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Abstract
Purpose ‒ This study aimed to develop a multi-long
noncoding RNA (lncRNA) signature for the prediction of
gastric cancer (GC) based on differential gene expression
between recurrence and nonrecurrence patients.
Methods ‒ By repurposing microarray expression pro-
files of RNAs from The Cancer Genome Atlas (TCGA), we
performed differential expression analysis between recur-
rence and nonrecurrence patients. A prognostic risk predic-
tion model was constructed based on data from TCGA data-
base, and its reliability was validated using data from Gene
Expression Omnibus database. Furthermore, the lncRNA-
associated competing endogenous RNA (ceRNA) network
was constructed, namely, DIANA-LncBasev2 and starBase
database.
Results ‒ We identified 363 differentially expressed RNAs
(317 mRNAs, 18 lncRNAs, and 28 microRNAs [miRNAs]).
Principal component analysis showed that the seven-fea-
ture lncRNAs screened by support vector machine–recur-
sive feature elimination algorithm was more informative
for predicting recurrence of GC in comparison with the
eight-feature lncRNAs screened by random forest–out-of-
bag algorithm. Four of the seven-feature lncRNAs including
LINC00843, SNHG3, C21orf62-AS1, and MIR99AHG were

chosen to develop a four-lncRNA risk score model. This
risk score model was able to distinguish patients with
high and low risk of recurrence, and was tested in two
independent validation sets. The ceRNA network of this
four-lncRNA signature included 10 miRNAs and 178 mRNAs.
ThemRNAssignificantly related to theWnt-signalingpathway
and relevant biological processes.
Conclusion ‒ A useful four-lncRNA signature recurrence
was established to distinguish GC patients with high and
low risk of recurrence. Regulating the relevant miRNAs
and Wnt pathway might partly affect GC metastasisby.

Keywords: SVM–RFE, RF–OOB, PCA, lncRNA, ceRNA
network, prognosis

1 Introduction

Gastric cancer (GC) is the fifth common cancer character-
ized by high incidence and mortality [1]. Current manage-
ment strategies for GC mainly include surgical resection
guided by endoscopic detection and chemotherapy or
chemoradiotherapy as adjuvant therapy [2]. Despite
advancements in treatments, GC patients have unsatis-
factory prognosis [3]. Conventional tumor node meta-
stasis (TNM) stage system is inadequate for outcome
prediction of GC patients [4], and novel prognostic bio-
markers are complementary and necessary for identi-
fying potential high-risk GC patients and contribute to
better outcome in GC patients.

Long noncoding RNAs (lncRNAs) play important reg-
ulatory roles in cancer biogenesis. A large number of
lncRNAs have been shown to be dysregulated in GC, par-
ticipate in gastric tumorigenesis and progression through
interacting with DNA, RNA, and proteins [5,6]. Moreover,
lncRNAs are associated with the prognosis of GC patients,
and several lncRNAs-based signatures have been reported
for outcome prediction [7–9]. High incidence of recur-
rence following curative resection is a primary cause of
undesirable prognosis in patients with advanced GC [10,11].
Therefore, we utilized gene profiling data of recurrence
and nonrecurrence GC patients from The Cancer Genome
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Atlas (TCGA) to explore aberrantly expressed lncRNAs
associated with recurrence and develop an lncRNA-based
signature for prognosis stratification of GC patients.
Two validation data sets from Gene Expression Omnibus
(GEO) were used to confirm the prognostic ability of the
signature. Furthermore, we unraveled recurrence-related
differentially expressed microRNAs (miRNAs) and mRNAs
as well as to study the relationships between signature
lncRNAs, miRNAs, and potential targeted miRNAs by con-
structing competing endogenous RNA (ceRNA) network,
thereby providing insights into the regulatory mechanisms
of these signature lncRNAs in GC.

2 Methods

2.1 Data and preprocessing

We obtained RNA sequencing data (including mRNA and
lncRNA) of 407 GC samples and miRNA sequencing data
of 477 samples with the corresponding clinical informa-
tion from the publicly accessible TCGA database (https://
gdc-portal.nci.nih.gov/) based on Illumina HiSeq 2000
RNA Sequencing platform. A total of 287 samples with
paired RNA and miRNA data as well as the corresponding
overall survival (OS) information were selected as the
training set. The detailed clinical information of samples
in TCGA data sets is shown in Table S1.

Meanwhile, we launched a search in GEO database
(https://www.ncbi.nlm.nih.gov/geo/) using “gastric cancer,”
“stomach cancer,” and “homo sapiens” as the key words.
Potential data sets were selected when the following cri-
teria were met: the number of total samples ≥250 and the
number of GC samples with corresponding clinical data
≥200. As a result, two data sets including GSE26253 and
GSE62254 were chosen. GSE26253 [12] (GPL8432 Illumina
HumanRef-8 WG-DASL v3.0 platform) contained gene
expression data of 432 GC tissue samples with clinical
information available (validation set 1), while GSE62254
[2] (Affymetrix Human Genome U133 Plus 2.0 Array plat-
form) included gene profiling data of 300 GC tissue sam-
ples, among which 282 samples had the corresponding
clinical data (validation set 2). The detailed clinical infor-
mation of samples in GSE26253 and GSE62254 data sets is
shown in Tables S2 and S3.

In order to supplement the information of targeted
molecular therapy, we collected information about the
targeted drugs from databases TCGA, xena.ucsc, and
cbioporta. Unfortunately, we only got the information

on whether the patients received “targeted treatment”
or not; however, there were no specific information of
targeted drug molecules. Meanwhile, the detailed clinical
characteristics of the patients were analyzed and shown
in Table S4. In order to exclude the effect of therapeutic
schedule on the screening of the present lncRNAs, corre-
lation analysis was used to eliminate the doubt in this
aspect, and the results showed that four important lncRNAs
were not related to radiotherapy, chemotherapy, and
targeted therapy. Their detailed information is shown
in Table S5.

Raw data were standardized as previously described
by Chaudhary et al. [13]. HUGO Gene Nomenclature Com-
mittee (HGNC) [14] repository (http://www.genenames.
org/) enrolled 4,313 lncRNAs, 19,197 protein-coding
genes, and 1,914 miRNAs. Using the HGNC database, we
annotated 13,105 mRNAs, 1,051 lncRNAs, and 413 miRNAs
from the abovementioned data sets, according to RefSeq
ID information.

2.2 Differential expression analysis
between recurrence and nonrecurrence
GC samples

We screened differentially expressed RNAs (DERs) includ-
ing lncRNAs,mRNAs, andmiRNAsbetween recurrence and
nonrecurrence samples in the training set, using FDR<0.05
and |log2 FC| >0.263 as a selection threshold. The identified
significant lncRNAs, miRNAs, and mRNAs consequently
underwent two-way hierarchical clustering analysis based
on centered Pearson correlation algorithm [15].

2.3 Prognostic model building and
validation

In order to identify recurrence-related feature lncRNAs
from the preselected differentially expressed lncRNAs,
we employed and compared the support vector machine–
recursive feature elimination (SVM–RFE) and random
forest–out-of-bag (RF–OOB) algorithms for performance.
With regard to SVM–RFE [16] algorithm (100-fold cross
validation), the lncRNAs subset with the best accuracy
was chosen to be the signature lncRNAs. Using RF–OOB
[17] algorithm, the subset of lncRNAs with the minimal
value of OOB error was selected to be the optimal feature
lncRNAs. Principal component analysis (PCA) method
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was applied to compare the performances of the two algo-
rithms. The feature lncRNAs identified by the superior
approach was applied in further analysis.

Using training set, we did univariable Cox regression
analysis on the identified recurrence-related signature
lncRNAs. The significant lncRNAs were further included
in multivariable Cox regression analysis. log-rank p value
<0.05 defined the significance. The lncRNAs that were
independent prognostic indicators were selected to con-
struct a prognostic score formula as following:

∑( ) = ×βRisk score RS ExplncRNAn lncRNAn

where here βlncRNA suggests multivariable Cox regression
coefficient of lncRNAn; ExplncRNAn indicates the expres-
sion value of lncRNAn.

We calculated the risk score for each patient in the
training set based on the formula. Patients in the train-
ing set were categorized by the median risk score into a
high-risk group and a low-risk group. Similarly, the
lncRNAs-based risk score formula was applied to distin-
guish patients in two validation sets. Recurrence-free sur-
vival (RFS) time of two risk groups was compared using
Kaplan–Meier method and log-rank test. Sensitivity and
specificity of the risk score model were assessed using the
ROC curve.

Using the training set data, we conducted uni- and
multivariable Cox regression analysis to evaluate the
association of clinical features and risk score model
status with RFS time of patients. Integrating independent
prognostic clinical features with risk score status, nomo-
gram was built; and the calibration curves were plotted to
ascertain its predictive performance.

2.4 Statistical analysis

A wide range of packages in R software (version 3.4.1)
were utilized for bioinformatics and statistical analyses
of our study: limma package (version 3.34.7) for differen-
tial expression analysis; pheatmap package (version 1.0.8)
for two-way hierarchical clustering analysis; e1071 [18]
(version1.7-1, https://cran.r-project.org/web/packages/e1071);
caret [19] (version 6.0-76, https://cran.r-project.org/web/
packages/caret) packages for SVM–RFEmethod; bootstrap
algorithm of randomForest [20] package (https://cran.r-
project.org/web/packages/randomForest/) for RF–OOB
method; psych [21] package (version 1.8.12) for PCA; sur-
vival package (http://bioconductor.org/packages/survivalr/)
for uni- and multivariable Cox regression analysis; Kaplan–
Meier curves; pROC package (https://cran.r-project.org/

web/packages/pROC/index.html) for ROC curve analysis;
and rms package (version 5.1-2) for nomogram building.

2.5 Construction of lncRNA-associated
ceRNA network

For dissecting the underlying molecular mechanisms of the
prognostic signature lncRNAs in GC biology, we designed a
three-phase study. Initially, the relations between the sig-
nature lncRNAs with the differentially expressed miRNAs
were predicted based on DIANA-LncBasev2 [22] database.
The negatively correlated lncRNA–miRNA pairs were selected
to build an lncRNA–miRNA network.

Second, starBase database (version 2.0, http://starbase.
sysu.edu.cn/)was used for the prediction of potential target
mRNAs of the miRNAs included in the lncRNA–miRNA net-
work. starBase program compiles prediction results from
TargetScan, PicTar, RNA22, PITA, and miRanda [23]. The
differentially expressed mRNAs were mapped to the pre-
dicted target mRNAs that were enrolled in at least three of
the five programs. The miRNA–mRNA pairs with negative
correlation were selected to develop an miRNA–mRNA
network.

Third, an lncRNA–miRNA–mRNA network was built
with predicted lncRNA–miRNA and miRNA–mRNA pairs
with negative correlation. Networks were visualized with
Cytoscape [24] software (version 3.6.1). All mRNAs in
the networks were subject to gene ontology (GO) function
and kyoto encyclopedia of genes and genomes (KEGG)
pathway enrichment analysis by Enrichr [25] tool (http://
amp.pharm.mssm.edu/Enrichr/). P value <0.05 was con-
sidered significant.

3 Results

3.1 Identification of differentially expressed
mRNAs, lncRNAs, and miRNAs between
recurrence and nonrecurrence GC
patients

The training set (N = 287) consisted of 61 recurrence
patients and 226 nonrecurrence patients. Totally 363
DERs between the recurrent and nonrecurrent patients
were identified by performing differential gene expres-
sion analysis, which were consisted of 317 mRNAs (115
downregulated and 202 upregulated mRNAs; Table S6),
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18 lncRNAs (8 downregulated and 10 upregulated lncRNAs;
Table S7), and 28 miRNAs (9 downregulated and 19 upre-
gulated miRNAs; Table S8; Figure 1a and b).

3.2 Construction of a four-lncRNA
prognostic score risk model

We used SVM–RFE and RF–OOB algorithms to select fea-
ture lncRNAs informative of recurrence based on the
abovementioned differentially expressed lncRNAs. Using
SVF-RFM algorithm, we obtained a combination of eight-
feature lncRNAs when achieving the highest accuracy =
0.895 (Figure 2a, Table S9). A set of seven lncRNAs was

determined by RF–OOB algorithm (minimal OOB error =
0.173; Figure 2b; Table S10). The two groups of feature
lncRNAs were compared by PCA. Regarding the eight-
feature lncRNAs identified by SVM–RFE, the top four prin-
cipal components in PCA approximately account for 80%
of the total observed variances (Figure 3a). In contrast,
the top three principal components for the seven-feature
lncRNAs selected by RF–OOB algorithm could describe
almost 80% of the total observed variances (Figure 3b).
These results suggested that the seven-feature lncRNAs
were more indicative of recurrence than the eight-feature
lncRNAs and were thus used in further analysis.

By subjecting the seven-feature lncRNAs to a univari-
able Cox regression analysis, we found six prognosis-

Figure 1: Differentially expressed lncRNAs, miRNAs, and mRNAs of recurrence and nonrecurrence patients. (a) Left image is a scatterplot for
differentially expressed RNAs. Lateral axis represents nonrecurrence samples; vertical axis represents recurrence samples. Upregulated,
downregulated, and nonregulated RNAs are shown in red, green, and blue spots, respectively. Right image shows ratios of up- and
downregulated RNAs. (b) Heatmap displays differentially expressed RNAs in recurrence and nonrecurrence samples.
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related lncRNAs (p value <0.05), which further under-
went multivariable Cox regression analysis. Four lncRNAs
(LINC00843, SNHG3, C21orf62-AS1, and MIR99AHG), which
were independent predictors of prognosis, were depicted in
Table 1. A risk score formula was created based on the
expression of the four signature lncRNAs for prognosis pre-
diction as follows:

= (− ) × + (− )

× + ( ) ×

+ ( ) ×

-

Risk score 1.0637 Exp 0.4163
Exp 1.4731 Exp
0.2341 Exp

LINC00843

SNHG3 C21orf62 AS1

MIR99AHG

We calculated the risk score for each patient in the
training set and ranked all the patients based on four-
lncRNA signature. With the median risk score as the
cutoff, the training set was categorized into a high-risk group
(N = 144) and a low-risk group (N = 143). Significantly longer
RFS time was observed in the low-risk patients relative
to the high-risk patients (p value = 1.448 × 10−3, HR =
2.329[1.363–3.979]; Figure 4a). We validated the four-lncRNA

signature risk score in two validation sets. As shown in
Figure 4b and c, either validation set was divided by the
risk score into two risk groups with statistical significance
in RFS time (validation set 1: p value = 3.733 × 10−2, HR =
1.368[1.017–1.839]; validation set 2: p value = 1.444 × 10−2,
HR = 1.555[1.089–2.221]). The risk score of each sample in the
data set TCGA, GSE26253, and GSE62254 is shown in Table
S11(1–3), respectively. The AUC values of ROC curves were
0.936, 0.827, and 0.822 for training set, validation set 1, and
validation set 2, separately (Figure 4d). These observations
demonstrated robust predictive performance of the four-
lncRNA signature risk score in GC.

3.3 Building nomogram based on gender,
histologic grade, and risk score model
status

By performing univariable Cox regression analyses to assess
the relationship of clinical variables and risk score model
status with RFS time of patients in the training set, gender
(HR = 1.761, 95% CI = 0.967–1.014, p value = 4.92 × 10−2),
neoplasm histologic grade (HR = 2.181, 95% CI =
1.232–3.856, p value = 6.19 × 10−3), and the four-lncRNA
risk score model status (HR = 2.329, 95% CI = 1.363–3.979,
p value = 1.45 × 10−3)were statistically significant (Table 2).
Furthermore, multivariable Cox regression analysis incor-
porating risk score model status with gender and neoplasm
histologic grade was performed. Gender (HR = 1.735, 95%
CI = 1.179–3.078, p value = 4.93 × 10−2), neoplasm histo-
logic grade (HR = 2.063, 95% CI = 1.156–3.682, p value =
1.43 × 10−2), and risk score model status (HR = 2.059, 95%
CI = 1.198–3.537, p value = 8.91 × 10−3) were found to be
independent prognostic predictors (Table 2), indicating
that prognostic value of the four-lncRNA risk score is inde-
pendent of other clinical features.

A composite nomogram on the basis of gender, neo-
plasm histologic grade, and risk score status was estab-
lished to predict the probability of 3-year and 5-year RFS
(Figure 5a). Calibration plot for goodness of fit of the
model exhibited good consistence between the predicted
and actual RFS time (Figure 5b).

3.4 Characterization of ceRNA network of
four signature lncRNAs and functional
annotation

Using DIANA-LncBasev2, we analyzed the correlations
between the four signature lncRNAs and the differentially

Figure 2: Feature lncRNAs selected by SVM–RFE (a) and RF–OOB (b).
The red dashed line shows the number of lncRNAs achieving the
highest accurracy (a) or the smallest OOB error (b).
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expressed miRNAs. As a result, we procured 10 negatively
correlated lncRNA–miRNA pairs and constructed an lncRNA–
miRNA network. There were 3 lncRNAs (upregulated
MIR99AHG, downregulated LINC00843, and SNHG3) and
10 miRNAs (five upregulated and five downregulated
miRNAs) in the network (Figure 6). As to the 10 miRNAs
(miR-7, miR-552,miR-4676, miR-1304,miR-2110, miR-216a,

miR-205, miR-487a, miR-551b, and miR-34b), we predicted
potential target mRNAs by using starBase, which were
further mapped by the 321 differentially expressed mRNAs.
The resulting 351 miRNA–mRNA pairs with negative cor-
relation were used to develop a miRNA–mRNA network.
Figure 7 exhibited this network of 10 miRNAs and 178
mRNAs (54 downregulated and 124 upregulated mRNAs).
Finally, the preselected negatively correlated lncRNA–
miRNA pairs and miRNA–mRNA pairs were integrated
into a ceRNA regulatory network. Three signature lncRNAs,
10 miRNAs, and 178 mRNAs were observed in the network
(Figure 8). Their detailed information are shown in Tables
S12 and S13.

The GO function and KEGG pathway-enrichment ana-
lysis for the mRNAs in the ceRNA network was con-
ducted. These mRNAs were significantly enriched in

Figure 3: Comparative analysis of SVM–RFE (a) and RF–OOB (b) by PCA approach. Upper images illustrate 3D PCA plot of PC1, PC2, and PC3.
Recurrence and nonrecurrence samples are labeled in red triangles and blue balls, respectively. Below images exhibit cumulative con-
tribution of different PCs. The red dashed line indicates cumulative proportion of 80%.

Table 1: Characteristics of four independent prognostic lncRNAs

ID Coefficient P value HR 95% CI

LINC00843 −1.0637 6.71 × 10−3 0.345 0.111–0.878
SNHG3 −0.4163 8.97 × 10−3 0.659 0.208–0.967
C21orf62-AS1 1.4731 9.17 × 10−3 4.363 1.788–7.171
MIR99AHG 0.2341 4.96 × 10−2 1.264 1.045–2.477
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19 GO terms predominately related to Wnt-signaling
pathway, cell proliferation, migration, and other biological
processes (Table 3). Five significant KEGG-signaling path-
ways were noted, including Wnt-signaling pathway, cell
adhesion molecules, GC, regulation of lipolysis in adipo-
cytes, and steroid hormone biosynthesis pathways (Table 3).
These results revealed that four signature lncRNAs-related
ceRNA regulation participated in a variety of biological
functions and signaling pathways in GC.

4 Discussion

Although a growing number of prognostic lncRNAs for
GC have been uncovered [26], some limitations are pre-
sent, such as small number of lncRNAs, limited sample

size, and insufficient validation. GC patients often experi-
ence recurrence following surgical resection [27]. To develop
a recurrence-related multi-lncRNA signature for the predic-
tion of RFS in GC patients, we repurposed the exist-
ing microarray data downloaded from TCGA to profile
lncRNAs, miRNAs, and mRNAs in GC patients. A total
of 363 DERs between recurrence and nonrecurrence
patients were obtained, comprising 18 lncRNAs, 317
mRNAs, and 28 miRNAs.

Another highlight of this study was that we applied
and compared SVM–RFE and RF–OOB to identify feature
lncRNAs’ most informative of recurrence from the differ-
entially expressed lncRNAs. SVM–RFE is considered as
an efficient method to select informative genes for cancer
classification, in which all the features are listed based on
some score function together with the removal of the
features with the lowest scores [16]. One shortcoming of

Figure 4: Kaplan–Meier estimates of recurrence-free survival and ROC curves for patients in training set and two validation sets by the four-
lncRNA signature. (a–c) Kaplan–Meier curves for training set, validation set 1, and validation set 2. (d) ROC curves and AUC values of three
data sets.
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this method is that it only aims to identify the optimal
combination for classification. RF is a highly data-adap-
tive classification tool based on decision trees that is
especially suitable for high-dimension genomic data ana-
lysis with OBB error to assess the predictive performance
of RF [28]. According to the results of PCA, the RF-OBB-
based seven feature lncRNAs was more informative of
recurrence in comparison with the SVM–RFE-based eight
feature lncRNAs in the current study. From the seven
feature lncRNAs, we identified a four-lncRNA signature
that was significantly associated with patients’ RFS and
had independent prognostic value. Moreover, a four-
lncRNA risk score for outcome prediction was developed
using TCGA set and validated using two GEO data sets.
Our results indicated that this four-lncRNA risk score
could successfully distinguish GC patients with high
risk from GC patients with low risk. In addition, our study
showed that predictive performance of the four lncRNAs-
based risk score was independent of other clinical vari-
ables. Potential clinical application of this risk score
would be beneficial to improving individualized treat-
ment decision-making for GC patients.

The four identified prognostic lncRNAswere LINC00843,
SNHG3, C21orf62-AS1, and MIR99AHG. lncRNA SNHG3 is
reported to be implicated in development of various types
of cancers, such as colorectal cancer and ovarian cancer
[29,30]. SNHG3 is overexpressed in hepatocellular carcinoma

(HCC), showing correlation with the survival of HCC
patients [31]. SNHG3 is upregulated lncRNA in GC [32].
However, biological functions and prognostic value of
SNHG3 in GC remain elusive. lncRNA C21orf62-AS1 is
abnormally expressed in chromophobe renal cell carci-
noma, correlating with OS of patients [33]. Additionally,
C21orf62-AS is stimulated by interferon-beta in patients
with multiple sclerosis [34]. lncRNA MIR99AHG is sig-
nificantly downregulated in colorectal cancer [35]. There is
evidence that MIR99AHG is positively relevant to OS of
patients with lung squamous cell carcinoma [36]. There
is little information concerning lncRNA LINC00843. As
far as we know, this is the first time that these lncRNAs
are found to be prognostic biomarkers for GC recurrence.

It has been demonstrated that ceRNAs act as key reg-
ulators among different RNA transcripts and lncRNAs
sponges miRNAs, thereby regulating the expression of tar-
geted mRNAs [37]. The present study established a ceRNA
network comprising three signature lncRNAs (LINC00843,
SNHG3, andMIR99AHG), 10miRNAs, and 178 targetmRNAs
by bioinformatics prediction. Among the 10 miRNAs, miR-7
plays an antimetastatic role in GC through targeting insulin-
like growth factor-1 receptor [38]. ThemiR-487a strengthens
cell proliferation and suppresses cell apoptosis, driving
GC progression by targeting T-cell intracellular antigen-1
[39]. Furthermore, three miRNAs including miR-216a, miR-
205, and miR-551b are related to epithelial–mesenchymal

Table 2: Uni- and multivariable Cox regression analysis of clinical features and risk score model status

Clinical characteristics TCGA (N = 287) Univariables Cox Multivariables Cox

HR 95% CI p HR 95% CI p

Age (years, mean ± sd) 65.06 ± 10.65 0.991 0.967–1.014 4.12 × 10−1 — — —
Gender (male/female) 181/106 1.761 0.994–3.117 4.92 × 10−2 1.735 1.179–3.078 4.93 × 10−2

Pathologic_M (M0/M1/–) 259/14/14 1.149 0.359–3.679 8.15 × 10−1 — — —
Pathologic_N (N0/N1/N2/N3/–) 89/77/58/

53/10
1.151 0.918–1.440 2.24 × 10−1 — — —

Pathologic_T (T1/T2/T3/T4/–) 16/64/125/
78/4

0.796 0.599–1.056 1.12 × 10−1 — — —

Pathologic_stage (I/II/III/IV/–) 41/95/121/
19/11

1.029 0.763–1.387 8.53 × 10−1 — — —

Neoplasm histologic grade (G1/G2/G3/–) 5/101/172/9 2.181 1.232–3.856 6.19 × 10−3 2.063 1.156–3.682 1.43 × 10−2

Radiation therapy (Yes/No/–) 54/229/4 0.627 0.321–1.225 1.69 × 10−1 — — —
Targeted molecular therapy (Yes/No/–) 130/151/6 1.375 0.824–2.293 2.21 × 10−1 — — —
Helicobacter pylori infection (Yes/No/–) 15/107/165 0.314 0.119– 2.358 2.35 × 10−1 — — —
Residual tumor (R0/R1/R2/R3/–) 239/10/6/32 1.774 0.922–3.413 1.28 × 10−1 — — —
Chemotherapy (Yes/No/–) 136/151 1.313 0.772–2.231 3.13 × 10−1 — — —
RS model status (High/Low) 143/144 2.329 1.363–3.979 1.45 × 10−3 2.059 1.198–3.537 8.91 × 10−3

Recurrence (Yes/No) 61/226 — — — — — —
Recurrence-free survival time (months,
mean ± sd)

19.70 ± 18.48 — — — — — —

Statistically significant data are indicated by bold for significant at p < 0.05.
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transition (EMT) and metastasis of GC [40–42]. These find-
ings are suggestive of implication of the three signature
lncRNAs in metastasis of GC through influencing relevant
miRNAs and target mRNAs. Noticeably, results of GO and
KEGG pathway enrichment analysis demonstrated that
mRNAs in the ceRNA network were associated with sev-
eral Wnt-signaling pathway-related biological processes
and KEGG-signaling pathway. Wnt-signaling pathway
plays a fundamental role in progression and metastasis
of GC, participating in regulating GC cell growth and
apoptosis [43]. Involvement of Wnt-signaling pathway
in EMT is controlled by miRNAs [44]. Besides, Wnt-sig-
naling pathway is reported to mediate the oncogenic role
of miR-552 by Dachshund family transcription factor 1 in
colorectal cancer [45]. It can be speculated that Wnt-sig-
naling pathway may partly mediate the effect of these

signature lncRNAs on progression and metastasis of GC
through miRNAs. Our study only contains results based
on gene mining approaches. Clinical experimental stu-
dies and large prospective studies are necessary to verify
our findings.

In conclusion, we generated a recurrence-related
four-lncRNA signature predictive of individual mortality
risk of DFS in GC patients. Prognostic capability of the
lncRNAs-based signature had been successfully validated
using two independent data sets and showed independence
of other clinical features. The four-lncRNA signature func-
tionally involved several metastasis-related miRNAs, their
targeted mRNAs, and Wnt-signaling pathway. This study
suggested potential prognostic biomarkers and therapeutic
targets for recurrence GC and provided novel insights into
theunderlyingmechanismsofGCprogression.Validationof

Figure 5: Nomogram to predict 3-year and 5-year probability of recurrence-free survival using TCGA set. (a) nomogram based on gender,
neoplasm grade, and risk score model status. RS model status = four-lncRNA risk score model status. (b) calibration curves of actual and
predicted probabilities.
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Figure 6: Signature lncRNA–miRNA network. Diamonds and triangles stand for lncRNAs and miRNAs, respectively.

Figure 7: The miRNA–mRNA network. Balls and triangles denote mRNAs and miRNAs, respectively.
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Figure 8: A ceRNA network of signature lncRNAs, miRNAs, and mRNAs. Diamonds, triangles, and balls represent signature lncRNAs, miRNAs,
and mRNAs, separately. Red and black links suggest lncRNA–miRNA and miRNA–mRNA interactions, respectively.

Table 3: Results of GO function and KEGG pathway enrichment analysis

Type Term Count of significantly
enriched genes

P value

GO biology process Regulation of canonical Wnt-signaling pathway 10 2.27 × 10−5

Negative regulation of canonical Wnt-signaling pathway 7 3.82 × 10−4

Regulation of cell migration 10 5.67 × 10−4

Neuron projection morphogenesis 7 6.77 × 10−4

Regulation of cell proliferation 16 9.86 × 10−4

Negative regulation of Wnt-signaling pathway 7 9.91 × 10−4

Cell morphogenesis involved in neuron differentiation 5 1.84 × 10−3

Positive regulation of cell growth 5 1.92 × 10−3

Wnt-signaling pathway 5 3.04 × 10−3

Positive regulation of cell motility 6 5.55 × 10−3

Positive regulation of cellular process 11 7.01 × 10−3

Skeletal system development 5 1.02 × 10−2

Positive regulation of cell proliferation 9 1.41 × 10−2

Positive regulation of cell migration 6 1.47 × 10−2

Extracellular matrix organization 6 1.72 × 10−2

Positive regulation of multicellular organismal process 5 3.54 × 10−2

Negative regulation of cell proliferation 7 4.47 × 10−2

Proteolysis 6 4.69 × 10−2

KEGG pathway Wnt-signaling pathway 7 5.43 × 10−4

Cell adhesion molecules (CAMs) 4 4.08 × 10−2

Gastric cancer 4 4.43 × 10−2

Regulation of lipolysis in adipocytes 2 4.86 × 10−2

Steroid hormone biosynthesis 2 4.98 × 10−2
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our findings and investigation on functional mechanisms
warrant future studies.

Abbreviations

GC Gastric cancer
lncRNA Long non-coding RNA
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
ceRNA competing endogenous RNAs
miRNA microRNA
OS overall survival
HGNC HUGO Gene Nomenclature Committee
DERs differentially expressed RNAs
SVM Support Vector Machine
RFE Recursive Feature Elimination
RF Random Forest
OOB Out Of Bag
PCA Principal Component Analysis
RFS Recurrence-free survival
GO Gene ontology
KEGG kyoto encyclopedia of genes and genomes
CAMs cell adhesion molecules
HCC hepatocellular carcinoma
EMT epithelial-mesenchymal transition
DACH Dachshund family transcription factor
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