomarker through the
statistical analysis of decision scores. Overall, DLR+Cmight have
possibility to provide clinicians with directions for the diagnosis
of conversion to AD from stable MCI.

Base DLR Model Selection
As an emerging technique for image quantitative analysis, the
DLR method represents a combination and development of DL
and radiomics. The DLR method can automatically learn a large
number of features including a neural network’s hidden layers
according to input images, and this process do not require object
segmentation and hard-coded feature extraction (Lu et al., 2018b;
Basaia et al., 2019; Spasov et al., 2019a; Roy et al., 2020; Yee
et al., 2020; Pan et al., 2021). This has been successfully applied
to oncology and cancer diagnosis at the present (Han et al., 2017;
Deepak and Ameer, 2019; Jeyaraj and Samuel Nadar, 2019). In

this study, DLR adopted CNN frameworks and was completely
established on the analysis of 2D-slice FDG PET images.

To construct a DLR feature encoder, we compared the
performance of several CNN models, including AlexNet, ZF-
Net, ResNet18, InceptionV3, and Xception. As shown in Table 2,
we observed that the results of ZF-Net were superior to those
of other CNNs, showing the mean ± SD accuracy of 74.12 ±

2.32% in the independent test group. Further, in the process of
training the model, with its simple network structure and fewer
model parameters, the ZF-Net model exhibited a significantly
shorter training time than other models, which was what we
expected. Therefore, we chose ZF-Net as the final DLR model
and feature encoder. The classification result was consistent
with that of Yee et al. (2020) which used a 3D CNN with
residual connections that took a 3D FDG-PET image as input
and obtained an accuracy rate of 0.747. It was worth nothing that
Yee et al. enrolled 871 MCI-nc and 362 MCI-c participants, but
participants in our study were much fewer and also achieved the
same performance. Besides, there are indeed advantages about
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TABLE 3 | Performance of different classification approaches in mutiltasking classification.

Method Accuracy (%) Sensibility (%) Specificity (%) AUC

SUVR method 68.38 ± 1.27 68.06 ± 0.00 68.40±2.41 0.68 ± 0.01

Radiomics-ROI 73.31 ± 6.93 – – –

Clinical method 81.09 ± 1.97 75.69 ± 3.19 85.89±4.63 0.81 ± 0.02

SUVR+Clinical 85.35 ± 0.72 81.13 ± 0.88 89.11±1.09 0.85 ± 0.01

Our proposed DLR+C 90.62 ± 1.16 87.50 ± 0.00 93.39±2.19 0.90 ± 0.01

The methods are conducted with cross-validation and their results are given as mean ± standard deviation. DLR+C, Deep learning radiomics combined Clinical parameters; ROI,

regions of interest.

Bold values represent the classification performance of the proposed DLR+C method.

FIGURE 4 | The distribution of decision score of MCI-c and MCI-nc subjects.

the ResNet18, InceptionV3, and Xception networks. But their
classification results were still poor when the execution time
became longer, which was not what we expected. We speculated
it might be due to too few subjects in our study which did not
matched with deeper network structures and led to overfitting.

In addition, the above process about Base DLR model
selection was also repeated when not resizing images after
standard preprocessing. We found similar classification
performance, but the later has heavier GPU load. Therefore, the
results based on sliced and resized 224∗224 images were taken
as final.

Clinical Integration and Classification
Performance
One issue is that a data scarcity problem remains when
DLR is applied in medical databases (Dluhoš et al., 2017).
Insufficient inputs proved incapable of training effective network
parameters, and thus the optimal model becomes elusive.
Considering this, we proposed the DLR+C method, providing
complementary information to improve the diagnosis of
conversion to AD.

According to the classification results of Table 3, our
proposed DLR+C method obtained the mean accuracy of
90.62% and outperformed the result of the Base DL model.
Hence, the 18F-FDG PET images after integrating with standard
cognitive tests (CDRSB), demographic information (age, gender,
education, and MMSE), and APOEε4 genetic status indeed

represented more valuable information and thus improved the
diagnostic performance. Further, as discussed in the study
of Moradi et al. (2015), the diagnostic labeling and number
of ADNI subjects vary across studies, thus impeding direct
comparison. Hence, to validate the superiority of our DLR+C
method, we designed comparative experiments at three levels
in turn: the voxel-based, radiomics, and the clinical. As
shown in Table 3, the voxel-level analysis, SUVR method,
performed the poorest with a mean accuracy of 68.38%. The
Clinical method obtained a mean accuracy of 81.09%, and
the SUVR+Clinical method had an accuracy of 85.35%. These
results were consistent with previously relevant publications,
where data were collected from the ADNI database (Young
et al., 2013; Liu et al., 2017; Spasov et al., 2019b), and
thus verified the validity and reliability of our experiments.
Young et al. (2013) used the voxel-based method and obtained
69.9% accuracy, 55.3% sensitivity, 77.1% specificity by SVM
classifiers. Moreover, the results of our clinical method were
coherent with those in Spasov et al. (2019b) and Liu et al.
(2017), where clinical data were provided with demographic
information, cognitive tests, and APOEε4 status. Spasov et al.
(2019b) achieved 81% accuracy, 83% sensitivity, 81% specificity;
Liu et al. (2017) achieved 81.62% accuracy, 77.78% sensitivity,
and 86.11% specificity. Nonetheless, it is deserving to clarify
that the outcome of our proposed DLR+C method is
optimal. In summary, the above results sufficiently illustrated
the superiority of our DLR+C method. DLR avoided the
need for prior knowledge and hard-coded feature extraction,
while clinical parameters provided more complementary and
valuable information.

Decision Score
To better demonstrate the discriminability of the proposed
DLR+C method, we conducted a statistical analysis of decision
values. As the distribution of decision scores in Figure 4, there
were significant differences of decision scores between MCI-c
and MCI-nc groups. Thus, it could be used as a quantitative
biomarker for classification between the MCI-nc and MCI-
c groups.

LIMITATIONS

Although the DLR+C method enhanced the performance of
discrimination of conversion to AD in patients with MCI,
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some limitations must be addressed. First, we need more
available data to verify the generalizability and robustness of
the proposed method. In this study, a small number of subjects
were collected only from the ADNI database. Although the final
DLR+C model performed excellent diagnostic performance,
there is still potential to improve the representation of our
Base DL model, where the accuracy only reached 74.12% in
the independent test group and did not exceed those of Pan
et al. (2021) and Lu et al. (2018a). Therefore, it is possible
to improve the performance of our DLR+C method when
comprehensive and homogeneous databases are developed and
become available. Secondly, in this study, the DLR+C method
was focused on the single image modality of 18F-FDG PET.
Whether multi-modalities of 18F-FDG PET combined MRI
can improve the classification performance of DLR+C method
is to be explored in a further study. Third, the proposed
method can provide a prediction whether MCI subjects would
convert to AD, but it cannot decide when the conversion
occurs in the future. To enroll longitudinal data to determine
the severity of MCI-c subjects may well be of interest in our
following studies.

CONCLUSION

We developed a DLR+C method for the 18F-FDG PET
modality in an effort to perform the diagnosis of MCI-
c and MCI-nc subjects. This study demonstrates that the
proposed DLR+C method can improve the diagnostic
performance and provide a quantitative biomarker for
predicting conversion to AD in MCI patients. Future,
the DLR+C model holds potential to become a practical
method for the computer-assisted diagnosis of conversion
to AD. Prospective multi-modalities research is expected
to apply our proposed DLR+C method and acquire more
reliable evidence in predicting the conversion of MCI
to AD.
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