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Abstract: Melittin (MEL) is a 26-amino acid polypeptide with a variety of pharmacological and
toxicological effects, which include strong surface activity on cell lipid membranes, hemolytic activity,
and potential anti-tumor properties. However, the clinical application of melittin is restricted due to
its severe hemolytic activity. Different nanocarrier systems have been developed to achieve stable
loading, side effects shielding, and tumor-targeted delivery, such as liposomes, cationic polymers,
lipodisks, etc. In addition, MEL can be modified on nano drugs as a non-selective cytolytic peptide to
enhance cellular uptake and endosomal/lysosomal escape. In this review, we discuss recent advances
in MEL’s nano-delivery systems and MEL-modified nano drug carriers for cancer therapy.
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1. Introduction

MEL is a major component of honeybee (Apis mellifera) venom with various biolog-
ical and pharmacological properties [1]. Its strong surface activity on lipid membranes,
anti-microbial, anti-inflammatory, and anti-cancer properties has been widely studied and
proved. However, the use and application of MEL in clinical experiments is hindered be-
cause of its intense toxic side effects. Multiple strategies have been adopted and optimized
to develop a safe and stable MEL delivery system. This review focusses on the recent
progress of MEL carriers and drug delivery systems with MEL as a functional molecule in
cancer therapy. Measures to lower the side effects of MEL are also discussed, along with
the improvements and challenges relevant to each strategy.

1.1. Structure of Melittin (MEL) and Its Interactions with Membrane

MEL was originally isolated and purified from bee venom (BV), and is the main
active ingredient in BV, accounting for approximately 50% of its dry weight [1]. Briefly,
MEL has been fractionated and isolated from BV through gel filtration, high-performance
liquid chromatography (HPLC), or capillary electrophoresis (CE), and analyzed by ultra-
violet assay, reverse-phase HPLC and amino acid analysis [2,3]. This 26-amino peptide
(Figure 1) is sequenced as follows: Gly Ile-Gly Ala-Val-Leu-Lys-Val-Leu-Thr-Thr-Gly Leu-
Pro-Ala-Leu-Ile-Ser-Trp-Ile-Lys-Arg-Lys-Arg-Gln-GlnNH2 [4]. Its N-terminal region is
hydrophobic, and its C-terminal region is hydrophilic because of the presence of positively
charged amino acids [5], which carry a net charge of +6 at physiological pH, leading
to its amphiphilic property. Under natural conditions, MEL is in a tetrameric state and
dissociates into monomers during ion intensity change [6,7]. The α-helix of MEL is an
essential structure that produces its lytic effects. Under different physiological conditions,
the α-helix forms a perpendicular or parallel conformation to the membrane surface. When
anchored parallel to the membrane surface, the MEL molecule is inactive, and this inserting
form prevents other peptides from inserting into the lipid bilayer. In the other case, MEL is
inserted perpendicularly into the lipid bilayer and causes pore formation and membrane
rupture, leading to the leakage of hemoglobin or other intracellular contents [8,9]. However,
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the specific mechanism of MEL and cell membrane remains controversial, as one study
pointed out that the amphiphilic α-helix structure is formed after MEL insertion to cell
membrane [10].
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Figure 1. Chemical structure of MEL.

1.2. Pharmacological Effect of MEL

In addition to its strong surface activity on cell lipid membranes and hemolytic
activity [11], MEL has tremendous biological and pharmacological effects, including anti-
bacterial [12], anti-virus [13], anti-fungal [14,15] (Table 1), anti-inflammatory [16], and
anti-tumor properties [4] (Table 2).

Table 1. In vitro anti-microbial effects of MEL.

Type of Microbial Treatment or Method Result Reference

Virus HIV-1 MEL ID50 values was in the range
0.9–1.5 µM [17]

HSV-1 and HSV-2 MEL CC50 ranges 1.35–2.05 µM [18]

SARS-CoV-2 Sitagliptin-MEL
nano-conjugate IC50 values 8.439 µM [19]

Bacteria Pseudomonas aeruginosa MEL MIC 10 µg/mL and MBC
20 µg/mL [20]

Methicillin-resistant
Staphylococcus aureus MEL MIC 6.7 µg/mL and MBC

26 µg/mL. [21]

Multidrug-resistant
Acinetobacter baumannii MEL MIC ranges 0.50–32 µg/mL [22]

E. coli and Staphylococcus aureus MEL and ionic liquids
combination

E. coli: MIC value was 0.52 µM
MEL with 10 µM [Pyr C12]Br−

S. aureus: MIC value was
0.62 µM MEL with 20 µM [Pyr

C10] Br−.

[23]

Multidrug-resistant
Acinetobacter baumannii and

Pseudomonas aeruginosa

Combination of MEL and
conventional antibiotics

MDR A. baumannii isolates: MIC
for MEL and doripenem were

reduced by 61.5 and
51.5 folds, respectively.

MDR P. aeruginosa isolates: MIC
was reduced by 63.5 and 58 folds

for MEL–doripenem,
respectively, and by 16 and

11 folds for
MEL–ceftazidime, respectively.

[24]

Fungus
Aspergillus flavus, Aspergillus

fumigatus, and
Aspergillus parasiticus

MEL

MIC values was 1.25 µM,
1.25 µM, and 2.5 µM for

Aspergillus flavus, Aspergillus
fumigatus, and Aspergillus

parasiticus strains respectively.

[25]

Candida albicans MEL
MIC values for different strains
of Candida albicans ranges from

8 µM to 32 µM.
[26]
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The anti-microbial effects of bee venom (BV) and MEL have been reported since the
1940s [27]. With growing concerns regarding drug-resistant bacteria, MEL has become
a promising efficacious agent due to its properties of pore formation and bacterial de-
struction [28]. Evidence has confirmed the anti-bacterial effect of MEL, especially against
drug-resistant bacteria that conventional antibiotics fail to inhibit or kill [20,24]. The com-
bination of MEL with other antibiotics is widely evaluated [23,29]. One study evaluated
MEL against methicillin-resistant Staphylococcus aureus (MRSA) strains [21] and reported a
minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)
of 6.7 and 26 µg/mL, respectively. Meanwhile, the MIC and MBC values for oxacillin were
both 32 µg/mL. MEL in combination with oxacillin also showed synergistic results on
MRSA strains.

MEL can also inhibit various viruses [13,30], including human immunodeficiency
virus (HIV) [17,31], herpes simplex virus (HSV) [32,33], and respiratory syncytial virus
(RSV) [13]. Its mechanism may include suppressing the gene expression of virus and
impeding the multiplication process [17,18]. As an antiviral peptide, MEL is also a potential
candidate against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) [34,35]; a
survey in beekeepers revealed the potential preventive effect of BV on coronavirus disease
2019 (COVID-19) [36]. A Sitagliptin (SIT)-MEL nano-conjugate was developed [19], and
showed better antiviral potential against SARS-CoV-2 isolates than SIT and MEL alone,
thus proving MEL to be one of the promising candidates.

In traditional medicine, BV has been used in the treatment of inflammatory-related
illnesses [37]. MEL binds non-competitively with phospholipase A2 (PLA2) to inhibit its
enzymatic activity, and thus can be used for the treatment of inflammation caused by the
production or enhanced activity of secreted PLA2 [38]. MEL also has inhibitory effects on
sodium nitroprusside, IκB kinase (IKK) activity, nitric oxide (NO), inducible NO synthase
(iNOS), cyclooxygenase-2 (COX-2), and other inflammatory mediators due to its high
binding affinity with IKKs [39], which suppresses IκB degradation and thereby blocks
the nuclear factor kappa-light-chain-enhancer of the activated B cells (NF-κB) signaling
pathway. MEL can inhibit the signaling pathways of toll-like receptor 2 (TLR2), TLR4,
CD14, NF-κB essential modulator (NEMO), and platelet-derived growth factor receptor
beta (PDGFRβ) [40–43], consequently reducing the activation of p38 mitogen-activated
protein kinases, extracellular signal-regulated protein kinase (ERK1/2), protein kinase B
(Akt), phospholipase C, gamma 1 (PLCγ1) and the transport of NF-κB into the nucleus.
This inhibitory effect can also reduce inflammation of the skin, aorta, joints, liver, and
neuronal tissues [16,44].

1.3. Anti-Tumor Effects of MEL

Given that MEL attacks lipid membranes and leads to substantial cytotoxicity, it has
been widely studied in anti-tumor treatments (Table 2).

Table 2. Anti-tumor effects of MEL.

Tumor Type Cell Lines Treatment Result or Mechanism Reference

Lung cancer A549 and NCI-H460 cell MEL IC50 values were 2 µg/mL,
3 µg/mL, respectively [45]

A549 cell Antinucleolin
aptamer–MEL conjugate

Viability for A549 cells after
treatment was 51.2 ± 3.5%, [46]

Hepatocellular
carcinoma SMMC-7721 cells MEL

MEL inhibits G0/G1 cell cycle
progression by down-regulating
MeCP2 through Shh signaling.

[47]

HepG2 cells MEL

HDAC2-mediated PTEN
upregulation, Akt inactivation,

and inhibition of PI3K/Akt
signaling pathways.

[48]
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Table 2. Cont.

Tumor Type Cell Lines Treatment Result or Mechanism Reference

SMMC-7721 and
BEL-7402 cells MEL

MEL sensitizes human
hepatocellular carcinoma cells to

tumor necrosis factor-related
apoptosis-inducing ligand

(TRAIL)-induced apoptosis by
activating CaMKII-TAK1-JNK/p38
and inhibiting IκBαkinase-NFκB.

[49]

Breast cancer MDA-MB-231 cells MEL

MEL inhibits the EGF-induced
MMP-9 expression via blocking

the NF-κB and
PI3K/Akt/mTOR pathway

[50]

SUM159 and SKBR3 BV or MEL

MEL reduces the level of the PD-L1
immune-checkpoint protein and

the immune-suppressive effects of
the tumor microenvironment.

IC50 values for MEL was
4.24 ng/µL for SUM159 and

3.59 ng/µL for SKBR3.

[51]

Prostate cancer LNCaP, DU145, and
PC-3 cells BV or MEL

MEL induces cell apoptosis by
activating the caspase pathway via

NF-κB inactivation.
IC50 for LNCaP cells: MEL 2.9 and
BV 14.2µg/mL, DU145 cells: MEL

1.5 and BV 6.3µg/mL
IC50 for PC-3 cells: MEL 1.8 and

BV 6.1µg/mL, respectively

[52]

Leukemia CCRF-CEM and
K-562 cells MEL MEL induces apoptosis via the

intrinsic/mitochondrial pathway. [53]

BV suppresses COX-2 mRNA expression and PGE 2 synthesis; hence, MEL may also
exert anti-tumor effects [54]. MEL inhibits proliferation of the cancer cells via induction
of apoptosis through multiple investigated mechanisms. One possible mechanism is that
MEL causes changes in the permeability of cell membranes, which leads to the elevation
of intracellular Ca2+, an important regulator in the apoptosis process, and activation of
PLA2 [55], resulting in cell death. MEL presents a significant anti-tumor effect through the
NF-κB pathway, which is involved in multiple physiological processes including tumor [56].
Its other mechanism of apoptosis includes decreasing methyl-CpG binding protein 2 [47]
and PI3K/Akt/mTOR signaling pathway [48,50].

MEL also inhibits the invasion and metastasis of cancer cells. MEL prevents hepatocel-
lular carcinoma cell metastasis via inhibition of ras-related C3 botulinum toxin substrate 1
(Rac1) [57], which participates in the c-Jun N-terminal kinase (JNK) and JNK-dependent
cell motility processes and induces metastasis. In addition, MEL selectively inhibits ex-
pression of matrix metalloproteinase-9 (MMP-9), which plays an important role in the
migration of cancer cells [50,58,59] via down-regulating activator protein-1 (AP-1) and
NF-κB expression.

1.4. Obstacles to the Applications of MEL

Despite its multiple pharmacological potentials, the clinical applications of MEL are
limited due to its strong surface activity and cytotoxicity. MEL results in 50% hemolysis of
human red blood cells at 2 µM concentration and 100% at 7 µM [60]. Studies examining
the antimicrobial activity of MEL in vivo [61] have found an increased mortality rate in
mice directly injected with MEL. LD50 value of intraperitoneal MEL to mice is around
5 mg/kg, and drops to about 3 mg/kg via intravenous injection [62–64]. Preclinical and
clinical research on BV therapy has indicated that the main adverse reactions of MEL
include allergic reactions and pain at the administration site [65,66], which limits BV’s
application in acupuncture therapies. Further applications of MEL are also restricted due
to its degradability [67], low bioavailability [68], and non-specific lytic effects.
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Multiple strategies have been applied to stably and safely load MEL to obtain effective
anti-tumor as well as other therapeutic effects. The designated purposes of MEL delivery
systems are approximately the same. Other than increasing the delivery efficiency of MEL,
delivery systems conceal MEL to prevent it from interacting with cell membranes as well as
to mask its positive charge so as not to bind to other proteins in vivo. Additionally, delivery
systems enable targeting delivery to the lesion areas via the enhanced permeability and
retention (EPR) effect or stimulus responsive designs. With surface activity and affinity for
lipid membranes, MEL is also applied in drug delivery system to enhance cell uptake and
endosomal escape (Figure 2).
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2. Delivery Vehicles for Melittin

The following two main strategies are adopted to overcome the cytotoxicity and
hemolysis effects of MEL: incorporating nanoparticles that can safely deliver a substantial
amount of MEL through the intravenous route, and modifying MEL to reduce its toxicity.

2.1. Modified MEL and Conjugates

Changing the amino acid sequence of MEL or linking it with polypeptides or other
molecules provides it with certain properties, such as in vivo stability or targeting. The
hemolysis of MEL decreases after phosphorylation [69] or modification of amino acid
sequences to obtain MEL analogs [70,71] has been proved. The derived MEL peptides
have been designed and developed to exert more desirable properties, such as lower
hemolysis effects [72–74], enhanced therapeutic properties [75,76] and even controllable
activation providing targeting ability to tumor tissue [70,77]. Substituting alanine for
leucine drastically reduces the hemolytic activity on human red blood cells, which is only
about 1–2% of the hemolytic activity of MEL, while the antibacterial activity remains
equivalent to MEL [73]. Meanwhile, modifications on the C-terminal region (R22A, K23A,
R24Q) reduce the net charge of the protein and increase its pore-forming ability (20-fold
more potent than MEL) [78].
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In one study of MEL conjugate development, 2,3-dimethylmaleic anhydride (DMMA)
was used to modify the active amino groups in MEL to obtain ultra pH sensitivity [79].
DMMA concealed the original positive charge of MEL and significantly reduced the hemol-
ysis and clearance of reticulo-endothelial system. Other modification methods include
immunoconjugates [46,80] and hybrid peptides [81]. MEL covalently links to the anti-
nucleolar protein aptamer AS1411 and forms a conjugate that can achieve targeted delivery
to multiple cancer cells. Compared with free MEL, this modified MEL has significantly
reduced hemolytic activity and greater cytotoxicity in A549 cells [46]. The bacteria-killing
efficacy of MEL is improved after being decorated on graphene (Gra) or graphene oxide
(GO) nanosheets, which increase its ability to permeate the cell membrane and cause rapid
bacterial leakage [82].

2.2. Nano Delivery Vehicles

Nano drug delivery systems have been widely applied in MEL delivery. Attempts
such as inorganic carriers (including quantum dots, Fe3O4 nanoparticles, and perfluorocar-
bon nanoparticles), polymer carriers (including PLGA nanoparticles and β-cyclodextrin
nanoparticles), and lipid carriers (including lipid disks, lipid nanoparticles, MEL–lipid
conjugate nanoparticles and liposomes) greatly reduce the toxicity of MEL and provide the
possibility of targeting to the intended sites (Table 3).

Table 3. Summary of MEL-loading nano-delivery systems and applications.

Type Loading Strategy Size Applications Reference

Quantum dots MEL was modified to CdSe/ZnS
core quantum dots 5–10 nm

Quantum dots were used to study the
interaction between protein and membrane,
and had potential to deliver MEL in vivo.

[83]

Iron oxide
nanoparticles

MEL and doxorubicin (DOX) were
co-loaded to citric

acid-functionalized Fe3O4
magnetic nanoparticles

(CA-MNPs)

20 nm

The release of both MEL and DOX was
strongly enhanced at pH 4.5 and the

nanoparticles were potentially applied in
magnetically targeted cancer therapy.

[84]

Perfluorocarbon (PFC)
nanoparticles

MEL was added to the
PFC nanoparticles ~290 nm

PFC nanoparticles retained their structural
integrity after the addition and contribute

to the stability and slow dissociation of
MEL from the stabilizing monolayer.

[85]

MEL was mixed and incubated
with PFC nanoparticles 227 nm

The growth of the tumors was inhibited by
24.68% in MDA-MB-435 human

breast cancer.
[86]

MEL derivative peptide was
incubated with PFC nanoparticles

composed of egg
phosphatidylcholineand

dipalmitoylphosphatidylglycerol

~280 nm

This MEL derivative is activated by matrix
metalloproteinase-9 (MMP-9), a protease

overexpressed in many tumor cells. In
addition, treatment of PFC nanoparticles
resulted in ~54% reduction in melanoma

tumor size in vivo.

[70]

Poly (D,L-lactic
acid-coglycolic acid)

(PLGA) nanoparticles

BV-loaded PLGA/
PVA nanoparticles 180 nm

PLGA nanoparticles reduced side effects by
slowing down BV release, and prolonged

suppression of nociceptive behavior in rats
with formalin-induced pain.

[87]

MEL was modified with sodium
dodecyl sulfate and then

formulated into
PLGA nanoparticles

~130 nm

MEL was loaded with a high encapsulation
efficiency in the nanoparticles and the

concentration of half the cell growth (GI50)
in breast cancer MCF-7 cells was

4.42 µg/mL in vitro.

[88]

Tetrameric MEL binds avidly to
PLGA-NPs 110 nm

Biodegradable tetrameric MEL is
encapsulated in nanoparticles at efficiency

of 97% and retains lytic activity.
[89]
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Table 3. Cont.

Type Loading Strategy Size Applications Reference

β-cyclodextrin(β-
CDP)

nanoparticles

5 different functional monomer
adamantane derivatives (Ad-Ds)

incubated with β-CDPs
respectively, and then mixed

with MEL

30–200 nm

The percentage of hemolytic toxicity
neutralization reached 100% at the

concentration of 100 µM. The cytotoxicity
of 30 µg/mL MEL with 2 mmol/mL

nanoparticle decreased by sixfold
compared with that of free MEL in

CCRF-CEM cells.

[90]

Lipodisks

MEL incubated with
PEG-stabilized lipid disks which

composed of
POPC/cholesterol/ceramide-

PEG5000

20–100 nm

PEGylated lipodisks allowed stable
loading of MEL, and retained anti-bacterial
activity of MEL in E. coli, but extended the

actions by slowing down releasing rate.

[91]

Lipid disks was modified by
c(RGDyK)-PEG3400-DSPE 50 nm

The disks induced no hemoglobin release
at maximum tested concentration

(100 µg/mL) and presented significate
targeting and in vivo anti-tumor effect

towards U87 glioma cells.

[92]

MEL loaded lipodisks contained
EGF-conjugated PEG-lipids. ~20 nm

The EGF-targeted lipodisks binded
specifically to A-431 tumor cells, and

resulted in a improved cell-killing effect, as
cell viability decreased 20% compared to

free MEL.

[93]

MEL and paclitaxel were
co-loaded within 9G-A7R

modified lipodisks.
~50 nm

Co-loading prevented leakage of MEL from
the disks and improved cytotoxicity on

U87 cells in vitro and anti-tumor effect in
intracranial glioma models. The synergistic
effect of MEL and paclitaxel was proved as

combination index values was 0.45.

[94]

Lipid nanoparticles
MEL was linked to an amphipathic
peptide then loaded in ultrasmall

lipid nanoparticles
14 nm

The ultrasmall lipid nanoparticles
significantly reduced the hemolysis of MEL
and showed obvious anti-tumor effect in
malignant melanoma B16F10 cells, with

IC50 values being 11.26 µM.

[81]

MEL-lipid conjugate
nanoparticles MEL-phospholipid scaffold 10–20 nm

The nanoparticles induced tumor cell
apoptosis, releasing whole-tumor antigens

in situ, and targeting to lymph nodes.
[95]

Liposomes

MEL was loaded in PEGylated
anti-HER2 immunoliposomes

modified by the complete antibody
(trastuzumab)

139 nm

The immunoliposomes decreased cancer
cells viability in a dose–response manner

and in correlation to the level of HER2
expression in human breast cancer cells.

[96]

MEL loaded liposomes was
modified by antibodies against the
fish viral hemorrhagic septicemia
rhabdovirus (VHSV) glycoprotein

G (gpG)

~140 nm
The in vitro antiviral studies showed that
the liposomes inhibited the infectivity by

95.2% through inactivating VHSV.
[97]

MEL was modified with 2%
poloxamer 188 then loaded in

nano-liposomes.
NA

Multiple hepatic carcinoma cell lines
(Bel-7402, BMMC-7721, HepG2, LM-3, and

Hepa 1–6 cells) were sensitive to the
liposomes, and the IC50 value was close to

free MEL, indicating efficient
anti-tumor effect.

[98]

Hyaluronic acid (HA) modified
MEL-loading liposomes 133 nm

HA enhanced the sustained-release effect
of MEL from the liposomes and provide
targeting ability via specific binding with
CD44, which is highly expressed on the

surface of melanoma B16F10 cells.

[99]

Lipid-coated
polymeric

Nanoparticles

MEL and poly γ-glutamic acid
(γ-PGA) formed nanoparticles
which then coated by cationic

liposomes modified by PEG and
DSPE-PEG-RGD

~100 nm

The hemolytic activity and nonspecific
cytotoxicity of MEL were remarkably
reduced by the lipid-coated polymeric

nanoparticles and the RGD-modified RGD
modified nanoparticles effectively induced

apoptosis in A549 cells.

[100]
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Table 3. Cont.

Type Loading Strategy Size Applications Reference

Stimulus-responsive
delivery systems

MEL was grafted to
nanodiamonds coated with

PEGylated PGA.
220 nm

The nanoparticles were pH sensitive and
steady able to released MEL in an acidic
environment. Toxicity to breast cancer

MFC-7 cells was enhanced than free MEL
in a concentration-dependent manner.

[101]

D-MEL was conjugated with PEG
which is polymerized with
DIPAMA and PDSEMA, to

form micelles.

33 nm

The pH sensitive micellar formulations
unsheathes MEL only at endosomal pH,
remarkably reducing hemolytic effects of

MEL, and IC50 for the micelles in 3T3,
A549, CT26 cancer cells were 8.5 µM,

6.9 µM, 11.6 µM, respectively.

[102]

MEL was loaded in negatively
charged nanospheres consisting of

NIR-absorbing molecule cypate
and HA.

∼50 nm

The nanospheres responsive to both pH
and near-infrared (NIR) laser irradiation

changes into net-like nanofibers and small
nanospheres (~25 nm) when stimulated
and induce cancer cell death, inhibit the
metastatic dissemination of tumor cells,
and facilitated deep tumor penetration o

[103]

Serum albumin (SA)-coated
boehmite scaffold was loaded with

photosensitizer chlorin e6 (Ce6)
and MEL.

184 nm

The nanocarrier exerted high encapsulation
efficiency of MEL and low

hemocompatibility. In vivo phototreatment
of the scaffold eliminated 4T1 cells
remarkably in subcutaneous breast

tumor models.

[104]

MEL loaded in redox-sensitive
nanocomplexes 357 nm

The nanocomplexes decreased hemolysis
of MEL and released MEL responding to
high redox potential environment, and

showed an enhanced cytotoxicity on both
HCT 116 colon cancer cells and MCF-7

breast cancer cells.

[105]

2.2.1. Inorganic Carriers

Quantum dots are small semiconductor particles (size of a few nanometers) with
unique optical and electronic properties as well as potential anti-tumor and photosensitive
properties [106,107]. Dang et al. [83] modified CdSe/ZnS core/shell quantum dots by
using the high-affinity interaction between phosphorylcholine and MEL. A fluorescence
resonance energy transfer (FRET) system was formed between the Cy3b label on MEL
and the quantum dots. This system was used to study the interaction between protein
and membrane, and has potential applications in cancer therapy. The tumor-targeting
and anti-tumor effects of quantum dots were demonstrated in lung cancer [108,109] and
pancreatic cancer cells [110]. However, it is only in primary stage and cannot stably carry
MEL for a long time to avoid MEL hemolysis.

Studies have proved the feasibility of loading MEL on inorganic metal nanoparti-
cles such as iron oxide [111,112] and gold nanoparticles [113,114]. Hematyar et al. [84]
developed a magnetic-responsive co-delivery system for effective cancer therapy. Dox-
orubicin (DOX) and MEL were loaded onto the surface of citric acid-functionalized Fe3O4
magnetic nanoparticles (CA-MNPs) through electrostatic interaction. CA-MNPs possess
superparamagnetic nature and have potential to be directed and localized to tumor targets
by external magnetic fields. The advantage of metal nanoparticles as MEL vectors is that
several metal materials possess stimulus-responsive ability, which enhances targeting trans-
portation of MEL, while some metal-based (gold or silver) nanoparticles have been proven
to exert anti-cancer effects [115], and may obtain a better therapeutic effect in combination
with MEL.

2.2.2. Carbon Nanocarriers

Perfluorocarbon (PFC) nanoparticles are composed of a hydrophobic PFC core sur-
rounded by a phospholipid monolayer where MEL can be stably inserted into the phos-
pholipid monolayer without destroying the nanoparticle structure [70,85,116]. The toxicity
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of MEL to sperm and vaginal epithelial cells is reduced fivefold when delivered in PFC
nanoparticles; to some extent, this characteristic guarantees the safety of MEL as an anti-
HIV agent [116]. PFC nanoparticles extends the half-life of MEL in plasma from 24 min to
more than 300 min and improves safety by promoting the clearance of circulating peptides
through the reticuloendothelial system [86]. However, the PFC-containing MEL nanofor-
mulation has a large particle size (250~300 nm), which may not be conducive to diffusion
and cellular uptake on sites [117].

2.2.3. Polymer Carriers

Poly (D, L-lactic acid-co-glycolic acid) (PLGA) is a common biodegradable polyester
that can carry MEL in nanoparticles [87–89,118]. Yang et al. [88] paired MEL with the anionic
agent sodium lauryl sulfate. The formed complex was highly soluble in organic solvents
and formulated into MEL-PLGA nanoparticles, resulting in improved drug loading effi-
ciency (~90%) and drug content (6–7%). The in vivo experimental study of Jeong et al. [87]
on PLGA-coated BV preparations for pain inhibition showed that PLGA-coated MEL in-
duced by acupuncture therapy significantly prolonged the time of pain suppression in
rats and decreased the side effects by reducing the rate of release from nanoparticles. The
MEL-loaded PLGA microspheres produced in high encapsulation can achieve a controlled
release rate correlated with polymer degradation rate [119]. However, MEL-polymer
nanoparticles formed based on charge interaction face obstacles in the stable loading of
MEL under relatively complicated physiological conditions, and remain unsuitable for
systemic circulation.

β-Cyclodextrin (β-CDP), an easily available polymer material, has a ring-shaped trun-
cated cone topology with a hydrophobic cavity to non-covalently contain diverse guest
molecules [120]. Xu et al. [90] established a library of self-assembled MEL nanoparticles
based on β-CDPs and functional monomer adamantane derivatives (Ad-Ds). The cytotoxi-
city of 30 µg/mL MEL with 2 mmol/mL nanoparticle decreased by sixfold compared with
that of free MEL.

2.2.4. Lipid-Based Carriers

Lipodisk (or lipid disk) is a flat circular lipid bilayer structure where PEGylated lipid
forms the highly curved edges of the lipodisk. Owing to the large curvature of the edge
and hydrophobic interactions, MEL has high affinity with the edge of the lipodisk that
allows it to bind to the disk preferentially; the interaction between MEL and PEG chains is
negligible [91,121]. Gao et al. [92] established a cyclic RGD peptide (c (RGDyK))-modified
lipid disk as a MEL carrier. In vivo experiments suggested that the lipodisk loaded with
MEL significantly reduced the hemolysis effect and effectively inhibited tumor growth in
mice. c (RGDyK) modification of the lipodisk increases its distribution in solid tumors
and its anti-cancer efficiency. Ahlgren et al. [93] reported that EGF-targeted lipodisks had
high MEL-loading efficiency and improved the specificity and cytotoxicity of MEL on
tumor cells. Although the co-loading of MEL and paclitaxel in lipodisks did not induce
hemolysis, the lipodisks loaded with MEL alone exhibited hemolytic toxicity at high
concentrations [94], which may imply that the safety of lipid disks loaded with MEL needs
to be further improved.

Modified MEL can be stably loaded into lipid nanoparticles (LNP). The hemolytic
properties of MEL were concealed when linked to an amphipathic peptide, and then
MEL interacted with phospholipids, self-assemble into lipid nanoparticles with a size
of 15 nm [81]. With high MEL encapsulation rate (>80%) and neutral zeta potential,
this LNP has a significant tumor inhibitory effect on melanoma cancer models, with an
inhibitory rate of 82.8%. Other attempts to load MEL on nanoparticles include the use of a
peptide–phospholipid scaffold to form an ultrasmall (10–20 nm) MEL-lipid nanoparticle
(α-MEL-NP) [95,122] that targets lymph nodes and elicit an anti-tumor effect and immune
response as a nanovaccine. α-MEL-NPs promote the release of whole-tumor antigens in
situ. On the other hand, the size of α-MEL-NPs is optimal so that they can efficiently drain
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into lymphatic capillaries and lymph node, activating resident antigen-presenting cells [95].
As researches have proved a significant increase of affinity of MEL with positively curved
lipid surfaces [123,124], both lipodisks and ultrasmall lipid nanoparticles increase the drug
loading efficiency and loading stability, and has improved biocompatibility.

Liposomes are closed vesicles with a bilayer structure formed when phospholipid or
phospholipid-like substances are dispersed in the aqueous phase [125,126]. MEL is am-
phiphilic, has a positive charge, and can be loaded into the aqueous phase of liposomes [97].
However, necessary measures must be taken to overcome the interaction between MEL and
lipid layer to protect the liposome membrane from this cell-penetrating peptide. The non-
ionic block linear copolymer poloxamer 188, is applied in the preparation of MEL liposomes
to prevent leakage [98,127], resulting in decreased hemolysis and MEL-induced vascular
irritation. Mao et al. [98] attached poloxamer 188 to MEL in order to encapsulate MEL and
form liposomes. In vitro experiments revealed that this material has a significant inhibitory
effect on the survival of hepatocellular carcinoma (HCC) cells and suppresses the growth of
subcutaneous and orthotopic liver cancer transplantation tumors in vivo. A recent attempt
used a liposome modified with dioleoyl-phosphoethanolamine (DOPE)-coupled HA (HA-
DOPE) to deliver MEL; the HA layer on the surface of liposome entraps MEL and prevents
it from leakage [99]. However, the outer-surface modification of liposomes may exert a
limited effect in preventing MEL from affecting the lipid bilayer structure of liposomes.
Further improvement is needed for long-term circulation in vivo.

2.2.5. Lipid-Coated Polymeric Nanoparticles

With the advantages of both the liposomes and polymeric nanoparticles, lipid-coated
nanosized drug delivery systems have properties such as high drug loading capacity, high
stability and biocompatibility, and prolonged circulation time in vivo [128], which make
them promising for targeting delivery of MEL. Ye et al. [100] prepared a nanoparticle
inner core with negative charges containing MEL and poly γ-glutamic acid (γ-PGA), an
anionic polymer. The core is then coated by the cationic lipid to form liposomes, which
effectively prevent the leakage of MEL. The outer shell is composed of PEG and PEG-
targeting molecule (DSPE-PEG-RGD), providing stability in long-term circulation, capacity
of selective binding with target tumor cells and cytolytic activity via apoptosis induction.

2.2.6. Stimulus-Responsive Delivery Systems

Multiple stimulus-responsive nano delivery systems have been used to deliver MEL
to attenuate the cytotoxicity of MEL during systemic circulation and to achieve its tar-
geted delivery, including pH-responsive [101–103], magnetic-responsive [84], photosensi-
tive [103,104] and redox-sensitive [105] delivery systems. The stimulus-responsive carrier
maintains a stable state during circulation in the body and is stimulated and changes
conformation or structure when the nanocarrier reaches the target site and releases MEL to
a therapeutic concentration [84,101,104]. Similar to pH-sensitive MEL, the pH-responsive
polymer is converted in a lower pH environment and releases active MEL. Lai et al. [101]
developed a nanoparticle consisting of nanodiamonds and PEGylated polyglutamic acid,
which exhibited enhanced cytotoxicity towards MCF-7 cells. A near-infrared (NIR) laser
irradiation responsive nanosystem can be assembled using MEL, NIR-absorbing molecule
cypate, and HA [103], of which size and morphology transform successively under changes
in pH and NIR laser irradiation.

3. Nano Drug Delivery System with Melittin as a Functional Molecule
3.1. Melittin Enables Efficient Vesicular Escape

The entry of exogenously applied nuclear acid into the cytoplasm and its subsequent
transport into the nucleus is a major cellular barrier for nonviral gene delivery vectors.
A variety of strategies have been applied with the purposes of targeted delivery to the
target sites and improved cellular uptake and endosome release, including polymer-or
lipid-based nanoparticles [129] and liposomes [130] etc. As a cell-penetrating peptide, MEL
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can improve the cellular uptake of therapeutic compounds and the endosomal escape of
nanoparticles [131,132]. With its strong surface activity, MEL can work as a penetrating
peptide to promote escape from endosomes, thus increasing the bioavailability of nanopar-
ticles [133]. Such features makes MEL popular as an oligonucleotide transfection agent [5],
as the intracellular delivery of gene has always been a technical obstacle to overcome
urgently [134].

The endosomal escape effect of conjugate of MEL with commonly used polymers for
nucleic acid delivery has been widely verified. Transfection experiments on a variety of
cell lines have shown that the transfection efficiency of MEL-PEI-luciferase DNA conju-
gates is up to 700-fold higher than that of controlled group (PEI-DNA conjugates) [133].
Ogris et al. [133] developed a conjugate that covalently attached MEL to poly (ethylenimine)
(PEI) condensed DNA into small, discrete particles (<100 nm in diameter). Compared with
PEI, the transfection activity of this conjugate was strongly increased within a broad range
of cell lines and types. The connection between MEL and polymer has also been explored.
PEI and MEL binding experiment [135] showed that the conjugate connected to the N-
terminal of MEL (N-mel-PEI) has a low toxicity and a high transfection efficiency, whereas
the PEI bound to the C-terminal of MEL (C-mel-PEI) shows a high cytotoxicity. A possible
explanation is that the hydrophobic N-terminal of C-mel-PEI is easily inserted into the cell
membrane and facilitates water flow into the bilayer, leading to membrane disturbance and
instability. By contrast, N-mel-PEI tends to form a parallel conformation. This speculation
is not universal; a stearyl attached to the C-terminus of MEL (stearyl-rMel) shows great
efficiency, and the stearyl-rMel/p53 plasmid complex exhibits high p53 expression and
anti-tumor activity [136].

3.2. Enhanced Drug Delivery of MEL as an Adjuvant

MEL has been widely studied and combined with various polymers to develop new,
efficient, and safe non-viral gene drug delivery systems. In addition, studies reveal that
MEL is able to act as attractant for certain receptors, such as PLA2 [38,137], for nano
drug modification.

The problem with the use of MEL as an endosomal penetrating peptide is its non-
specificity to the lipid membrane; the nanocarrier directly inserted with MEL will present a
major safety risk. Therefore, MEL must be masked until it reaches the target sites. Oude
Blenke et al. [138] explored the coupling of MEL to liposomes via functionalized PEG-lipids
following aldehyde–hydrazide chemistry. At endosomal pH, the acid-labile hydrazone
bond hydrolyzes and releases the peptide. Similarly, MEL can be applied in the conjugates
of siRNA with pH-sensitive polymers by masking it with pH-labile dimethylmaleic anhy-
dride (DMMAn) [139–141], or concealing it in micellar structure consisting of pH-sensitive
poly (2-diisopropylaminoethyl methacrylate) (p (DIPAMA)) [142,143]. Another alternative
strategy is to modify the peptide to reduce cytotoxicity. Changes in hemolytic activity
can be achieved by MEL derivative peptides including pH-sensitive peptides [144,145],
and light-sensitive peptides [146]. Chen et al. [147] transformed MEL into a sulfhydryl
polymerized peptide and incubated with plasmid DNA to obtain peptide DNA conden-
sates. The hemolytic potency of poly MEL was efficiently covered when combined to DNA.
Modified MEL peptide p5RHH (sequence VLTTGLPALISWIKRKRQQ) transfects siRNA
with an IC50 as low as 25 nM and possesses minimal cytotoxicity at the highest tested dose
(10 µM) [71,148]. p5RHH also works as a linker inserted into nanoparticles and liposomes,
and incorporates targeting ligands, imaging agents, and therapeutic drugs into particles
without affecting their integrity [149].

The immune effects of MEL make it an effective adjuvant for vaccines. Owing to
its ability to increase IFN-γ and IL-1β and decrease IL-10, MEL was selected as suitable
adjuvant candidate for Helicobacter pylori intranasal vaccine development [150]. After
deletion of the last four residues of the C-terminal region, with the aim of lowering the
interactions with the cell membranes, the derived MEL peptide was linked to epitopes
as an adjuvant. As the vaccine is administrated through the nasal mucosa, the side effect
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of MEL is largely eliminated. Another study showed an enhanced absorption effect of
MEL as a mucosal adjuvant [151]. Compared with the control group and those receiving
intranasal administration of free antigen, BALB/c mice administered with 4 µg of MEL and
tetanus toxoid/diphtheria toxoid remarkably enhanced the antibody titers and prolonged
the immune responses.

4. Conclusions and Prospect

MEL is a polypeptide with various pharmacological properties and has great potential
in anti-inflammatory, anti-tumor, and anti-viral applications. Although pure MEL has
toxicity and hemolytic properties, the use of protection or packaging greatly reduces its
systemic toxicity. New strategies based on MEL can deliver drugs safely and effectively
in the body. The modified peptide transduction domain and MEL-based technology are
specifically designed to enhance endosomal escape and enable new nanoscale strategies
to complete the arduous task of in vivo drug delivery. Upcoming designs such as stimu-
lus responsiveness and masking are adopted in the transportation and functionalization
of MEL.

However, challenges with respect to MEL-based nanodrug delivery systems still exist.
Current methods cannot completely avoid the side effects of MEL, and the transfection
efficiency of gene delivery systems still has room for improvement. Further understanding
the mechanism of interaction of MEL with membrane and endosomal escape is crucial for
the development of its delivery system.

Despite the limitations and challenges of MEL delivery systems, the development of
various novel delivery strategies and clinical trials for various diseases is being undertaken
to explore an ideal delivery system for MEL. The main directions of advancement are
to design and synthesize modified MEL with weakened toxicity while maintaining its
pharmacological effects, and to develop more stable and biocompatible delivery systems
with improved targeting and controlled releasing ability. Other measures focused on MEL
treatment include construction of tumor targeted gene vector containing MEL coding
sequence that induced tumor cell-specific MEL expression.
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