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Advances in hormonal therapies 
for hormone naïve and castration‑resistant 
prostate cancers with or without previous 
chemotherapy
Thy Pham1, Martin C. Sadowski2, Huika Li1, Derek J. Richard3, Michael C. d’Emden1,4 and Kerry Richard1,3*

Abstract 

Hormonal manipulation plays a significant role in the treatment of advanced hormone naïve prostate cancer and 
castration-resistant prostate cancer (CRPC) with or without previous chemotherapy. Combination of gonadotropin 
releasing hormone (GnRH) agonists and androgen receptor (AR) antagonists (combined androgen blockade; CAB) is 
the first line therapy for advanced hormone naïve prostate cancer, but current strategies are developing novel GnRH 
antagonists to overcome disadvantages associated with GnRH agonist monotherapy and CAB in the clinical set-
ting. Abiraterone acetate and enzalutamide are hormonal agents currently available for patients with CRPC and are 
both shown to improve overall survival versus placebo. Recently, in clinical trials, testosterone has been administered 
in cycles with existing surgical and chemical androgen deprivation therapies (ADT) (intermittent therapy) to CRPC 
patients of different stages (low risk, metastatic) to abate symptoms of testosterone deficiency and reduce cost of 
treatment from current hormonal therapies for patients with CRPC. This review will provide an overview on the thera-
peutic roles of hormonal manipulation in advanced hormone naïve and castration-resistant prostate cancers, as well 
as the development of novel hormonal therapies currently in preclinical and clinical trials.
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Background
Prostate cancer is the most reported male cancer as well 
as the second leading cause of cancer-related deaths in 
Western men, excluding non-melanoma skin diseases 
[1]. Ever since 1941, when it was discovered that lower-
ing testosterone levels via orchiectomy or estrogen injec-
tions improved symptoms in patients with metastatic, 
exogenous hormone naïve disease, androgen depriva-
tion therapy (ADT) became the mainstay treatment for 
locally advanced prostate cancer (clinical tumor stages 
T3–T4, PSA > 20 ng/mL) [2]. However, despite reducing 

testosterone production to castrate levels (≤50  ng/
dL), many patients will relapse and develop castration-
resistant disease within 2–3 years post treatment, that is 
often more aggressive, currently incurable and has a poor 
prognosis with only 16–18 months of survival [3, 4]. This 
review will provide an overview on the therapeutic roles 
of hormonal manipulation in advanced hormone naïve 
and castration-resistant prostate cancers, as well as the 
development of novel hormonal therapies currently in 
preclinical and clinical trials. This will include the poten-
tial use of testosterone, although critically involved in 
cancer growth and progression, as a therapy for patients 
with castration-resistant prostate cancer (CRPC).

Physiology of androgen biosynthesis and action
Testosterone is a hormone produced primarily by Ley-
dig cells of testes and in smaller quantities by the adrenal 
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glands [5, 6]. The secretion of testosterone in testes and 
adrenal glands is regulated by luteinising hormone (LH) 
and adrenocorticotropic hormone (ACTH), respectively; 
both of which are derived from the pituitary gland [5–
8]. Inactive androgen receptors (AR) are located in the 
cytoplasm and are bound by heat-shock protein (HSP) 
chaperones including HSP90, HSP70 and HSP40 [9]. Fol-
lowing activation by androgens, AR dissociates from the 
HSP complex, dimerizes and binds onto HSP27 which 
allows localization of AR to the nucleus and subsequent 
transcription of downstream target genes such as pros-
tate-specific antigen (PSA), a glycoprotein that is also 
referred as kallikrein-3 (KLK3) [9–11]. Regulation of AR-
specific genes is important for the development and mat-
uration of prostate and other male sexual characteristics. 
Studies have shown that testosterone deficiency is associ-
ated with erectile dysfunction, low libido, reduced mus-
cle and physical strength [12, 13]. Testosterone is further 
required for the growth and survival of prostate tumors, 
and ADT is commonly used to suppress disease progres-
sion among patients [2, 14, 15].

Interestingly, low testosterone levels have been linked 
to increased risk of developing high-grade prostate can-
cer [16, 17]. A study by Schatzl et  al. [17] found that 
prostate cancer patients with partial androgen deficiency 
(n = 52; total serum testosterone <3.0 ng/mL) at diagno-
sis had significantly higher Gleason scores than patients 
with normal serum testosterone levels (n = 104; >3.0 ng/
mL) (Gleason score 7.4 ± 1.2 vs. 6.2 ± 1.4, respectively; 
p =  0.001). Other studies have reported an association 
between low testosterone, prostate cancer risk and tumor 
reoccurrence [18, 19], suggesting that ADT may have 
adverse effects on patients with prostate cancer. Nev-
ertheless ADT has been shown to significantly improve 
clinical outcomes in combination with other therapies 
(e.g. radiotherapy) which are discussed in further detail 
in this review.

Locally advanced hormone naïve prostate cancer
GnRH agonists—overview
Prior to the use of immunotherapy and chemotherapy, 
ADT is the first-line therapy for locally advanced or high-
risk hormone naïve prostate cancer (clinical tumor stages 
T3–T4, PSA  >  20  ng/mL) [20]. Gonadotropin releasing 
hormone (GnRH) agonists are the standard hormonal 
agents for ADT due to their reversibility, allowing inter-
mittent use when required. GnRH agonists can also pre-
vent complications associated with orchiectomy, such as 
physical discomfort [20, 21]. However recently, a 10-year 
study by Van Hemelrijck et al. has suggested that patients 
treated with GnRH agonists were at higher risk for deep-
venous thrombosis (DVT) and pulmonary embolism 

than those who underwent orchiectomy (Absolute risk 
value 4.08 vs. 1.40, respectively) [22].

GnRH agonists are very long acting drugs which bind to 
the gonadotrophin receptors on the pituitary gland. Their 
initial binding causes a marked increase in luteinising 
hormones (LH) and follicle stimulating hormones (FSH) 
secretion, resulting in a transient increase in testosterone 
levels [23, 24]. This “flare” can induce adverse symptoms 
such as bone pain, spinal cord compression, cardiovas-
cular events, and ureteral blockage among patients [24, 
25]. Thus, to abate this effect, GnRH agonists are usu-
ally accompanied with AR antagonists and this is often 
referred as combined androgen blockade (CAB) therapy 
(Table 1). Within approximately 3–4 weeks, the pituitary 
GnRH receptors undergo desensitization and suppres-
sion, thus lowering serum testosterone to castrate levels 
(≤50 ng/dL) [26]. There are currently four United States 
(US) Food and Drug Administration (FDA) -approved 
GnRH agonists for advanced hormone naïve prostate 
cancer patients: goserelin acetate (Zoladex®), leupro-
lide (Lupron Depot®), histrelin acetate (Supprelin LA®) 
and triptorelin pamaote (Trelstar Depot®, Trelstar LA®) 
(Table 1) [27–31].

GnRH agonists—clinical advancement for prostate cancer 
therapy
At present, anticancer strategies have taken an inter-
est in supplementing GnRH agonists with concurrent 
radiotherapies to optimize efficacy of treatment for 
locally advanced or high-risk prostate cancer [32]. The 
10-year overall survival rate for patients treated with 
radiotherapy and adjuvant ADT with goserelin, is evi-
dently greater than radiation monotherapy (49–58.1 vs. 
39–39.8  %, respectively; p  <  0.002) [33, 34]. Likewise, a 
combination of ADT and radiotherapy is more effec-
tive when compared to ADT alone [35]. As shown by 
the SPCG-7 trial, the cumulative incidence for prostate 
cancer-specific mortality at 10  years was 23.9  % for the 
group treated with ADT alone (3.75 or 11.25 mg GnRH 
agonist leuprorelin plus 250 mg AR antagonist flutamide 
for 3 months) and 11.9 % in the group treated with ADT 
in combination with radiotherapy [35].

Further studies have sought to deliver goserelin to the 
tumor via nanoparticle carriers. In the clinical setting, 
nanoparticles are macromolecular, conductive materials 
(metal or semi-metal; size range 5–250  nm) that carry 
and deliver anticancer drugs to the vicinity of the tumor 
and solely penetrate target tissue by converting absorbed 
light photons at wavelengths near the infrared spectrum 
(800–2500  nm) into heat, and this is often referred as 
photothermal therapy [36–38]. The selective delivery of 
nanoparticles to solid tumors among patients is highly 
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dependent on their large molecular size and how can-
cer cells develop in contrast to normal cells [36]. Most 
solid tumors increase the production of new blood ves-
sels (angiogenesis) to enhance vascular permeability 
and provide more nutrients to sustain their growth [39]. 
However, unlike normal blood vessels, the endothelial 
junctions of tumor blood vessels are more loose due to 
poor development and lack efficient lymphatic drainage, 
which allows the macromolecular nanoparticles to easily 
pass through as well as accumulate at the tumor site for 
effective treatment [39]. This phenomenon known as the 
“enhanced permeability and retention” (EPR) effect dif-
ferentiates most solid tumors from normal tissues and is 
essential for the therapeutic properties of nanoparticles 
[36, 39].

Goserelin-conjugated gold rod-shaped nanoparticles 
(commonly known as nanorods) were used in a recent 
in  vivo study by Wolfe et  al. and these demonstrated a 
significant increase in radiosensitization of PC3 xeno-
graft models, as compared to standard pegylated gold 
nanorods (1.36  ±  0.06 vs. 1.19  ±  0.04, respectively). 
Treatment with the goserelin-conjugated gold nanorods 
plus radiotherapy delayed tumor growth by 17 ± 1 days 
versus standard pegylated gold nanorods plus radio-
therapy or radiotherapy alone in PC3 xenograft models 
(p  <  0.001) [40]. Likewise, another study reported that 
goserelin loaded nanoparticles can induce growth inhibi-
tion and apoptosis in LNCaP and DU145 cell lines [41]. 
These preclinical findings are promising and warrant fur-
ther investigation.

Efficacy of GnRH agonists in prostate cancer treatment 
is likely due to their specificity toward GnRH receptors 

found in the pituitary gland; however increasing evidence 
has indicated that the presence of GnRH receptors in 
tumors of the prostate, as demonstrated by the in  vitro 
and in  vivo studies mentioned previously, and of other 
organs, such as breast, uterus and ovary might be their 
additional molecular targets [40–42]. There are currently 
two types of GnRH receptors (GnRH receptors I and II) 
found in prostate cancer cells in vitro [43, 44].

Better outcomes with radiotherapy are achieved with 
long-term adjuvant ADT (2–3  years) than short-term 
adjuvant ADT (<2  years). A phase III randomised, con-
trolled trial (ClinicalTrials.gov, number NCT02175212) 
suggests that advanced or high-risk prostate cancer 
patients receiving long-term adjuvant ADT (3.6 mg sub-
cutaneous goserelin; after 1  month, 10.8  mg was given 
every 3  months for 28  months) plus high dose radio-
therapy (dose range 76–82 Gy) within 5 years had signifi-
cantly improved biochemical disease-free survival (90 vs. 
81 %, respectively; p = 0.01), metastasis-free survival (94 
vs. 83 %, respectively; p = 0.009), and overall survival (95 
vs. 86 %, respectively; p = 0.01) versus those in the short-
term ADT plus high dose radiotherapy group (same 
analog and dose regimen, for 4 months) [45].

As with radiotherapy, chemotherapeutic drugs such 
as docetaxel and estramustine are far more beneficial 
with adjuvant goserelin ADT. A randomised phase III 
trial (ClinicalTrials.gov, number NCT00055731) with 
413 advanced or high-risk prostate cancer patients were 
administered to either ADT (10.8  mg goserelin every 
3 months for 36 months) with docetaxel (70 mg/m2; four 
cycles on Day 2) and estramustine (10  mg/kg per day; 
for 5 days every 3 weeks) or ADT alone [46]. In median 

Table 1  FDA-approved hormonal therapies for  advanced hormone naïve prostate cancer and  metastasis castration-
resistant prostate cancer

GnRH gonadotropin releasing hormone, AR androgen receptor
a  Patients without previous treatment with docetaxel (chemotherapy naïve)
b  Patients treated and progressed from docetaxel (post-chemotherapy)

Stage of prostate cancer Hormonal agent Function Year of FDA approval Reference

Advanced, hormone naïve Goserelin acetate GnRH agonist 1989 [27, 28]

Leuprolide acetate GnRH agonist 1989 [27, 29]

Histrelin acetate GnRH agonist 1991 [27, 30]

Triptorelin pamoate GnRH agonist 2000 [27, 31]

Abarelix GnRH antagonist 2003 [27, 48]

Degarelix GnRH antagonist 2008 [27, 49]

Bicalutamide AR antagonist 1995 [27, 126]

Flutamide AR antagonist 1989 [27, 127]

Castrate-resistant Abiraterone acetate CYP17 inhibitor 2011b [27, 94]

2012a [96, 99]

Enzalutamide AR antagonist 2012b [27, 101]

2014a [102, 128]
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follow-up of 8.8 years, patients who received ADT, doc-
etaxel and estramustine had fewer relapses and mortal-
ity than those who received only ADT; 88 of 207 (43 %) 
patients versus 111 of 206 (54  %) patients, respectively 
[46]. 8-year relapse-free survival was 62  % in the ADT, 
docetaxel and estramustine group compared to 50  % 
in the ADT only group whilst reporting no treatment-
related deaths (p = 0.017) [46].

Clinical observations have shown no significant dif-
ferences in efficacy between the two GnRH agonists, 
leuprolide (3.75 and 7.5 mg) and goserelin (3.6 mg) [47]. 
It is noteworthy, however, that a substantial proportion 
of patients (26.3, 25 and 35  % of patients who received 
3.75 mg leuprolide, 7.5 mg leuprolide, and 3.6 mg goser-
elin, respectively) did not achieve castration levels of tes-
tosterone (≤50 ng/dL) regardless of which GnRH agonist 
was used in the study [47]. Future research to improve 
the efficacy of chemical castration may therefore be 
needed.

GnRH antagonists—overview
There are two second-line GnRH antagonists for patients 
with locally advanced or high-risk prostate cancer, 
degarelix (Firmagon®) and abarelix (Plenaxis®), although 
the latter has been restricted to patients with no alterna-
tive therapy because of associated severe allergic reac-
tions (Table 1) [48, 49], where 3 of the 81 (3.7 %) patients 
had immediate-onset histamine surges and systemic 
allergic reactions upon treatment [24, 50].

GnRH antagonists directly inhibit pituitary GnRH 
receptors and do not cause an initial LH, FSH and tes-
tosterone surge or “flare” as opposed to GnRH ago-
nists, thereby suppressing testosterone to castrate levels 
(≤50  ng/dL) with minimal delay. A randomized, con-
trolled phase III trial (CS21) has shown that patients 
receiving either low or high dose of the GnRH antago-
nist degarelix (Firmagon®) subcutaneously for locally 
advanced or high-risk prostate cancer (240 mg followed 
by either 80 or 160 mg monthly, respectively) were more 
likely to reach castration levels of testosterone by day 3 
post treatment than those receiving a GnRH agonist 
(leuprolide; intramuscular; 7.5  mg monthly), with 95.5–
96.1 % patients vs. 0 % patients, respectively [51]. Com-
bined with this, PSA was decreased significantly faster in 
the degarelix group versus the leuprolide group [51].

GnRH antagonists—clinical advancement for prostate cancer 
therapy
To date, there are clear advantages of GnRH antago-
nists (particularly degarelix) over GnRH agonists 
[51–56]. At 1  year follow-up, degarelix (subcutaneous; 
240  mg followed by 80  mg every month) has reduced 

recurrence of elevated PSA in locally advanced or high-
risk patients compared to those receiving leuprolide 
(7.5 mg every month) (7.7 vs. 12.9 %, respectively; base-
line PSA > 20 ng/mL; p = 0.04) [52]. Likewise, a study by 
Albertson et al. revealed a significant reduction in cardio-
vascular risk after 1 year treatment with degarelix when 
compared to GnRH agonists (p = 0.002) [53]. Klotz et al. 
[54] reported that patients treated with degarelix had sig-
nificant improvements in PSA progression-free survival 
(baseline PSA  >  20  ng/mL; p =  0.052), overall survival 
(p = 0.023) and fewer musculoskeletal events and urinary 
tract events compared to the leuprolide group and the 
goserelin group.

GnRH agonists and GnRH antagonists have differ-
ential effects on FSH secretion. A study by Crawford 
et al. [57] reported a significant suppression in FSH lev-
els from baseline among patients who switched from 
GnRH agonist leuprolide to GnRH antagonist degarelix 
for 1  year. Median FSH was 1.20  IU/L in the degarelix 
group (subcutaneous; 240  mg followed by 80  mg every 
month) and 4.40 IU/L the leuprolide group (intramuscu-
lar; 7.5  mg) (p  <  0.0001) [57]. Elevated FSH levels were 
common among patients who received treatment with 
either a GnRH agonist or orchiectomy, or those who have 
switched from degarelix to leuprolide [58, 59]. In  vitro 
studies detected overexpression of FSH receptors in 
prostate cancer compared to benign prostatic epithelium 
[60]. Moreover, a FSH value more than the lowest tertile 
(>4.8  mIU/mL) may be associated with shorter time to 
CRPC progression [61]. Taken together, the efficacy of 
GnRH antagonists may be due to lack of FSH stimulation 
as opposed to GnRH agonists.

Because degarelix is the only efficient GnRH antago-
nist for prostate cancer, alternative GnRH antagonists 
are currently in development [62–66]. A 10-amino 
acid peptide (decapeptide) GnRH antagonist acyline is 
reported to significantly lower serum LH, FSH and tes-
tosterone levels below baseline values for 15 and 21 days 
among healthy men (cohort 1 and cohort 2) following 
treatment with acyline as either a single dose (subcu-
taneous; 300  µg/kg on day 0; cohort 1 baseline values: 
LH =  3.3 ±  0.7  IU/L, FSH =  2.7 ±  0.8  IU/L, testoster-
one = 21.6 ± 4.2 nmol/L) or multiple doses (subcutane-
ous; 75 µg/kg on days 0, 2, 4, 6 and 8; cohort 2 baseline 
values: LH = 4.0 ± 0.4 IU/L, FSH = 2.0 ± 0.3 IU/L, tes-
tosterone =  26.1 ±  4.2  nmol/L), respectively (p  <  0.05) 
[65]. In a recent study by Festuccia et  al. ozarelix, a 
decapeptide GnRH antagonist, significantly restores cell 
sensitivity to human recombinant tumor necrosis factor-
related apoptosis inducing ligand (TRAIL)-mediated 
apoptosis in androgen-independent prostate cancer cell 
lines DU145 and PC3 (~60–70 % apoptotic cells; 20 ng/
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mL ozarelix plus 500 ng/mL TRAIL) versus cells treated 
with TRAIL alone (~10  % apoptotic cells; 500  ng/mL 
TRAIL) [66]. TRAIL is a member of the tumor necro-
sis factor (TNF) superfamily and resistance is usually 
acquired by cancer tissue to prevent apoptosis and subse-
quent cell death [67]. A novel non-peptide GnRH antago-
nist TAK-375 (Relugolix®) has recently completed phase 
I trials with healthy men and is progressing onto phase 
II [62]. Unlike peptide GnRH antagonist degarelix, non-
peptide GnRH antagonists can be taken orally which 
can prevent disadvantages associated with subcutaneous 
and intramuscular routes of administration; for instance, 
adverse reactions to injection site and high dosage intake 
for efficacy [68].

GnRH antagonists are proven to be effective therapies 
clinically. However, the currently inevitable disease pro-
gression to castration-resistant prostate cancer (CRPC) 
renders this therapy, like all other therapies for advanced 
prostate cancer, inefficient. In a novel study, patients with 
locally advanced or high-risk prostate cancer underwent 
radical prostatectomy (RP) with or without prior neo-
adjuvant degarelix (subcutaneous 240  mg; administered 
7  days before study) [69]. RP samples were collected 
from each patient for analysis. Degarelix-treated samples 
had lower mRNA expression of cell proliferation gene 
Ki-67 (MKI67) and cell cycle regulatory gene cyclin D1 
(CCND1), as opposed to untreated samples (p =  0.003) 
[69]. Expression levels of AR-regulated genes PSA (KLK3) 
and fatty acid synthase (FASN) were significantly down-
regulated following degarelix treatment (p =  0.005 and 
p =  0.0002, respectively). However, malignant epithelial 
cells in degarelix-treated samples had higher estrogen 
receptor 1 (ESR1) expression versus untreated samples 
(24 vs. 8 %, respectively; p = 0.0002) [69]. This therefore 
indicates that GnRH antagonists may not inhibit intrin-
sic pathways mediated from growth promoters such as 
ESR1 which could assist in the development of castra-
tion resistance and further disease progression among 
patients.

Castration‑resistant prostate cancer (CRPC)
Overview
Many studies have reported that CRPC remains andro-
gen-dependent and is driven by intra-tumoral androgens 
[70–73]. This phenomenon is due to AR reactivation 
which most commonly occurs through either overex-
pression or mutation of wild-type AR, with about 30 
and 20–40  % present in CRPC patients, respectively 
[74–76]. Overexpression of wild-type AR may be induced 
by the long noncoding HOX transcript antisense RNA 
(HOTAIR) which has been shown to prevent binding 
of AR protein to the E3 ubiquitin ligase MDM2 which 

directs AR’s proteasomal degradation [77]. AR overex-
pression often leads to enhanced hypersensitivity toward 
low circulating androgens, which enables prostate cancer 
cells to further progress despite the use of ADT [78, 79]. 
Chen et al. [78] found that AR shRNA-infected prostate 
cancer tumors in castrated male mice grew more slowly 
compared to the empty vector control. This indicates a 
distinct selection for cells that avoided AR knockdown 
for tumor growth. Consistent with this finding, in  vivo 
and in  vitro studies have shown that AR upregulates 
M-phase cell cycle regulatory genes such as CDC20, 
CDK1 and UBE2C and stimulate proliferation [80]. These 
observations suggest that increased AR regulation is 
important for developing resistance to hormonal therapy.

Mutations in the ligand-binding domain (LBD) of 
AR are known to switch non-steroidal AR antagonists 
into agonists; a phenomenon known as anti-androgen 
withdrawal syndrome (AAWS). Recent studies indicate 
that AAWS occurs with AR antagonists enzalutamide 
(MDV3100) and ARN-509 due to an AR-F876L point 
mutation [81, 82]. Interestingly, exposure to CAB therapy 
(GnRH agonist plus AR antagonist) has minimal effect on 
the secretion of testosterone precursor androstenediol 
and is shown to stimulate antagonist-to-agonist switch 
T877 mutation in AR [83]. A clinical study by Taplin et al. 
reported an increase in the AR-T877A point mutation 
among 5 of 16 (31.3 %) patients administrated with CAB 
therapy (ADT via LnRH agonist or orchiectomy plus AR 
antagonist flutamide) versus 0 of 17 (0 %) patients admin-
istered to ADT only [84]. Although CAB therapy can 
avoid testosterone surges when compared to ADT mon-
otherapy, its use remains controversial due to increased 
risk of AAWS and resistance to castration.

Other mechanisms of CRPC involve AR splice variants 
(AR-Vs) which lack the C-terminus including the LBD 
and are constitutively active in the absence of androgens 
[85]. Detection of AR splice variants 6 (AR-V6; contigu-
ously-spliced AR exons 1/2/3/2b) and 7 (AR-V7 contig-
uously-spliced AR exons 1/2/3/CE3) in CRPC tumors is 
associated with resistance to enzalutamide, an AR antag-
onist that specifically targets the LBD of AR [86, 87]. 
Recently, third generation AR antagonists were developed 
that are directed against domains other than the LBD of 
AR to improve efficacy of CRPC treatment. EPI-001 is a 
novel AR antagonist that targets the N-terminal domain 
of AR [88]. Consisting of four stereoisomers (EPI-002, 
EPI-003, EPI-004 and EPI-005), EPI-001 is revealed to 
inhibit transcription of AR-regulated genes in response 
to synthetic androgen R1881 [88]. EPI-506, a derivative 
of EPI-001, also targets the N-terminal domain of AR and 
is currently in phase I trials (ClinicalTrials.gov, number 
NCT02606123) [89]. The DNA-binding domain (DBD) 
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is an alternative site for inhibition of AR-Vs. Recent evi-
dences have shown that DBD-targeting compound VPC-
14449 (4-(4-(4,5-bromo-1H-imidazol-1-yl)thiazol-2-yl)
morpholine) (100 mg/kg; 4 days) suppressed tumor size 
and serum PSA levels in LNCaP xenograft models [90]. 
Existing antimicrobial drugs can induce suppression 
of full length AR (AR with C-terminal of LBD) and AR 
splice variant expression including nigericin (antibiotic) 
and niclosamide (anthelmintics) [91, 92].

Abiraterone acetate
Abiraterone acetate (Zytiga®) is an inhibitor of CYP17 
(17α-hydroxy/17,20-lyase), an enzyme responsible for 
the intratumoral androgen synthesis of adrenal andro-
gens and testosterone precursor dehydroepiandroster-
one (DHEA) [93]. Clinically, abiraterone acetate (oral; 
four 250 mg tablets once daily with oral prednisone 5 mg 
twice daily) is shown to significantly improve median 
overall survival compared to placebo in metastatic CRPC 
(mCRPC; histologically confirmed prostate cancer, N1/
M1, more than two [or three in other studies] consecu-
tive rises in PSA levels over 25 % above nadir value fol-
lowing surgical or chemical ADT for at least 1  week) 
patients with or without previous chemotherapy [94–97]. 
A randomized phase III trial demonstrates that abirater-
one acetate significantly reduced pain intensity in chem-
otherapy naïve mCRPC patients versus the placebo group 
(26.7 vs. 18.4  months, respectively; p  =  0.0490) [98]. 
Abiraterone acetate received FDA approval for mCRPC 
patients with or without previous chemotherapy in 2011 
and 2012, respectively [27, 94, 96, 99] (Table 1).

Since its approval, the treatment of mCRPC patients 
with abiraterone acetate has become popular. Truven 
Health Analytics MarketScan® and electronic medical 
record (EMR) databases in the US have shown that 67 % 
mCRPC patients had abiraterone acetate as first-line 
therapy in 2013 compared to only 15  % using chemo-
therapeutic drug docetaxel [100]. In 2010, 1 year before 
the approval of abiraterone acetate, about 91 % mCRPC 
patients received docetaxel as first-line therapy [100]. The 
positive clinical outcomes associated with abiraterone 
acetate highlights the important role of androgen biosyn-
thesis in CRPC.

Enzalutamide
Enzalutamide (Xtandi®) is an AR antagonist that has 
been approved by FDA for post-chemotherapeutic and 
chemotherapy naïve mCRPC patients in 2012 and 2014, 
respectively (Table  1) [101, 102]. A double-blind, phase 
II study, AFFIRM, has shown that enzalutamide (oral; 
four 40  mg capsules for median 8.3  months) improved 
median overall survival compared to the placebo group 

with previous chemotherapy (18.4 vs. 13.6  months, 
respectively; p  <  0.001) [101]. A similar trend occurred 
for mCRPC patients without previous chemotherapy in 
another study, PREVAIL (32.4 vs. 30.2  months, respec-
tively) [102].

There is debate on whether enzalutamide is more 
effective among patients with advanced hormone naïve 
prostate cancer than standard ADT (GnRH agonist plus 
AR antagonist), with a novel randomized phase II trial 
currently being performed (ClinicalTrials.gov, number 
NCT02278185) [103].

Potential use of testosterone for CRPC therapy
For decades it was thought that testosterone played a piv-
otal role in prostate cancer onset; however, recent studies 
have found no statistically significant association between 
testosterone administration (testosterone replacement 
therapy) and prostate cancer risk or mortality [104–107]. 
A recent study has shown that testosterone might have 
therapeutic benefits for patients with asymptomatic 
mCRPC (histologically confirmed prostate cancer, ris-
ing PSA levels following surgical or chemical ADT for at 
least 4 weeks, castrate serum testosterone ≤50 ng/dL, no 
cancer-related pain, ≤5 asymptomatic bone metastases, 
≤10 total sites of metastases including soft tissue) [108]. 
In 6 of the 14 (42.9 %) patients there were PSA reductions 
after three 28-day cycles of testosterone (intramuscular; 
400  mg) plus 14  days of the chemotherapy drug etopo-
side (oral; 100 mg) [108]. Of these 14 patients, 4 (28.6 %) 
patients had >50  % PSA reductions from mean base-
line (21.7  ng/mL; range 1.4–819.1  ng/mL). Low-grade 
(grade 1–2) alopecia (56.3 %), fatigue (56.3 %) and nau-
sea (62.5  %) were most common among patients post 
treatment, followed by lower incidences of high-grade 
(grade 3–4) neutropenia (12.5 %) and pulmonary embo-
lism (12.5  %) [108]. Likewise, a prior study by Morris 
et  al. reported low-grade fatigue as the most common 
toxicity among all three cohorts of patients (75 %; n = 3 
[cohort 1], n =  3 [cohort 2] and n =  6 [cohort 3]) with 
progressive mCRPC (histologically confirmed prostate 
cancer, 25 % increase in PSA over three tests) following 
high-dose exogenous testosterone (transdermal; 5  mg; 
patch [cohorts 1 and 2] or gel [cohort 3]; 1 week, 4 weeks, 
or until progression for cohorts 1, 2 and 3, respectively) 
[109]. No high-grade toxicities related to treatment 
were observed [109]. PSA suppression was seen in 1 of 3 
(33.3 %), 2 of 3 (66.7 %) and 4 of 6 (66.7 %) patients from 
cohorts 1, 2 and 3, respectively [109]. However, despite 
this unique finding, the timing in which testosterone sup-
plementation occurs is critical. Patients must previously 
be treated with ADT via surgical castration or GnRH 
agonist for at least 1 year prior to study to avoid potential 
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adverse effects associated with significantly higher lev-
els of testosterone or flares among patients with existing 
bone metastases and nodal metastases causing increased 
rates of fractures at metastatic site and ureteral obstruc-
tion, respectively [108, 109]. Higher levels of testosterone 
may also lead to increased risk of cancer progression. A 
number of publications have documented the potential 
for testosterone therapy to induce progression among 
patients with hormone naïve prostate cancer [2, 15]. On 
the contrary, a randomized phase I study reported no 
significant relationship between dose or serum testos-
terone levels and median time to progression (p = 0.072 
and p  =  0.14, respectively) among patients with low 
risk CRPC (histologically confirmed prostate cancer, 
PSA ≤ 3.0 ng/mL; rising PSA after surgical or chemical 
ADT) [110]. The recent studies highlight that testoster-
one is well tolerated among patients with asymptomatic 
and progressive mCRPC, and low risk CRPC but future 
investigation is needed [108–110].

In patients with increasing PSA levels due to relapse 
following local therapy (radical prostatectomy, radiation 
therapy) treatment with testosterone decreased PSA to 
undetectable levels (<0.05  ng/ml). Feltquate et  al. have 
shown that 2 of 9 (22.2 %) patients with non-castrate tes-
tosterone levels (mean 382 ng/dL; range 181–654 ng/dL) 
and PSA relapse after radiation therapy achieved unde-
tectable PSA levels after 28-day cycles of testosterone 
repletion (transdermal gel; 5 g daily) on days 1 to 7 plus 
GnRH agonist (either leuprolide 7.5 mg intramuscular or 
goserelin 3.6 mg subcutaneous) on day 1 [111]. With the 
same dose and regimen, 8 of 17 (47 %) patients with PSA 
relapse following radical prostatectomy had achieved 
undetectable PSA levels [111]. However, prior to tes-
tosterone repletion, patients were required to undergo 
12-week induction cycles of GnRH agonist (leuprolide 
7.5 mg intramuscular or goserelin 3.6 mg subcutaneous) 
on day 1 plus AR antagonist bicalutamide (50 mg daily) 
on days 1 to 28 to deplete PSA levels to <1 ng/mL [111]. 
Patients who failed to achieve a PSA of <1  ng/mL after 
the initial induction did not received testosterone reple-
tion in the study [111]. Likewise, a phase II trial reported 
that 5 of 38 (13  %) non-castrate patients (testosterone 
levels >150 ng/dL) with histologically confirmed prostate 
cancer and PSA relapse following prostatectomy or radi-
ation therapy achieved “treatment-specific” undetectable 
PSA endpoint (PSA < 0.05 ng/mL or PSA < 0.5 ng/mL for 
patients with prior prostatectomy or radiation therapy, 
respectively) at 18  months after receiving nine 3-week 
cycles of testosterone repletion (transdermal gel; 5 g daily 
for 3  days) in combination with 3-month depot leupro-
lide (intramuscular; 22.5 mg) on Day 1 of cycles 1, 5 and 

9, and docetaxel (70 mg/m2) on Day 1 per cycle [112]. Of 
these 5 patients, 3 had prostatectomy and 2 had radiation 
therapy prior to study [112].

As demonstrated by recent clinical trials, testosterone 
administration is generally supplemented with cycles of 
ADT to deplete serum androgen and PSA levels for a 
certain period of time. The process of cycling between 
androgen repletion and depletion, known as intermit-
tent therapy, was first introduced in 1986 by Klotz et al. 
[113] to minimize toxicity and adverse side effects associ-
ated with continuous ADT. However, in addition to stop-
ping the use of ADT, recent studies have taken interest in 
modifying androgen repletion with testosterone therapy 
to not only alleviate side effects associated with ADT but 
also to potentially reduce cost of hormonal treatment for 
CRPC patients (Table  2) [114–123]. Interestingly, inter-
mittent therapy is thought to prolong androgen depend-
ence in prostate cancer when compared to continuous 
ADT; however, at present there is no statistically sig-
nificant evidence to suggest that intermittent therapy 
without testosterone administration during the reple-
tion stage improves overall survival of patients with PSA 
relapse following local therapy versus continuous ADT 
[124, 125]. Long term randomised clinical trials should 
be performed to determine if testosterone administration 
during intermittent therapy can significantly affect over-
all survival among patients with prostate cancer.

Conclusions
Hormonal therapy is the mainstay of treatment in the 
clinical management of pre- and post-castration-resist-
ant prostate cancers. Until recently, GnRH agonists 
comprised the first-line therapy for advanced hormone 
naïve prostate cancer and are generally combined with 
AR antagonists to avoid initial testosterone flares, and 
either radiotherapy or chemotherapy to improve clinical 
outcomes. Progress has been made since the discovery of 
degarelix with the development of novel GnRH antago-
nists such as the non-peptide GnRH antagonist TAK-
375 which is entering phase II trials. Due to advanced 
knowledge on AR reactivation and castration resistance, 
two hormonal agents have been approved by FDA for 
patients with CRPC: abiraterone acetate and enzaluta-
mide. Abiraterone acetate has particularly gained vast 
interest because it directly inhibits biosynthesis of tes-
tosterone precursors, unlike current hormonal therapies. 
Although still early in clinical trials, the use of testoster-
one therapy could be expanded to patients with CRPC. It 
would be interesting to see if testosterone therapy could 
be translated into larger randomized clinical trials for 
further analysis, and subsequently allow the development 
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of more effective therapeutic methods to manage the 
disease.
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