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Abstract: The liver’s high metabolic activity and detoxification functions generate reactive oxygen
species, mainly through oxidative phosphorylation in the mitochondria of hepatocytes. In contrast,
it also has a potent antioxidant mechanism for counterbalancing the oxidant’s effect and relieving
oxidative stress. PAS kinase (PASK) is a serine/threonine kinase containing an N-terminal Per-Arnt-
Sim (PAS) domain, able to detect redox state. During fasting/feeding changes, PASK regulates the
expression and activation of critical liver proteins involved in carbohydrate and lipid metabolism
and mitochondrial biogenesis. Interestingly, the functional inactivation of PASK prevents the devel-
opment of a high-fat diet (HFD)-induced obesity and diabetes. In addition, PASK deficiency alters
the activity of other nutrient sensors, such as the AMP-activated protein kinase (AMPK) and the
mammalian target of rapamycin (mTOR). In addition to the expression and subcellular localization
of nicotinamide-dependent histone deacetylases (SIRTs). This review focuses on the relationship
between oxidative stress, PASK, and other nutrient sensors, updating the limited knowledge on
the role of PASK in the antioxidant response. We also comment on glucagon-like peptide 1 (GLP-1)
and its collaboration with PASK in preventing the damage associated with hepatic oxidative stress.
The current knowledge would suggest that PASK inhibition and/or exendin-4 treatment, especially
under fasting conditions, could ameliorate disorders associated with excess oxidative stress.
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1. Introduction

The liver is a vital organ for adapting to nutritional changes (e.g., fasting/feeding
states) by responding appropriately to achieve metabolic and energy homeostasis through
its role in the storage and redistribution of carbohydrates, proteins, vitamins, and lipids.

2. Liver Metabolic Functions and Detoxification

After food intake, the liver stores glucose as glycogen, facilitating glycemic control [1].
Furthermore, the excess carbohydrate in carbohydrate-rich diets is converted into fatty
acids via de novo lipogenesis [2,3].

By contrast, the liver produces glucose under fasting conditions, first by glycogenolysis
and subsequently through hepatic gluconeogenesis, as the main fuel source for other tissues
and contributing to whole-body energy homeostasis [3,4]. The liver’s high metabolic rate
means it is also an important source of reactive oxygen species (ROS).

The liver is also the main organ involved in the detoxification of substances harmful
to the body. Many drugs, various endogenous molecules, and xenobiotics are lipophilic
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molecules that need to be metabolized to water-soluble compounds that facilitate their
subsequent biliary or renal excretion. Hepatic elimination of most toxic substances involves
cytochrome P450 enzymes (CYP) [5,6] system and UDP-glucuronosyltransferases [7].

2.1. ROS and Antioxidant Defense

ROS are produced by normal cellular metabolism. The main source of endogenous
ROS in the liver, as well as in other organs, is oxidative phosphorylation in the mitochon-
drial electron transfer chain and nicotinamide adenine dinucleotide phosphate NADPH
oxidase enzymes (NOX). Mitochondrial ROS generation will depend on the metabolic rate,
although the presence of toxic compounds and their transformation by CYP can some-
times be another source of cytosolic ROS, associated with the consumption of NADPH by
CYP [8] ROS is a physiological consequence not only of normal cell function but also of the
presence of unpaired electrons in free radicals, which gives them high reactivity and can
cause damage to other cellular components, such as proteins, lipids, and DNA. An excess
of ROS could therefore trigger a state referred to as oxidative stress.

The most important ROS, which includes radical superoxide (O2
−), non-radical hydro-

gen peroxide (H2O2), and hydroxyl radicals (•OH−, and the reactive nitrogen species (RNS)
that derive from peroxynitrite (ONOO−), are the most relevant radical species present in
living systems (Figure 1).

Figure 1. Production scheme of different types of ROS and the antioxidant enzymes involved
in their elimination. The main sources of endogenous ROS are oxidative phosphorylation in the
mitochondrial electron transfer chain and NOX enzymes. Cytosolic superoxide (O2

−) is quickly
converted into hydrogen peroxide (H2O2) by SOD. H2O2 oxidizes critical thiols within proteins to
regulate vital biological processes, including metabolic adaptation, differentiation, and proliferation,
or it can be detoxified in water (H2O) by Prx, GPx, and CAT. Moreover, H2O2 reacts with Fe2+ or
Cu2+ to generate the hydroxyl radical (•OH) that causes irreversible oxidative damage to lipids,
proteins, and DNA. The different colors indicate the subcellular location of the antioxidant enzymes.
(Image created in biorender.com accessed on 19 October 2021).

Fortunately, and in contrast, liver cells also have potent antioxidant enzymatic and
nonenzymatic mechanisms to prevent ROS and repair any damage caused. The antioxi-
dant enzymes include cytosolic and mitochondrial superoxide dismutase (SOD), which
eliminates the superoxide ion by converting it into hydrogen peroxide and glutathione
peroxidase (GPx), which are involved in detoxifying hydrogen and cellular peroxides
for their conversion into oxygen and water, acting in tandem with peroxiredoxins (Prx),
thioredoxins (Trx) and glutaredoxins (Grx), and peroxisomal catalase (CAT) (Figure 1). In
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addition, nonenzymatic molecules such as reduced glutathione (GSH) are present at high
concentrations in the liver; vitamin A, vitamin C, vitamin E, bilirubin, ubiquinone, and
uric acid remove ROS and restore reduced protein and lipid reserves. Ceruloplasmin and
ferritin also help to eliminate the metals that promote oxidative reactions [9–12].

Alterations in ROS production and/or diminished defense mechanisms can cause
serious problems that trigger liver failure [13,14].

When the balance between ROS production and/or antioxidant mechanisms is modi-
fied, the onset of oxidative stress leads to cell damage and toxicity and, therefore, multiple
pathologies, including hepatic fibrogenesis [15–17].

Prolonged fasting produces oxidative stress, increasing hepatic free radical levels and
decreasing antioxidant defenses [18,19] Nevertheless, intermittent fasting has also been
linked to a reduction in oxidative stress [20–24].

2.2. Hepatic Oxidative Stress and Nutritional Status

Oxidative stress may depend on nutritional conditions. Hyperglycemia induces the
hyperactivation of NADPH oxidases, increasing oxidative stress [25]. During fasting or
calorie restriction, cells are adapted by a metabolic shift in their energy source from gly-
colysis to oxidative phosphorylation [26–28], which requires an increase in mitochondrial
oxidative phosphorylation for producing adenosine triphosphate (ATP), and therefore
involves elevated ROS production [29].

Many chronic liver diseases are known to be associated with elevated oxidative
stress [30]. Thus, the hyperglycemic state that characterizes insulin resistance, diabetes, and
obesity [31] could modify cellular redox homeostasis and trigger oxidative stress, mirroring
the effect of prolonged fasting. Oxidative stress has been involved in the pathophysiology
of several liver diseases. For example, free radicals contribute to the onset and progression
of non-alcoholic steatohepatitis (NASH) [32,33], cirrhosis, and liver cancer [34,35]. Mito-
chondrial ROS promote the presence of other mutations and favor metastatic processes in
cancer cells [36].

ROS also operate as signaling molecules in support of normal biological processes
and physiological functions. For example, ROS are involved in growth factor signal-
ing, autophagy, hypoxic signaling, immune responses, and stem-cell proliferation and
differentiation [10,37–39].

3. Nutrient Sensors and Oxidative Stress

Nutrient sensors detect changes in nutritional status and suitably adapt an intermedi-
ary metabolism to maintain energy and oxidative homeostasis. The following are examples
of these sensors: AMPK, mTOR, PASK, and SIRTs.

3.1. AMPK and mTOR

AMPK is an energy sensor activated by low energy states or metabolic stress. AMPK
activation inhibits anabolic pathways and stimulates catabolic ones to restore the energy
balance. AMPK plays a major role in hepatic metabolism [40]. By contrast, mTOR responds
to favorable energy states, growth factors, and nutrient-stimulating anabolic processes,
as well as cell proliferation and autophagy [41]. In recent years, several studies have also
supported its role in the regulation of oxidative stress [42,43].

Physiological or pathological conditions, such as hypoxia and glucose deprivation,
activate AMPK to promote cellular adaptation for maintaining metabolic and redox home-
ostasis [44,45]. ROS appear to stimulate AMPK, which promotes mitochondrial biogenesis
and the antioxidant defense [46] (Figure 2).

ROS activate AMPK directly or indirectly: activation of both major upstream kinases
of AMPK, such as liver kinase B1 (LKB1) and Ca2+/calmodulin-dependent protein kinase
kinase β (CaMKKβ), and by direct oxidative modification of the AMPKα catalytic sub-
unit [46,47]. ROS induce the S-glutathionylation of AMPKα cysteine residues [48] and
could therefore activate AMPK under certain physiological or pathological conditions [49].
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This also inhibits the mTORC1 complex through the regulatory-associated protein of TOR
(Raptor) phosphorylation, a component of this complex [50], and by phosphorylation of
tuberous sclerosis 2 (TSC2), an inhibitor of mTORC1 [51]. This means that the lower activity
of the mTOR pathway has also been linked to increased mitochondrial biogenesis and
ROS in hematopoietic stem cells [52,53]. The control of protein synthesis depends on the
mTOR pathway, stimulated by signals from nutrient glucose and amino acids, while also
responding to amino acid starvation, which is detected by general controlled non-repressed
(GCN2) kinase. The genetic deletion of GCN2 kinase in intestinal epithelial cells also
increases ROS and intestinal inflammation [54] (Figure 2).

Figure 2. Fasting modulates oxidative stress through nutrient sensors. Fasting initiates a signaling
cascade that leads to the activation of antioxidant mechanisms to reduce oxidative stress. Several
sirtuins, in particular SIRT1 and SIRT3, are activated by fasting and reduce oxidative stress by control-
ling antioxidant expression at the transcriptional or post-translational level. In turn, fasting activates
AMPK, which prevents oxidative stress by decreasing fatty acid synthesis and increasing the level of
NADPH. In parallel, mTOR is inhibited, and GCN2 kinase is activated by fasting, thereby facilitating
the autophagy process and the elimination of oxidized proteins and damaged mitochondria. At the
center of this scenario is PASK, which fasting keeps inactive, exerting an oxidative stress-reducing
effect partly by increasing the antioxidant mechanism. This action could be prompted by the inter-
regulation of PASK, AMPK, mTOR, and SIRTs through their activation/deactivation, preventing
aging and associated diseases. (Image created in biorender.com accessed on 19 October 2021).

3.2. PASK

PASK/PASKIN is a serine/threonine kinase containing an N-terminal Per-Arnt-Sim
(PAS) domain able to respond to several intracellular parameters, as light, oxygen, and
redox state [55,56]. These PAS domains have a well-conserved three-dimensional struc-
ture that creates a hydrophobic pocket where small metabolites bind, initiating cellular
signaling [57–59]. Despite current efforts, the physiological regulators of PASK are still
unknown. The PASK activation model proposes that the interaction of a metabolite with
the PAS domain terminates its inhibitory function and transient activation occurs, which
will subsequently be stabilized by auto or transphosphorylation and may activate/inhibit
various substrates [55,58,60,61]. In mammals, PASK responds according to nutritional
status by contributing to the regulation of glucose homeostasis, energy metabolism, and
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oxidative stress [62–65]. PASK regulates glucagon and insulin secretion [66,67]. Its role in
differentiation processes and epigenetic regulation has recently been described [68–70].

PASK-deficient mice record an elevated metabolic rate, which has also been confirmed
in PASK knockdown myoblast [71] and neuroblastoma cells [72]. PASK is also a criti-
cal signaling regulator of AMPK and mTOR pathways in neuroblastoma N2A cells, the
hypothalamus, and the liver [72,73]. Meanwhile, PASK deficiency is associated with a
reduction in ROS/RNS levels. Nonetheless, the relationship between PASK and ROS pro-
duction and oxidative stress is still poorly understood. PAS domains are reported to detect
intracellular oxygen, redox state, and various metabolites [55]. Moreover, PASK deficiency
is associated with the overexpression of hepatic antioxidant enzymes in the basal state and
fasting conditions [74] (see Section 4.1) (Figure 2). In addition, PASK deficiency avoids a
decrease in the expression of age-related antioxidant enzymes, maintaining ROS/RNS pro-
duction at a level similar to that of young wild-type (WT) mice. Aged PASK-deficient mice,
therefore, record an overall improvement in their antioxidant mechanism and metabolic
phenotype (i.e., PASK deficiency blocks the development of glucose intolerance and insulin
resistance in aged mice) [75].

3.3. Sirtuin Family

The sirtuin family (SIRTs 1–7) consists of nicotinamide adenine dinucleotide (NAD)-
dependent histone deacetylases capable of acting on numerous substrates and regulating
the activity of chromatin, enzymes, and transcription factors that control antioxidants, ROS,
and cellular oxidative stress [76]. The upregulation of SIRT 1 is suggested as an effective
therapy against the development of diabetic complications [77].

Studies on calorie restriction report its protective effect, reducing oxidative stress,
damage, and extending a lifespan [78,79]. This protective response requires the presence of
a member of the sirtuins family. Mitochondrial sirtuin 3 (SIRT3) stimulates SOD2 activity
and reduces ROS levels [80]. SIRT3 also induces the mitochondrial glutathione antioxidant
system under calorie restriction [81]. SIRT3 is translocated to the mitochondria in response
to stress, where it is cleaved and activated [82]. Increased ROS levels also stimulate SIRT3
transcription [78]. SIRT3 modulates the mitochondrial oxidative phosphorylation path-
way [83]. Furthermore, SIRT3 regulates the mitochondrial metabolism, and together with
other members of the sirtuin family, such as SIRT1, increases the lifespan of experimental
animals [84,85]. There is further evidence to suggest that SIRT3 increases longevity in hu-
mans [86]. SIRT1 also regulates cellular redox homeostasis through the deacetylation of the
main longevity factor forkhead box O-3a (FoxO3a) [87,88], which controls the expression
of certain antioxidant genes [89] (Figure 2).

4. Potential Role of PASK and Exendin-4/GLP-1 in Therapy

Mutations in the human PASK gene have been reported in metabolic diseases such
as early-onset diabetes [63]. However, a lower expression of PASK has been reported in
pancreatic islets from type 2 diabetic patients [66]. PASK has also been proposed as a
possible target in the treatment of diabetes and obesity [71,90].

Exendin-4 (an analog of GLP-1) is used in the clinical management of type 2 diabetes
by acting on glucose-stimulated insulin secretion, gastric emptying, and appetite suppres-
sion [91]. Besides these effects, exendin-4 is reported to reduce liver lipids, plasma alanine
transaminase (ALT), cholesterol, and triglycerides in both humans and mice [92–95].

4.1. PASK Deficiency Reduces Hepatic Oxidative Stress

PASK-deficient mice are protected against obesity and the insulin resistance induced
by an HFD [71,96,97]. PASK regulates energy metabolism and glucose homeostasis, es-
pecially when adapting to fasting and feeding. Hepatic PASK expression is altered by
an HFD [97]. Additionally, PASK deficiency improves the deleterious effects of an HFD,
such as the overexpression of hepatic genes that occurs in HFD-fed mice. In addition,
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PASK deficiency restores glucose tolerance and insulin sensitivity in mice under an HFD,
maintaining body weight and serum lipid parameters within the physiological range [97].

High levels of ROS are associated with insulin resistance, type 2 diabetes, and obe-
sity [98]. The role of PASK in hepatic oxidative stress has been investigated under basal
and fasting conditions in order to observe the liver’s adaptive response.

The adaptation to energy requirements under prolonged fasting depends on mitochon-
drial biogenesis. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
(PGC1α) promotes cellular adjustment to conditions requiring energy input, enhancing
mitochondrial mass [99–101]. PGC1α and SIRT1 are coactivators of several transcription
factors and nuclear receptors, such as nuclear respiratory factors (NRFs), peroxisome
proliferator-activated receptors (PPARs), and estrogen-related receptors (ERRs).

The expression of coactivator Ppargc1a transcription factors such as Pparg and FoxO3a,
and activators such as deacetylase Sirt1, are overexpressed under basal conditions in PASK-
deficient mice. Furthermore, the SIRT1 subcellular location is mainly nuclear in PASK-
deficient mice [74]. Previous data have shown that an increase in nuclear SIRT1 activity,
without changes in protein levels, positively correlates with an increased expression of
genes regulated by PGC1α [102]. In contrast, the downregulation of PGC1α in obesity has
been related to mitochondrial damage and decreased mass [103].

NRF2 (nuclear factor erythroid 2-related factor 2) is considered the major regulator
of the cellular redox balance [104–106]. NRF2 is usually degraded by the proteasome
in the absence of oxidative stress. Nevertheless, NRF2 is translocated into the nucleus
when there is an increase in such stress, inducing the expression of several genes coding to
glutamate-cysteine ligase (GCLm) and heme oxygenase (HO1) [107,108]. NRF2 activation
could be regulated positively by phosphorylation [109,110]. PASK deficiency, therefore,
promotes extracellular signal-regulated kinases 1/2 (ERK1/2) overactivation [74], and like-
wise, the PI3K-AKT pathway is over-activated [97,111]. In turn, PASK deficiency increases
the expression of proteins and mRNAs coding to NRF2, GCLm, and HO1 under fasting con-
ditions. These results are consistent with the data reporting that AKT activation decreases
glycogen synthase kinase-3 beta GSK3β activity and increases NRF2 nuclear transloca-
tion [112], which promotes NRF1 expression and activates mitochondrial biogenesis and
antioxidant cellular defenses [113].

Both AMPK activation and elevated SIRT1 under fasting conditions are reported to
stimulate FoxO3a nuclear translocation and transcriptional activity [89,114]. Interestingly,
PASK deficiency increases the expression of FoxO3a under both basal and fasting conditions,
as well as the nuclear location of SIRT1 and AMPK activation [74].

PGC1α induces the expression of antioxidant enzymes such as SOD and GPx [115–117].
Accordingly, PASK-deficient mice overexpress the hepatic genes coding to antioxidant
enzymes GPx and MnSOD in the basal state and also increase the expression in response
to fasting of genes coding to MnSOD, Cu/ZnSOD, GPx, GCLm, and HO1 while slightly
increasing the Cat gene. PASK deficiency is therefore associated with both a reduction in
ROS/RNS and slightly higher MnSOD activity under basal conditions [74,75].

Mitophagy has been associated with the FoxO3a transcription factor that controls
phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1) expression [118]. PASK
deficiency also improves the expression of PINK1 involved in cell survival and mitophagy,
respectively [74]. In addition, the overactivation of the MAPK pathway seems to maintain
a regenerative state. All these effects of PASK deficiency are interesting for states that
promote an increase in oxidative stress, such as aging, diabetes, and obesity. Here we have
described new evidence in this field, whereby PASK blocking is a powerful promotor of
antioxidant mechanisms for preventing oxidative stress in the liver.

4.2. GLP-1 Role in Oxidative Stress

GLP-1 derives by post-translational processing from the proglucagon molecule in
the intestine and brain [119–122]. GLP-1 is an incretin released by intestinal L-cells in
response to feeding, prompting insulinotropic and glucagonostatic actions from pancreatic
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beta-cells, potentiating the secretion of insulin, and inhibiting that of glucagon, maintaining
glucose homeostasis [123]. Furthermore, GLP-1 records other beneficial actions, such as
promoting the proliferation and neogenesis of the pancreatic β-cell [124] and its anorectic
properties [125–127]. Nevertheless, blood GLP-1 activity is limited by the short half-life
due to the action of dipeptidyl-peptidase IV protease [91]. Thus GLP-1 receptor agonists
(e.g., exendin-4 and liraglutide) that are more stable and resistant to proteases are used as a
therapeutic option in the treatment of type 2 diabetes, based on their glucoregulatory and
anorectic actions in mice and humans [91,128,129].

The GLP-1 analog exendin-4 has therefore been used for the clinical treatment of
type 2 diabetes [109]. Oral semaglutide (a human analog of GLP-1) will be the first GLP-1
receptor agonist in tablet form, currently in late-stage development, for the treatment of
type 2 diabetes. Cardiovascular compatibility has already been confirmed [128].

Exendin-4 has been used since 2005 not only for the treatment of type 2 diabetes
but also for hepatic steatosis and non-alcoholic steatohepatitis both in animals and in
humans [130].

GLP-1/exendin-4 treatments have been associated with reduced oxidative stress.
For example, antioxidant enzymes (SOD, glutathione reductase, CAT, and GPx), as well
as glutathione levels, are improved, while other stress markers (lipid peroxidation and
nonenzymatic glycosylated proteins) are reduced [95,131].

4.3. Evidence for Exendin-4/GLP-1 and PASK Interplay

An interesting interplay between PASK and exendin-4/GLP-1 has previously been
observed. Thus, PASK deficiency alters certain exendin-4/GLP-1 anorexigenic effects [73].
Likewise, PASK and exendin-4/GLP-1 may control glucose transport and glycogen storage,
which are key processes for liver metabolism [132]. Exendin-4 treatment, therefore, blocks
hepatic Pask expression under both fasting and feeding conditions [132]. The PI3K-AKT
pathway is over-activated in PASK-deficient mice [77,91], and exendin-4 treatment de-
creases AKT activation in a basal state, while no effect has been observed under fasted
conditions [132]. This could regulate GSK3 phosphorylation and activity. GSK3 phospho-
rylates NRF2 creating a recognition motif that promotes the proteasomal degradation of
NRF2, independently of the Kelch-like ECH-associated protein 1 (KEAP1) [133]. We have
verified the combination of exendin-4 treatment and PASK deficiency in oxidative stress
under basal and fasting conditions (unpublished data, see Supplementary Materials). The
combination of exendin-4 treatment and the PASK deficiency effect has been studied in
relation to the gene expression of certain coactivators, transcription factors, and nuclear
receptors involved in mitochondrial biogenesis: Ppargc1a encoding PGC1α, Sirt1, Nrf2,
Ppara, and Pparg. As well as the expression of the genes coding to ROS detoxification
mechanism: CAT, SOD: MnSOD, mainly mitochondrial and Cu/ZnSOD located in cytosol,
GPx, and GCLm (Figure 3 and Supplementary Materials).

Exendin-4 treatment regulates oxidative stress both dependently and independently
of PASK. For example, the upregulation of Nrf2 and Cu/ZnSod expression by exendin-4 is
PASK-dependent, as the inhibition of PASK is needed to increase the expression of these
genes by exendin-4 (Figure 3). In turn, exendin-4 increases the gene expression of both
Ppargc1a in fasting mice and of some antioxidant enzyme genes (i.e., GPx and MnSod).
In these cases, the induction is independent of PASK, as the regulation by exendin-4
occurs in both WT and PASK-deficient mice (Figure 3). These results have been confirmed
by the exendin-4 effect on ROS/RNS liver content in vivo. The presence of exendin-4
decreases the percentage (−5.17 ± 0.089) of ROS/RNS content under basal conditions in
WT mice, while no effect has been detected in PASK-deficient mice. In contrast, exendin-4
treatment is more effective under fasting conditions when the inactivation of PASK is also
included, diminishing the percentage (−10.04 ± 0.38) of ROS/RNS content compared to
WT. Exendin-4 treatment has also been reported to increase the Nrf2 expression associated
with a decrease in lipid peroxidation [95,134] and raise GSH levels [135].



Antioxidants 2021, 10, 2028 8 of 14

Figure 3. Effect of exendin-4 on the gene expression of hepatic transcription factors involved in
oxidative stress and antioxidant enzymes. The animals used were 10- to 16-week-old male mice
(25–30 g) C57Bl/6J wild-type (WT) and PASK-defective (Pask−/−) back-crossed into C57Bl/6 for
at least 13 generations. The animals were fed ad libitum with a standard pellet diet (non-fasted) or
fasted for 48 h (fasted). Some animals were treated subcutaneously with exendin-4 (250 ng/100 g
body weight, Bachem) for three hours. n = 4–5 animals per condition. A two-tailed paired Student’s
t-test was used to analyze the significant differences between exendin-treated mice versus untreated
ones. * p < 0.05; ** p < 0.01 *** p < 0.001 untreated vs. exendin-4 treatment. For more details, see
Supplementary Materials.

These findings suggest that PASK inhibition and exendin-4 treatment might help
to promote antioxidant responses to control hepatic oxidative stress and avoid and pre-
vent their harmful effects. According to these results, the use of pharmacologic PASK
inhibitors restores many of the hepatic deleterious metabolic consequences associated with
NASH [90]. Likewise, exendin-4 is reported to reduce liver fat in obese type 2 diabetic
patients [92]. Exendin-4 treatment also reduces hepatic steatosis and an oxidative stress
marker in ob/ob mice [136,137].

5. Conclusions

The liver is the main coordinator of energy metabolism, performing a wide range of
metabolic functions. Its high metabolic activity logically leads to the production of ROS,
which in turn is balanced by hepatic antioxidant mechanisms. Nevertheless, both hepatic
antioxidant systems and ROS production are disturbed by long fasting, leading to oxidative
stress. During prolonged fasting, changes occur not only in the regulation of the hepatic
enzymes involved in carbohydrate, lipid, and protein metabolism but also in the genes
related to oxidative stress and in antioxidant genes and proteins.
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PASK is a metabolic sensor that controls the redox state in the liver and contributes
to energy and metabolic homeostasis. In fact, PASK-deficient animals record an altered
ATP and ROS production, with an enhanced gene expression of coactivators, transcription
factors, and nuclear receptors involved in mitochondrial biogenesis and the expression
of antioxidant enzymes. Therefore, PASK blocking promotes the activation of hepatic
mechanisms of protection, especially in situations of prolonged fasting, improving cellular
redox homeostasis.

In turn, the GLP-1 or its analogs are used as a therapeutic option in the treatment of
type 2 diabetes, based on their glucoregulatory and anorectic actions in mice and humans.
Furthermore, the GLP-1 analog exendin-4 reduces the hepatic content of ROS, promoting
the gene expression of the coactivators, transcription factors, and nuclear receptors involved
in mitochondrial biogenesis and the expression of antioxidant enzymes.

There is an interplay between PASK signaling and GLP-1 secretion, as Pask expres-
sion is blocked by exendin-4 treatment, and reciprocally, PASK deficiency changes the
physiological GLP-1 secretory response by intestinal cells after meals.

Our data suggest that it would be interesting to consider PASK inhibition and exendin-
4/GLP-1 treatment as a potential therapeutic approach. The use of PASK inhibitors alone or
in combination with GLP-1 analogs might help to promote antioxidant responses and avoid
and prevent harmful hepatic effects that may be associated with increased oxidative stress.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10122028/s1, Table S1: Identification of primers used in the Quantitative Real-Time
Polymerase Chain Reaction (SYBR GREEN® ASSAY).
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