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ARTICLE INFO ABSTRACT

Keywords: In the last decade, with a growing emphasis on healthy diets, functional edible oils with high nutritional quality
Fatty acid are becoming increasingly popular around the world. This study systematically compared the chemical
Phytochemical

composition and protective effect of 22 vegetable oils using multivariate chemometric tools. The results showed
that the fatty acid composition and minor compounds were extremely variable among tested oils. Hierarchical
cluster and principal component analysis discriminated these oils according to the tocopherol and phytosterol
contents. The Pearson’s correlation analysis indicated that in vitro radical scavenging capacity was significantly
correlated to polyphenol, tocopherol, and squalene. Additionally, the ameliorate effects on the heat and
oxidative stress, ROS contents, and antioxidant enzyme activities were measured in Caenorhabditis elegans. The
results showed that the antioxidant activity and stress resistance were positively correlated to polyphenol,
tocopherol, phytosterol, MUFA, and PUFA, respectively. This study may offer an insight into oil discrimination
and functional oil exploitation.

Antioxidant capacity
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1. Introduction

Aging is defined as a universal and irreversible natural deterioration
of functions in cells, tissues, organs, and organisms, which significantly
raises the risk of developing many aging-related diseases, including
type-2 diabetes mellitus, neurodegenerative disease, cancer, cardiovas-
cular diseases, and other chronic diseases. Exploring potential strategies
to delay aging and ameliorate the pathogenesis of aging has attracted
tremendous attention. In particular, research concentrated on dietary
and nutritional interventions to improve the healthspan has become a
hot topic in this field. Many studies have shown that supplementation of
dietary bioactive substances significantly extended the lifespan and
healthspan across different animal models (Yang et al., 2018).

Edible plant oils (EPOs) are dietary fatty acids derived from seeds,
pulps, fruits, and plumules of oil crops. As an indispensable nutritional
resource for human health, EPOs is primarily consumed for edible
purposes and applied in the cosmetics and nutraceutical industry. In the
market, the conventional EPOs included soybean oil, sunflower oil,
rapeseed oil, corn oil, and peanut oil. Recently, with the increasing
emphasis on healthy diets, consuming novel EPOs with high nutritional
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value has been encouraged by the World Health Organization (Mensink,
2016). The standpoint of using EPOs with high unsaturated fatty acids
instead of animal oil for cooking to reduce the mortality of cardiovas-
cular and cerebrovascular diseases is increasingly recognized (Przykaza
et al., 2021).

The adherence dietary habit to EPOs derived from some woody
crops, such as olive oil, walnut oil and oil-tea seed (Camellia oleifera
Abel.) oil, contributes to numerous health benefits, like reducing the risk
of aging-associated diseases, extending longevity, and promoting
healthspan (Yang et al., 2018). The beneficial effects between these
EPOs are mainly related to unsaturated fatty acids and various func-
tional phytochemicals, including polyphenol, tocopherol, squalene, and
phytosterol. In addition, adjusting the ratio of certain unsaturated fatty
acids, low level of n-6/n-3 Polyunsaturated fatty acids (PUFA) ratio in
the diet, for instance, improves lipid metabolism, inflammation, and
oxidative stress in rats (Zou et al., 2018).

For decades, dozens of new oils crops have been approved to be
cultivated in China, which leads to a growing number of novel EPOs
emerging in the market. These novel lipid products are reported to exert
many unique nutritional characteristics, such as anti-obesity, anti-
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hyperlipidemia, anti-arthritic activities, anti-inflammation, and anti-
oxidative stress (Yang et al., 2018). In order to screen high-nutritional
value edible oils, comprehensive composition determination and bio-
activities evaluation coupling with chemometrics tools had been applied
based on nutrition, composition, and functional properties among EPOs.
Several studies utilized hierarchical cluster analysis (HCA) and principal
component analysis (PCA) to discriminate different EPOs according to
the lipid composition and minor constituent profile (Deng et al., 2018;
Shi et al., 2018). The Pearson’s correlation analysis was applied to
demonstrate that the phenolic content in extra virgin olive oils was
positively correlated to the antioxidant activity of protecting cells from
oxidative stress (Presti et al., 2017). Multiple linear regression analysis
of different walnut oils indicated unsaturated fatty acid, certain kinds of
saturated fatty acid, like C16:0 and C20:0, tocopherols, squalene, and
phytosterols, disparately contribute to the free radical scavenging ca-
pacity (Gao et al., 2019). Many efforts went into assessing the associa-
tions between oils composition and ROS scavenging effects based on in
vitro assay. However, the correlation to in vivo antioxidant properties,
such as enhancing stress resistance and triggering the intrinsic antioxi-
dant defense system in living organisms, remains unclear (Shi et al.,
2018).

The soil-dwelling nematode Caenorhabditis elegans has emerged as a
conventional in vivo animal model to study aging and interventions
affecting the aging process. It is not only because of their short lifespan
and ease of pharmacological manipulations but also the highly
conserved genome sequences. For example, the core lipid metabolic
pathways, including fatty acid p-oxidation, transporter, synthesis,
elongation, and desaturation, are well conserved from worms to mam-
mals. Studies on lipid metabolism using C. elegans have attracted
extensive attention due to human obesity and diabetes epidemics. Since
only 20% of fatty acid can be synthesized de novo from acetyl-CoA in
worms, the roles of dietary fatty acids for worms are emerging as a hot
spot in this field. Recently, numerous studies have concentrated on the
connection between lipids and lifespan in C. elegans (Chen et al., 2019).
Some dietary and endogenous synthesized MUFAs were reported to
regulate the longevity and healthspan of worms (Han et al., 2017; Watts
& Ristow, 2017). In addition, minor compounds in EPOs, like poly-
phenol, tocopherols, and phytosterols, were also proved to enhance the
stress resistance in worms (Chang et al., 2021). Although a large number
of studies revealed these beneficial effects from the perspective of single
vegetable oil or oil-derived substance. The comparison studies among
different EPOs are still needed to clarify the preferable features of
chemical composition contributing to the healthspan promoting effects.

In the present study, the fatty acid composition of 22 EPOs was
characterized. The content of major bioactive compounds in EPOs,
including polyphenol, tocopherols, squalene, and phytosterols, were
measured. In vitro free radical scavenging capacities were assessed by
DPPH and FRAP. In addition, the in vivo stress resistance activities were
tested in C. elegans. The similarities/differences and the correlation be-
tween chemical composition and healthspan promoting effects of 22
EPOs were analyzed by various chemometrics tools.

2. Materials and methods
2.1. Materials and reagents

Vegetable oils, namely, peanut oil (PNO), soybean oil (SBO), corn oil
(CO), flaxseed oil (FO), rapeseed oil (RSO), sunflower seed oil (SUSO),
sesame seed oil (SESO), cotton seed oil (CSO), rice bran oil (RBO),
pumpkin seed oil (PKSO), hemp seed oil (HSO), perilla seed oil (PLSO),
peony seed oil (PNSO), safflower seed oil (SASO), grape seed oil (GSO),
and seven woody oil, namely, walnut oil (WO), palm oil (PO), coconut
oil (CNO), olive oil (00), oil-tea seed oil (OSO), yellowhorn seed oil
(YSO), sacha inchi oil (SIO) were obtained from local markets.

The Standards for fatty acid methyl esters, a-tocopherol, squalene,
campesterol, stigmasterol, and p-sitosterol were from Sigma-Aldrich (St.
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Louis, MO, USA). The solvents used for the HPLC analysis are chroma-
tography grade from Merck (Darmstadt, Germany). 1,1-Diphenyl-2-pic-
rylhydrazyl (DPPH), 6-hydroxy-2,5,7,8-tetramethylchroman-2-
carboxylic acid (Trolox), and 2',7’-dichlorofluorescein diacetate
(H2DCF-DA) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Other chemicals and solvents, like Folin-Ciocalteu, sodium carbonate,
and potassium persulfate, were analytical grade purchased from Aladdin
(Shanghai, China). Superoxide dismutase (SOD), catalase (CAT), and
malondialdehyde (MDA) assay kits were purchased from Nanjing Jian-
cheng Bioengineering Institute (Nanjing, China).

2.2. Animals

Wild-type N2 strains were obtained from Caenorhabditis Genetics
Centre (CGC) and maintained at 20 °C on nematode growth medium
(NGM). 0.25 mg/mL of EPO was selected for all worm assays based on
concentration screens (Supplementary Data Fig. S4).

2.3. Analysis of peroxide value and acidity

The peroxide value and acidity of different EPOs were measured by
the method of American Oil Chemists’ Society (AOCS., 1997; AOCS.,
2009).

2.4. Analysis of fatty acid composition

Methyl esterification of EPOs samples was prepared following a
previous study with some modification (Gao et al., 2019). The obtained
fatty acid methyl esters (FAME) was analyzed by an Agilent 7890B gas
chromatograph (GC) (Agilent Technologies, Santa Clara, CA, USA)
equipped with an HP-5 MS capillary column (0.25 pm, 30.0 m x 0.22
mm) and a 5977A mass detector (MSD) (Agilent Technologies, Santa
Clara, CA, USA). The temperature of the injector was 250 °C, and the
injection volume was 1.0 pL. The split ratio was set at 50:1. The oven
temperature started at 80 °C for 1 min, then raised to 160 °C for 1 min,
and finally programmed to 200 °C for 1 min. Helium was used as the
carrier gas. The conditions for mass detector were as follows Electron
impact (EI) ion source, scan range from 50 to 500 m/z, and 3 mins of
solvent delay. The peaks were identified by comparing their retention
index (RI) with standards and mass spectra with a computerized MS-
database using NIST data.

2.5. Analysis of tocopherols and squalene

The contents of tocopherols and squalene were measured by an
Agilent 1260 HPLC system (Agilent Technologies, Santa Clara, CA, USA)
equipped with a ZORBAX SB-C18 column (4.6 mm, 150 mm, 5.0 pm)
and a Diode Array Detector (DAD) following a previous study with some
modification (Gao et al., 2019). In brief, phase A was methanol: aceto-
nitrile (70:30) and phase B was methanol: isopropanol: n-hexane
(15:65:20). Accurately weighed 1.5 g of oil, and dissolved it in phase B
and fixed the volume in a 25 mL volumetric flask. Similarly, squalene
and tocopherol standards were dissolved in phase B and mixed standard
curve was prepared so that the standard curve range of squalene is
5-300 pg/mL and the standard curve concentration of tocopherol is
10-700 pug/mL. The gradient elution profile was programmed as follows:
0-25 min, 100% phase A; 25-27 min, 100% — 30% phase A; 27-37 min,
30% phase A; 37-39 min, 30-100% phase A; 39-50 min, 100% phase A.
The measurement conditions for tocopherols and squalene were as fol-
lows: 10.0 pL of injection volume, mobile phase with a flow rate of 0.8
mL/min, 35 °C of column temperature, and 210 nm of determining
wavelength.

2.6. Analysis of phytosterols

The extraction of phytosterols from EPOs was based on the previous
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heat stress. The number of alive, escaped, and dead worms were checked
every hour for a total of 12 h. The results for heat stress resistance were
shown as the mean lifespan calculated by Kaplan-Meier analysis and log-
rank test.

2.10. Analysis of intracellular ROS

The intracellular reactive oxygen species (ROS) contents in worms
after incubation with EPOs were evaluated by HyDCF-DA assay ac-
cording to the method described previously (Feng et al., 2018). In brief,
synchronized L1 larvae were cultured with sample oils. After 48 h
treatment, worms were washed three times with S-basal. In order to
induce ROS generation, the worms were exposed to 10 mM paraquat for
24 h. Then the worms were incubated with 20 pM H2DCF-DA, a ROS
indicator, for half-hour. The fluorescent oxidized products were
measured by a fluorescence microscope (BX53, Olympus Corporation,
Tokyo, Japan). The level of intracellular ROS was quantified by Image J
software (National Institutes of Health, Bethesda, MD, USA). At least 20
worms were tested in each group with three replications. Results were
expressed as intracellular ROS inhibition abilities calculated by
comparing to the non-oil treated control group.

2.11. Analysis of in vivo antioxidant enzyme activity

Superoxide dismutases (SODs) and catalases (CATs) activities in
worms were determined as previously described (Feng et al., 2018).
Briefly, synchronized L1 worms were treated with samples for 48 h.
Then, the worms were moved to 35 °C to induce the activities of SODs
and CATs. After 3 h of treatment, worms were washed with M9 buffer
and crushed by an ultrasonic wave. The supernatants were collected for
total protein content and enzyme activities test following the guide from
corresponding kits (Nanjing Jiancheng Bioengineering Institute, Nanj-
ing, China). The total protein content was used to normalize the enzyme
activities among different groups.

2.12. Analysis of malondialdehyde

The level of malondialdehyde (MDA) was determined as previously
described with slight modifications (Feng et al., 2018). In brief, age-
synchronized wild-type nematodes were treated with oil samples at
25 °C. After 48 h, worms were washed with M9 buffer and crushed by an
ultrasonic wave. The supernatants were collected for total protein con-
tent and MDA content test following the guide from corresponding kits
(Nanjing Jiancheng Bioengineering Institute, Nanjing, China). The total
protein content was used to normalize the MDA level among different
groups. Results were expressed as MDA inhibition abilities calculated by
comparing to the non-oil treated control group.

2.13. Statistical analysis

All data were expressed as the mean + standard deviation (S.D.)
from three replications. Survival analysis was performed by GraphPad
Prism 8.0 (GraphPad Prism Software Inc., San Diego, CA, USA). The
significant differences (P < 0.05) were calculated using one-way anal-
ysis of variance (ANOVA) with post-hoc contrasts by Bonferroni’s test.
HCA was used to discriminate different oils, and PCA and bivariate
correlations analysis (Pearson’s Correlation) were employed to identify
the interrelationships among EPOs with SIMCA 14.1 software (Umetrics,
Umea, Sweden).

3. Results and discussion
3.1. Physicochemical properties

The physicochemical properties of different EPOs are listed in
Table 1. Acid values represent the rancidity of oil samples, which is
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mainly attributed to the decomposition of triacylglycerol and the in-
crease of free fatty acids. Edible oil with a low acid value is regarded as a
high-quality product. In the present study, the acid values of all tested
EPOs ranging from 0.08 to 1.06 mg KOH/g were within the permitted
levels according to the Hygienic Standard of Edible Vegetable Oil in
China (<3 mg KOH/g). Hemp seed oil (HSO) had the highest acid value,
while walnut oil (WO) had the lowest.

Peroxide values were used to estimate the oxidation degree of oil
samples. EPO with a low peroxide value (<7.5 mmol/kg) is considered
as a high-quality product. In tested samples, cotton seed oil (CSO) had
the highest peroxide value of 6.81 mmol/kg, followed by rapeseed oil
(RSO) with the peroxide value of 5.40 mmol/kg. In contrast, grape seed
oil (GSO) and safflower seed oil (SASO) had relatively low peroxide
values, 0.21 and 0.31 mmol/kg, respectively. Overall, the acid and
peroxide values of all EPOs used in the present study conformed to the
edible vegetable oil standard.

3.2. Fatty acid composition

As one of the essential nutrients, dietary fatty acids are divided into
saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), and
polyunsaturated fatty acid (PUFA) according to the number of double
carbon-carbon bonds. The composition of dietary fatty acids has dra-
matic effects on the health of mammals. Some SFAs were reported to
exhibit detrimental effects, whereas intake of MUFAs and PUFAs
reduced the risks of cardiovascular and other metabolic diseases, sub-
sequently improving the healthspan (Lee et al., 2015). Therefore, the
lipid composition is crucial for evaluating the quality of edible oils. The
dominating fatty acid components in 22 EPOs, including palmitic acid
(C16:0), stearic acid (C18:0), oleic acid (C18:1), linoleic acid (C18:2),
and linolenic acid (C18:3), were listed in Table 1. The total SFA content
was also calculated from the amalgamation of saturated fatty acids from
C8:0 to C22:0. The total MUFA content was obtained by combining
C18:1, C20:1, and C22:1. Furthermore, the total PUFA content was
amalgamated by C18:2 and C18:3. Coconut oil (CNO) had the highest
SFA content which mainly consisted of medium-chain SFAs, like octa-
noic acid (C8:0), decanoic acid (C10:0), lauric acid (C12:0), and myristic
acid (C14:0). The medium-chain SFAs accounted for 81.42% of total
lipid content in CNO. This distinctive composition pattern was in
agreement with other reported coconut oils (Narayanankutty, Illam, &
Raghavamenon, 2018). In conventional oil crops, flaxseed oil (FO) had
the highest unsaturated fatty acids (85.96 g/100 g) which was basically
in line with a previous report (Varas Condori et al., 2020). However, in
another traditional vegetable oil, the content of sesame oil (SESO) was
slightly lower than that of other results, which might be attributed to
different sesame cultivars (Rodriguez et al., 2020). Compared with
conventional oil crops, most of novel oilseed crops were abundant with
unsaturated fatty acids, and the unsaturated fatty acids content of PKSO,
HSO, PLSO and PNSO exceeded 81 g/100 g, similar to former reports
(Tura et al., 2022; X. Wang et al., 2021; Z. Wang et al., 2021). The
relatively higher MUFA contents were demonstrated from three woody
oils, oil-tea oil (0SO), palm oil (PO), and olive oil (OO). The levels of
oleic acid, the major MUFA in OSO and OO, were 64.53 and 50.24 g/
100 g, lower than former reports, 76.18% and 72.77%, respectively
(Guo et al., 2017; Liu et al., 2021; Z. Wang et al., 2021; Suealek et al.,
2021). The oleic acid in PO was 56.26 g/100 g which was in agreement
with a crude palm oil study ranging from 47.4% to 53.5% (Morcillo
et al., 2021). For PUFA, peony seed oil (PNSO), perilla seed oil (PLSO),
and flaxseed oil (FO) had comparative higher contents ranging from
81.86 to 89.35 g/100 g. Similar to previous reports, linolenic acid
comprised the majority of PUFA in FO, PNSO, and PLSO (Yang et al.,
2018, Varas Condori et al., 2020), while grape seed oil (GSO), walnut oil
(WO), safflower oil (SASO), and hemp seed oil (HSO) contained high
amounts of linoleic acid, ranged from 57.85 to 60.64 g/100 g (Yang
et al.,, 2018). The linoleic acid in sacha inchi oil was 37.72 g/100 g,
which was slightly higher than 33.4 g/100 g from the report of
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Table 2

Total polyphenol contents (GAE mg/kg) and phytochemical contents (mg/100 g) in 22 EPOs.

Woody oil crops

Novel oilseed crops

Conventional oil crops

Component

SBO co FO RSO SUSO SESO CSO RBO PKSO HSO PLSO PNSO SASO GSO WO PO CNO 00 0so YSO SIO

PNO

8.15 +

+ 474 3.12

62.96 74.56 31.57
78.60

+7.86 +7.33 £7.40

67.58

12.09 96.21 98.56 19.93 41.67 45.69 38.63 49.41 30.39 151.70  43.57 49.87 45.59
+3.10

24.05
+ 5.06
92.98

29.08

41.72
+ 3.67

37.47 38.05
+5.61 +5.68
57.69

Polyphenol

+ 8.00

+300 +893 +£580 £555 +£9.32 +£513

+9.12

+11.60 +13.69 +1.96

154.11

=+ 3.75

110.12

171.52

38.81

51.86

448.64 60250 232,10 121.21 369.47 193.23 328.16 245.08

235.57 120.58 498.40

216.98

122.35

Tocopherol

+1.99 +8.13
11.26

+0.46 +464 +£29.77 +£553 +157 +070 +0.37 +0.63
11.82 48.31 14.52

18.69

+ 0.84
27.90

+1.09 +£230 +£323 +285 +164 +£290 +190 +£7.30 £8.38 +£1254 +£4.53
82.98 18.68 15.78 75.79 66.69

14.65

51.47 234.75 21.25

9.04 +
3.58
nd

5.61 +
0.16

13.91

8.76 +
0.08

5.70 +

0.01

8.13 +
0.62

13.74

Squalene

+0.25 +4.28

+0.67 +4.71 +298 +0.58
nd

+3.31
0.17

+1.18 +£0.33 +£072 +£0.29
45.53

+4.38

+0.44 + 0.04

+1.78

13.11

+0.38 +£1.12

3.00

1.54 +
0.61

nd

3.54 +

0.47

1.87 +
1.37

3.03 +

0.45

1.20 +
0.05
nd

5.34 +

1.12

7.20 +
0.62

132.13

8.54 +
0.63
nd

315+ 6.52+
2.80

0.49

48.22

43.65

10.64

Campesterol

+0.02 +0.07 0.82

0.88

+0.19

+ 5.66
90.42

+ 3.99

+10.84 +2.48

9.59 +
5.43

+0.60 +1.95

3.11

2,60+ nd 24.31
1.20

9.24 +

3.10

494+ nd

1.36

1.81 +
0.55

8.37 +
0.05

0.55 +

0.78

3.52 +
0.14

5.44 +
4.20

332+ 420+
0.44

3.10 +
0.34 0.14

12.73

Stigmasterol

+5.21
44.13

+0.22 +0.35 0.69

8.09

+2.30

+0.44 +1.76

35.23

419+ 11.22
2.

11.65

4.98

201.57 23.01 92.51 41.67 43.43 181.62 394.59 107.49 59.94 62.25 78.87 33.17 59.50 11.56

39.54

p-sitosterol

+0.59 £8.61
11.22

10

+1.10 +£1.01 +5.49
9.13

+661 +£158 +£399 +10.90 =+3.80
80.07 38.00 66.30

75.96

+2.01
67.69

+15.63 +1290 +20.01 +10.44 +11.45 +8.54

+531 +0.61
39.22 144.05

+1.57 £1.46

41.33

70.16

6.79 +
3.30

24.44

8.55

11.56

190.16 617.13 156.54

55.40

49.02

254.81

62.91

Phytosterol

+0.59 +11.49

+1.30 +£0.73 £5.36

+13.63 =+ 3.80

+7.67 +£153 +4.99

+ 3.41

+19.48 +13.83 +21.41 +11.07 +14.81 =+8.87

+21.58 +1.53

+2.61 =+1.65

Values are mean + S.D.
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Rodriguez et al, but the linolenic acid content (45.41 g/100 g) was lower
than the reported results (53.8 g/100 g), which might due to different
the cultivar, location, and growing condition (Rodriguez et al. 2021).
Overall, our data are basically in line with previous reports (Calzolari
et al., 2021; Gu et al., 2019; Liu et al., 2021; Sun et al. 2021).

3.3. Oil-derived bioactive compounds

Total polyphenol represents a large class of potential natural anti-
oxidants consisting of phenolic acids and other phenolic compounds in
edible plant oils. Clinical trials and epidemiological studies have
revealed that dietary phenolic compounds exhibit broad therapeutic
health effects for various chronic diseases, including cancer, neurode-
generative diseases, diabetes, and cardiovascular diseases. In recent
decades, their roles in intervening in aging and aging-related diseases
have been intensively studied. Dietary phenolic compounds, including
EGCG, epicatechin, resveratrol, and quercetin, have been demonstrated
to improve lifespan and healthspan in different animal models (Y. Wang
et al., 2021). In the present study, the total polyphenol content TPC in
tested EPOs ranging from 12.09 to 151.70 GAE mg/kg was listed in
Table 2. Grape seed oil (GSO) had the highest polyphenol levels of
151.70 GAE mg/kg, followed by cotton seed oil (CSO) and sesame seed
oil (SESO) with the polyphenol content of 98.56 and 96.21 GAE mg/kg.
These results were slightly different from previous studies. Wen et al.
demonstrated that the total phenol content in grape seed oil was 75.81
GAE mg/kg (Wen et al., 2016). The phenolic contents in sesame seed oil
samples varied from 10.75 to 250.14 GAE mg/kg (Shi et al., 2018).
Compared to the TPC of other EPOs with literature, oil-tea seed oil
(0SO0) and corn oil (CO) have relatively higher polyphenol contents of
74.56 and 41.72 GAE mg/kg. Nevertheless, TPC in pumpkin seed oil
(PKSO), safflower seed oil (SASO), and rice bran oil (RBO) were
comparatively low, which were 41.67, 30.39, and 19.93 GAE mg/kg,
compared to the previous results of 128.84, 231.40, and 56.32 GAE mg/
kg, respectively (Jiao et al., 2014; Yang et al., 2018). Among tested oils,
The TPC of PNSO was 49.41 GAE mg/kg which was higher than a pre-
vious result of 4.78 GAE mg/kg (L. Wang et al., 2021). Furthermore,
sunflower seed oil (SUSO) had the lowest polyphenol levels of 12.09
GAE mg/kg, higher than a former study reporting 3.30 GAE mg/kg of
TPC (Janu et al., 2014).

Tocopherols are a series of methylated phenols resembling vitamin E.
a-tocopherol is regarded as the dominant form because it is the primary
target of tocopherol transfer protein in the liver. These fat-soluble an-
tioxidants can prevent the peroxidation of unsaturated lipids via chain-
breaking reactions, which improve the oxidation stability of edible oils.
Recently, their antioxidant capacities have been reported to be linked
with potential therapeutic effects in preventing aging-associated dis-
eases, like cardiovascular and Alzheimer’s disease (Yang et al., 2018). As
shown in Table 2, the contents of a-tocopherols varied from 38.81 mg/
kg to 602.51 mg/kg. PKSO, CSO, and RBO had relatively high
a-tocopherol, which were 602.51, 498.40, and 448.64 mg/100 g,
respectively. These results differed slightly from the previously reported
values, 772.31 mg/100 g in PKSO, 410.4 mg/100 g in CSO, and 316 mg/
kg in RBO (El-Mallah & El-Shami, 2011; Jiao et al., 2014; Xu et al.,
2021). In addition, the tocopherols content in CO, FO, HSO, PNSO, GSO
and WO also exceeded 200 mg/100 g. Among them, the contents of HSO
and FO were higher than previous results (Tura et al., 2022, Varas
Condori et al., 2020).

Squalene is a highly unsaturated triterpene which firstly isolated
from shark liver. It also presents in the unsaponifiable fraction of plant-
derived oils, like olive and flaxseed oil. This deep-sea-originated product
is exploited as nutraceutical compounds to reduce serum cholesterol
levels, enhance immune responses, and ameliorate the pathogenesis of
aging-related diseases (Yang et al., 2018). As shown in Table 2, olive oil
possessed the highest squalenes level of 234.75 mg/100 g among 22
EPOs, which was in accordance with former reports (Bondioli et al.,
1993). Followed by flaxseed oil, the content was 82.98 mg/100 g. The
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Fig. 1. The correlation heatmap between chemical compositions and biological activities.

damage during chronic oxidative stress is considered as an important
contributor to the pathogenesis of aging and aging-related diseases.
Therefore, the supplementation of dietary antioxidants to alleviate
oxidative stress provides a potential strategy to improve healthspan. The
free radical scavenging capacity of dietary antioxidants can be evaluated
by numerous in vitro assays. However, the corresponding in vivo anti-
oxidant activity may differ from ROS scavenging capacity, which cannot
be simply extrapolated from in vitro results. In this study, the protective
effect of EPOs against oxidative stress was assessed in an in vivo nema-
tode model. As shown in Table 3, 13 of 22 EPOs significantly amelio-
rated the paraquat-induced acute oxidative stress, increasing the mean
lifespan from 4.48 h in FO to 8.02 h in peony seed oil (PNSO), respec-
tively. Polyphenol-riched EPOs, CSO exhibiting remarkable free radical
scavenging properties in vitro only slightly prolonged the mean survival
time in worms. These results were presumably ascribed to the wide
variety of phenolic composition in tested EPOs. Different phenolic
compounds exhibited distinctive in vivo antioxidant properties accord-
ing to their structure and relative content. Oleuropein derivatives
exhibit a higher positive correlation to oxygen radical absorbance ca-
pacity (ORAC) compared to tyrosol, hydroxytyrosol, and ligstroside
aglycone in olive oil (Presti et al., 2017). However, specific phenolic
compounds, like gossypol in cotton seed oil, were reported to possess
toxicity to a certain extent (Zhu et al., 2019). Moreover, excess poly-
phenol supplementation in terms of worms might intensify the oxidative
stress by pro-oxidant effect rather than antioxidant effect. From the
correlation heatmap in Fig. 1, a positive correlation but not statistically
significant was observed between oxidative stress tolerance and palmitic

acid, linolenic acid, and squalene content.

Extensive studies suggested that enhancing abiotic stress tolerance,
like thermal stress, is positively coupled with healthspan improvement.
As shown in Table 3, CO, RBO, and PNSO considerably improved heat
stress resistance in worms, which significantly increased the mean sur-
vival time against lethal heat stress from 10.87 to 11.39 h, respectively.
In accordance with former results, EPOs exerting significant improve-
ment in oxidative stress resistance also had similar beneficial effects in
heat stress resistance. PLSO and SASO, which substantially enhanced the
oxidative stress resistance in worms, also significantly extended the
survival time of 10.21 and 10.03 h under heat stress. However, PNO,
SBO, FO, RSO, CSO, and WO, which failed to enhance the oxidative
stress tolerance, significantly increased the mean survival time from
8.77 t0 9.95 h against heat stress. It might attribute to the similar but not
identical stress response mechanism. In the nematode, DAF-16/FOXO
transcription factor plays a vital role in regulating both oxidative and
heat stress response, while a heat-shock transcription factor, HSF-1,
parallelly mediates heat stress response as well (Lapierre & Hansen,
2012). The correlation heatmap Fig. 1 revealed that heat stress resis-
tance was separated from oxidative stress by a large cluster distance,
indicating a different contribution pattern of oil ingredients. The Pear-
son’s Correlation analysis suggested that the thermotolerance improved
by EPOs was positively correlated to fat-soluble phytosterols and
vitamin E ingredients, including o-tocopherol, f-sitosterol, and cam-
pesterol. Although, due to the potential pro-oxidant effect of phytos-
terol, it might act antagonistically to a-tocopherol in scavenging DPPH
radicals (Liu et al., 2021). Phytosterol was reported to play a vital role in
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responding to various abiotic stress by maintaining the membrane ho-
meostasis and triggering the stress response signaling pathway in both
plant and animal (Moller et al., 2020). Supplementation of phytosterol-
enriched beverages remarkably increased the lifespan and stress resis-
tance in C. elegans (Lopez-Garcia et al., 2020).

To further validate the in vivo antioxidant effect of EPOs, the intra-
cellular ROS content in the worms was revealed by a membrane
permeable fluorescein-based dye, HyDCF-DA. The results were
expressed as the mean ROS inhibition + S.D.(%) normalized by the
untreated control group (Table 3). A total of 20 oil samples significantly
eliminated intracellular ROS content compared to the solvent control
group. Pumpkin seed oil exhibited the highest ROS inhibition rate of
37.67%, followed by olive oil, coconut oil, oil-tea seed oil, sunflower
seed oil, and safflower seed oil, which decreased the intracellular ROS
content from 32.16% to 37.67%, respectively. Several studies reported
similar in vivo antioxidant activity and heat stress resistance of coconut
oil, which might be attributed to the specific median-chain fatty acid
components (Narayanankutty et al., 2018). In the present, a potential
positive correlation with squalene (r = 0.33, p = 0.10) was demon-
strated in Fig. 1.

A comprehensive intrinsic antioxidant defense system consists of
numerous enzymatic antioxidants (superoxide dismutase, catalase, and

glutathione reductase) and nonenzymatic antioxidants (glutathione and
protein -SH groups) to maintain the redox homeostasis in organisms.
Against imbalanced ROS production, superoxide dismutases catalyze the
decomposition of highly reactive superoxide anion to a more stable
form, hydrogen peroxide, which is subsequently detoxified by catalases
to water and oxygen. Table 3 presented the SODs and CATs activity in
worms pretreated by EPOs. In general, most vegetable edible oils
showed a significant inducing effect on SODs activity, in agreement with
stress tolerance and intracellular ROS elimination results. Oil-tea seed
oil exerted the highest effect on promoting the SODs activity of 145.72
U/mg protein, followed by sesame seed oil, safflower seed oil, and olive
oil, ranging from 85.25 to 91.34 U/mg protein. However, in the mea-
surement of the CATs activity, only 12 EPOs exhibited statistically sig-
nificant induction effect. Olive oil, grape seed oil, and oil-tea seed oil
demonstrated a relatively stronger promoting effect on the CATs activity
of 20.67, 19.96, and 19.39 U/mg protein, respectively. Followed by
pumpkin seed oil, pretreated of which elevated the CATs activity to
16.27 U/mg protein. The closed cluster distance in the correlation
heatmap Fig. 1 revealed a similar composition pattern contributing to
the activity of SODs and CATs. As shown in Fig. 1, oleic acid (r = 0.47, p
< 0.05) and MUFA (r = 0.52, p < 0.05) were positively correlated to the
SODs activity, while polyphenol (r = 0.48, p < 0.05) were the major
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affector for the CATs activity.

MDA, a metabolite of prostaglandin endoperoxides, is widely used as
an indicator of lipid peroxidation. Since EPOs exerted beneficial effects
on resistance tolerance and in vivo antioxidant property, their inhibition
ability on lipid peroxidation products, MDA, was assessed in worms. The
results were expressed as the mean inhibition percentage normalized by
control groups in Table 3. PNSO, HSO, WO, GSO, PLSO, and FO signif-
icantly suppressed the MDA production to 9.25%, 9.97%, 11.36%,
12.49%, 13.94%, and 14.69%, respectively, compared to the untreated
control group. Correlations analysis revealed that PUFA (r = 0.61, p <
0.01) and linolenic acid (r = 0.46, p < 0.05) were positively correlated to
the MDA inhibition. This result may be because polyunsaturated fatty
acids exhibit relatively lower BDE than other lipid components, making
them particularly susceptible to lipid radicals to cease lipid
peroxidation.

3.6. Chemometric analysis

To explore the interrelationships among chemical composition and
biological activities in different EPOs, principal component analysis
(PCA) and hierarchical cluster analysis (HCA) were employed to reveal
the distinctiveness and similarity based on chemical profiles of 22 tested
oils, including fatty acid compositions, polyphenol, tocopherol, squa-
lene, and phytosterols. As shown in Fig. 2A, the contents of tocopherol,
phytosterol, polyphenol, and p-sitosterol predominantly contributed to
the first two principal components. Principle component 1 (PC1) and
principal component 2 (PC2) accounted for 82.5% of the total variance.
In Fig. 2B, the score plot of 22 oils was generated from PC1 and PC2,
which explained the 42.30% of the variability. The novel oils extracted
from unconventional oilseed crops, like rice bran oil, pumpkin seed oil,
hemp seed oil, perilla seed oil, peony seed oil, safflower seed oil, and
grape seed oil, were located in the left, representing the similarity of
chemical profiles. The woody oil, including walnut oil, palm oil, coconut
oil, olive oil, oil-tea seed oil, yellowhorn seed oil, and sacha inchi oil,
shared similar chemical composition features, grouping together in the
bottom right. While, the conventional edible oils, such as peanut oil,
soybean oil, corn oil, flaxseed oil, rapeseed oil, sunflower seed oil, ses-
ame seed oil, and cotton seed oil, possessed a wide variety of oil in-
gredients which was separated through the score plot.

Fig. 3A, 22 edible oils were grouped into 3 clusters according to their
in vitro antioxidant activity and in vivo healthspan promoting effects. Oil-
tea seed oil, pumpkin seed oil, olive oil, peony seed oil, hemp seed oil,
safflower seed oil, and palm oil were grouped into Cluster 1 character-
ized by the remarkably ameliorative effect against oxidative stress and
inductive effect of antioxidant enzymes. Heat stress resistance and free
radical scavenging capacity were treated as primary responses for
grouping Cluster 2. A circus map (Fig. 3B) was constructed based on the
hierarchical cluster analysis to provide an easy-to-read illustration to
highlight the shared composition characteristic among oils in cluster 1.
It could be easily observed that oleic acid, linoleic acid, MUFA, and
PUFA, were the high-abundance ingredients in selected oil. Woody oil,
including OSO, OO, and PO, possessed high amounts of oleic acid and
MUFA, while PKSO, HSO, PNSO, and SASO were mainly comprised of
linoleic acid and PUFA. The chord diagram demonstrated the relation-
ships between chemical composition and oils exerting remarkably
health-beneficial effects.

4. Conclusion

In the present study, the fatty acid composition and minor com-
pounds (polyphenol, tocopherol, squalene, and phytosterol) in 22 edible
vegetable oil were analyzed. The chemical composition of different oil
varied dramatically. CNO contained the highest SFA content due to the
existence of specific medium-chain SFAs, including octanoic acid (C8:0),
decanoic acid (C10:0), lauric acid (C12:0), and myristic acid (C14:0).
Camellia Oleifera seed oil, olive oil, and palm oil contained a
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comparatively high proportion of oleic acid (C18:1) and MUFA. The
PUFA, including linoleic acid (C18:2) and linolenic acid (C18:3), was
mainly presented in PNSO, PLSO, FO, GSO, and WO. For the minor oil-
derived ingredients, GSO possessed the highest total polyphenol con-
tents. Tocopherol and squalene enriched in PKSO and OO, respectively.
In addition, RBO was the typical phytosterol abundant oil. Based on the
tocopherol and phytosterol contents, except WO, the woody oils (PO,
CNO, 00, 0SO, YSO, and SIO) could be clearly discriminated from oils
extracted from unconventional oilseed crops (RBO, PKSO, HSO, PLSO,
PNSO, SASO, and GSO) by PCA and HCA analysis. To further compare
the health-beneficial effects of different oils, the free radical scavenging
capacity, stress resistance, antioxidant enzyme induction, and MDA in-
hibition effect of 22 oils were systematically assessed in worms. Ac-
cording to Pearson’s correlation analysis, oleic acid and MUFA were
positively correlated to SODs activity. Linoleic acid and PUFA signifi-
cantly contributed to the MDA inhibition effect. The polyphenol content
was significantly correlated to in vitro antioxidant activity and CATs
activity. The tocopherol content was positively correlated to thermo-
tolerance, DPPH, and FRAP. A significant correlation coefficient was
obtained between phytosterol and heat stress. This study comprehen-
sively evaluated the contribution of specific components in edible oils to
health-span promoting effects. The findings proved a theoretical basis
for further exploiting novel edible oils with health-beneficial effects in
the functional food industry.
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