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Tailoring Magnetic Features in Zigzag-Edged Nanographenes by
Controlled Diels–Alder Reactions

M. R. Ajayakumar,*[a] Yubin Fu,[a] Fupin Liu,[b] Hartmut Komber,[c] Valeriya Tkachova,[a]

Chi Xu,[d] Shengqiang Zhou,[d] Alexey A. Popov,[b] Junzhi Liu,*[e] and Xinliang Feng*[a]

Abstract: Nanographenes (NGs) with tunable electronic and
magnetic properties have attracted enormous attention in
the realm of carbon-based nanoelectronics. In particular,
NGs with biradical character at the ground state are promis-
ing building units for molecular spintronics. However, most
of the biradicaloids are susceptible to oxidation under ambi-
ent conditions and photolytic degradation, which hamper
their further applications. Herein, we demonstrated the feasi-
bility of tuning the magnetic properties of zigzag-edged
NGs in order to enhance their stability via the controlled
Diels–Alder reactions of peri-tetracene (4-PA). The unstable

4-PA (y0 = 0.72; half-life, t1/2 = 3 h) was transformed into the
unprecedented benzo-peri-tetracenes (BPTs) by a one-side
Diels–Alder reaction, which featured a biradical character at
the ground state (y0 = 0.60) and exhibited remarkable stabili-
ty under ambient conditions for several months. In addition,
the fully zigzag-edged circumanthracenes (CAs) were achiev-
ed by two-fold or stepwise Diels–Alder reactions of 4-PA, in
which the magnetic properties could be controlled by em-
ploying the corresponding dienophiles. Our work reported
herein opens avenues for the synthesis of novel zigzag-
edged NGs with tailor-made magnetic properties.

Introduction

Nanographenes (NGs)[1–5] have attracted increasing attention
due to their intriguing electronic and optical properties, which
render them as potential materials in carbon-based nanoelec-

tronics.[6, 7] Particularly, NGs can serve as molecular model for
understanding the structure-property relationship of the infin-
ite graphene and graphene nanoribbons (GNRs).[8–10] Bottom-
up organic synthesis is an indispensable tool to fabricate atom-
ically precise NGs with well-defined electronic structures. In the
last decade, NGs with open-shell biradical character at the
ground state[11–19] have emerged as promising candidates for
molecular spintronics and nonlinear optics,[20–24] nonetheless,
their poor chemical stability[25–27] essentially hampered their
further applications. For instance, peri-tetracene (4-PA),[28–30] an
open-shell peri-acene (the biradical character, y0 = 0.72)[31] with
rich zigzag edges (Scheme 1 a), was recently accomplished
through the solution-based synthesis by our group and others.
However, 4-PA is highly unstable under ambient condition
(half-life, t1/2 = 3 h), making it difficult for electronic and spin-
tronic applications. Accordingly, effective synthetic strategies
are required towards the synthesis of highly stable zigzag-
edged NGs with an open-shell character.

Herein, we report the synthesis of zigzag-edged NGs
with tailor-made magnetic properties through the controlled
Diels–Alder reactions[32–34] of 4-PA with suitable dienophiles
(Scheme 1 b). The unprecedented benzo-peri-tetracenes
(BPTs)[35, 36] possessed moderate open-shell biradical characters
whereas the circumanthracenes (CAs)[28, 37, 38] exhibited closed-
shell or open-shell features depending on the dienophile em-
ployed. Among them, the open-shell BPTs (BPT 1, y0 = 0.55;
BPT 2, y0 = 0.61) were synthesized (yields: 40 % for BPT 1 and
20 % for BPT 2) by one-side Diels–Alder reactions of 4-PA with
p-chloranil (1) and 2,3-dichloro-5,6-dicyano-1,4-benzoquinone
(DDQ, 2), respectively (Scheme 1 b, route i). BPT 1 was able to
execute further Diels–Alder reaction by virtue of its reactive
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bay region to afford open-shell CA 1 (y0 = 0.46) in 25 % yield
(Scheme 1 b, route ii). Furthermore, two-side Diels–Alder reac-
tions of 4-PA with dienophiles, such as diethyl acetylenedicar-
boxylate (3), 1,4-diphenyl-2-butyne-1,4-dione (4) and N-phenyl-
maleimide (5), provided closed-shell CA 2, CA 3 and CA 4
(Scheme 1 b, route iii), respectively, in moderate yields (�30 %).
The optical and electrochemical energy-gaps are estimated to
be 1.1–1.5 eV for the open-shell BPT 1, BPT 2 and CA 1,
among them, BPT 1 possesses the narrowest energy-gap
(1.1 eV). Moreover, the magnetic properties of the open-shell
BPT 1, BPT 2 and CA 1 were analyzed by electron paramagnet-
ic resonance (EPR) and superconducting quantum interfering
device (SQUID) measurements, as well as supported by the
theoretical calculations. Importantly, all these open-shell BPT 1,
BPT 2 and CA 1 displayed high air-stability, and there was no
noticeable degradation over one month under ambient condi-
tions. Our work demonstrated herein paves the way for the ra-
tional synthesis of open-shell zigzag-edged NGs with remark-
able stability and tailor-made magnetic properties.

Results and Discussion

The synthetic procedure is based on the key precursor PA 1,[28]

which can readily yield 4-PA through dehydrogenation with p-
chloranil or DDQ (Scheme 1 a). First, PA 1 was oxidized into 4-

PA in the presence of p-chloranil at 105 8C in toluene
(Scheme 1 a, path a), which further underwent Diels–Alder cy-
cloaddition with the additional p-chloranil in the reaction mix-
ture (Scheme 1 b, route i).[39] The aromatization of the resultant
Diels–Alder adduct (a plausible mechanism of the Diels–Alder
reaction was proposed in Scheme S1) occurred by the elimina-
tion of two HCl molecules and afforded BPT 1 (along with the
inseparable monochloro derivative as minor impurity,
Scheme S1) in 40 % yield. However, the large excess of p-chlor-
anil did not prompt two-fold Diels–Alder reaction of 4-PA, in-
stead it led to undesired chlorination of the BPT core
(Scheme S1 and Figure S11). Furthermore, a slow addition of
2 equiv DDQ into the dichloromethane (DCM) solution of PA 1
at room temperature was carried out. The in situ generated
4-PA executed Diels–Alder reaction with the DDQ
(Scheme S2),[28, 40, 41] and afforded BPT 2 as dark-brown solid
(20 % yield). Interestingly, further treatment of BPT 1 with di-
ethyl acetylenedicarboxylate (3) dienophile at 105 8C in toluene
and followed addition of excess p-chloranil into the mixture
gave CA 1 in 25 % yield (Scheme 1 b, route ii), in which the
short-edges (Scheme S3) of the CA core were asymmetrically
installed with the carboxylic esters and dichloro-p-benzoqui-
none. Regarding the synthesis of CA 2, CA 3 and CA 4, two-
fold Diels–Alder cycloadditions of 4-PA with various dieno-
philes were performed (Scheme 1 b, route iii). The precursor PA

Scheme 1. a) Synthesis of peri-tetracene (4-PA) from PA 1 by using p-chloranil (path a) or DDQ (path b). b) Synthesis of open-shell BPT 1–2, open-shell CA 1
and closed-shell CA 2–4, via controlled Diels–Alder reactions (BPT 1–2 via i : Diels–Alder reaction of 4-PA with 1 and 2, respectively, and the successive aroma-
tization; CA 1 via ii : Diels–Alder reaction of BPT 1 with 3 and the successive aromatization; CA 2–4 via iii : Diels–Alder reaction of 4-PA with 3, 4 and 5, respec-
tively, and the successive aromatization).
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1 in dry toluene was treated with 2.5 equiv of p-chloranil in
presence of excess dienophile 3 at 105 8C to afford 4-PA. The
in situ formed 4-PA underwent two-fold Diels–Alder reaction
with 3, and the successive aromatization of the adduct
(Scheme S4) yielded CA 2 (32 %) as dark green powder. Follow-
ing the similar synthetic strategy, CA 3 (30 %) and CA 4 (31 %)
were achieved using dienophiles 4 and 5, respectively. All of
the BPTs and CAs were fully characterized by high-resolution
MALDI-TOF mass spectrometry and NMR (1H, 13C and 2D) spec-
troscopy (see the Supporting Information).

Single crystals suitable for X-ray analysis were grown by
slow diffusion of methanol into chloroform solution of CA 2
and CA 3. X-ray crystallographic analyses of CA 2 and CA 3
reveal that the CA cores are slightly non-planar due to the
presence of zigzag-edge substituents (Figure 1).The planes of

the tert-butylphenyl and mesityl groups are nearly parallel to
each other, whereas perpendicular to the plane of the respec-
tive CA cores. The torsional angles between the tert-butylphen-
yl groups and mesityl groups are measured as 19.048 and
32.158 for CA 2 and CA 3, respectively. The C�C bond lengths
at the peri-positions (a, b) of CA 2 and CA 3 are the shortest
(�1.35 �) in contrast to the other C�C bonds of the CA motif,
and hence both of them show the strongest double bond
character. The unusual lengthening of the d bond (1.44 �) is
attributed to the steric effect of the bulk phenyl substituents
at the zigzag edge periphery.[28]

Next, the magnetic properties of open-shell compounds BPT
1, BPT 2 and CA 1 were investigated by electron paramagnetic
resonance (EPR) and superconducting quantum interfering
device (SQUID) measurements (Figure 2). The solid samples of
BPT 1, BPT 2 and CA 1 showed intense EPR signals at room
temperature (Figure 2 inset). The broad unresolved signals of
BPT 1, BPT 2 and CA 1 gave g values of 2.0026, 2.0031 and

2.0029, respectively.[27] The line widths were 9.45, 9.03 and 7.98
G for BPT 1, BPT 2 and CA 1, respectively. Furthermore, tem-
perature-dependent SQUID measurements (in the range of 4–
300 K) were conducted with the powder samples of BPT 1,
BPT 2 and CA 1. The samples were cooled down to 4 K with-
out external magnetic field then the data was collected during
heating to 300 K under an applied magnetic field of 1 T. Plots
of the product of molar magnetic susceptibility (cM) with the
temperature (T) revealed a continuous increase after 150–
200 K.

For a further investigation, the data of cMT vs. T were fitted
by using Bleaney–Bowers equation [Eq. (1)]:[42]

cMT ¼ NAm2
Bg2

kB

½2 expð 2J
kB TÞ�

1þ 3 expð 2J
kB TÞ

in which NA is the Avogadro number, mB is the Bohr magneton,
g = 2.0 is the g-factor, kB is the Boltzmann constant, and J is
the total angular momentum quantum number. Accordingly,
the singlet-triplet energy gap (DES-T =�2J/kBT) were found to
be �2.01, �1.75 and �3.59 kcal mol�1 for BPT 1, BPT 2 and CA
1, respectively. All these experimental results confirm that BPT

Figure 1. X-ray crystallographic molecular structures of a) CA 2 and b) CA 3
(top and side views). Hydrogen atoms and solvent molecules are omitted
for clarity. Ellipsoids are drawn at 30 % probability level.

Figure 2. SQUID measurements of powder samples of BPT 1 (along with the
monochloro BPT 1 impurity), BPT 2 and CA 1. The inset figures show the re-
spective EPR measurements at room temperature. The solid lines are fitted
by the Bleaney–Bowers equation.
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1, BPT 2 and CA 1 display a singlet open-shell ground state.
Variable-temperature 1H NMR measurements show no signifi-
cant signal broadening caused by an increasing population of
the paramagnetic triplet state at higher temperatures (Figures
S13, S22, S29). Slowed-down motion of the quinoid ring in BPT
1 and CA 1 probably causes the line broadening and upfield
shift that are observed at lower temperatures for protons adja-
cent to this moiety (Figures S14, S29).

To gain further insights into the electronic structures of BPT
1, BPT 2 and CA 1, Hartree–Fock (HF) and DFT calculations
were performed. The biradical index (y0), that reflects the
degree of biradical feature, was calculated by symmetry-
broken UHF/6-31G* method based on natural orbital (NO) oc-
cupations.[31] Owing to the gain of additional Clar’s sextets[4, 38]

and thereby the increase in aromatic stabilization energies
(Scheme S5), the open-shell characters are decreased from 4-
PA to BPTs/CAs. In the case of CA 1, the CA core is laterally p-
extended with a quinoid ring (Scheme S6) and, hence, the
energy-gap (DEg) is lowered (1.3 eV) compared to that of CA
2–4 (DEg�1.8 eV).[38] Thus, the evolution of moderate biradical
feature in CA 1 is justified. Additionally, the singly occupied
molecular orbitals (SOMOs a and b) and anisotropy of the in-
duced current-density (ACID)[43] maps of BPT 1, BPT 2, and CA
1 calculated at UB3LYP/6-31G(d,p) level indicate that the elec-
tron densities are distributed over their aromatic core, whereas
the electron densities are more localized over the zigzag pe-
riphery in 4-PA (Figure S50–S52). Therefore, it is supported
that, upon benzannulation of the bay position of 4-PA, the
electron density would extend to the newly fused benzene
moieties. The calculated singlet biradical indices (y0) are 0.55,
0.61 and 0.46, for BPT 1, BPT 2 and CA 1, respectively, which
are noticeably smaller than 4-PA (y0 = 0.72). Moreover, the BPT
and CA core of these molecules possess clock-wise electronic
current flow, thus indicating their global aromaticity.

The UV/Vis-NIR and fluorescence spectroscopies of BPTs and
CAs were performed (BPT 1, BPT 2, CA 2 and CA 3 in CH2Cl2 ;
CA 1 and CA 4 in C2H2Cl4). As shown in Figure 3 a, BPT 1 dis-
played broad absorption at NIR region, which are centered at
809 nm (e= 24700 m

�1 cm�1) and 920 nm (e= 10 800 m
�1 cm�1),

whereas BPT 2 revealed intense absorption with a maximum
at 788 nm (e= 59 500 m

�1 cm�1). CA 1 showed broad NIR ab-
sorption band with a maximum at 816 nm (e=

17 900 m
�1 cm�1). The NIR absorptions (750–1100 nm) of BPT 1,

BPT 2 and CA 1 can be attributed to their open-shell biradical
characters at the ground state.[19, 35] The time-dependent UV/
Vis-NIR measurements of BPT 1, BPT 2 and CA 1 were con-
ducted under ambient conditions to investigate their kinetic
stabilities. During the measurement, the solutions of BPT 1,
BPT 2 and CA 1 were exposed to ambient air and sun light
conditions (Figure S1–S3). There was no significant change of
the intensities of the absorption spectra of BPT 1, BPT 2 and
CA 1 with the time. All these results support the air stability of
BPT 1, BPT 2 and CA 1. In contrast, compounds CA 2, CA 3
and CA 4 displayed sharp absorptions at 630 nm (e=

71 300 m
�1 cm�1), 635 nm (e= 70 900 m

�1 cm�1) and 648 nm (e=

58 100 m
�1 cm�1), respectively, which are more like the typical

p-band of a closed-shell polycyclic aromatic hydrocarbon

(PAH).[44] The optical energy-gaps (Eopt
g ) of BPT 1, BPT 2 and CA

1 were estimated to be 1.09, 1.50 and 1.26 eV, respectively,
based on their lowest energy absorption onset,[45] which are
significantly narrow.[46] In contrast, the Eopt

g of CA 2, CA 3, and
CA 4 were determined to be 1.91, 1.90 and 1.80 eV, respective-
ly. Moreover, CA 2, CA 3 and CA 4 exhibited intense emissions
(Figure 3 b) at 639, 643, and 674 nm, respectively. The relatively
smaller stocks shifts of 9, 8 and 26 nm for CA 2, CA 3 and CA
4, respectively, are implied to their structural rigidity[47] and
weak p–p stacking capability of the CA cores due to the pres-
ence of bulky groups at the zigzag edge peripheries. Notewor-
thy, moderate fluorescence quantum yields (Ff) of 17–29 %
were estimated for CA 2, CA 3 and CA 4 (Table 1) in dilute sol-
utions using rhodamine 6 g as reference; whereas compounds
BPT 1, BPT 2 and CA 1, did not show emissions in this range,
which is consistent with the previously reported open-shell
polycyclic hydrocarbons.[11, 27]

The electrochemical properties of BPTs and CAs (Figure 4)
were investigated by cyclic voltammetry (CV) in dry DCM, in
which Ag/AgCl was used as the reference electrode. Due to
the presence of (CO-CCl)2 moiety, BPT 1 and CA 1 are highly
electron deficient and display three reduction (E1�3

red ) waves (re-
versible and quasi-reversible) between �0.45 and �1.40 V,
while BPT 2 is moderately electron deficient and shows two re-
duction waves at �0.85 V (E1

red) and �1.30 V (E2
red). In addition,

two oxidation waves (reversible and quasi-reversible) are ob-
served for BPT 1, BPT 2 and CA 1 (E1�2

ox ) between 0.45 and
1.45 V. The electrochemical energy-gaps (EEC

g ) of BPT 1, BPT 2
and CA 1 are determined as 1.13, 1.47 and 1.33 eV, respective-
ly, which are in accordance with their Eopt

g . The closed-shell CA

Figure 3. a) UV/Vis absorption (1 � 10�5
m) and b) emission spectra

(1 � 10�6
m) of BPTs and CAs (BPT 1, BPT 2, CA 2 and CA 3 in CH2Cl2; CA 1

and CA 4 in C2H2Cl4). The excitation wavelengths (lex) for the fluorescent
measurements were 403, 405, and 439 nm for CA 2, CA 3 and CA 4, respec-
tively. Inset photographs are taken under a) daylight and b) upon irradiation
with a hand-held UV lamp.
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2, CA 3 and CA 4 reveal two reduction waves and two oxida-
tion waves, and their corresponding Eopt

g are estimated to be
1.83, 1.84 and 1.76 eV, respectively. All the optical and electro-
chemical properties of BPTs and CAs are summarized in
Table 1.

Conclusions

In summary, we demonstrated the novel modulation of mag-
netic properties of zigzag-edged NGs via the controlled Diels–
Alder reaction with 4-PA. Accordingly, the unstable open-shell

4-PA (y0 = 0.72) biradicaloid was converted into stable open-
shell BPT 1 and BPT 2 (BPT 1, y0 = 0.55; BPT 2, y0 = 0.61) upon
respective one-side Diels–Alder reaction. A step-wise Diels–
Alder reaction was carried out with 4-PA and, hence, achieving
the open-shell CA 1 (y0 = 0.46) with asymmetric edge-substitu-
tions. Notably, BPT 1, BPT 2 and CA 1 biradicaloids possessed
narrow energy gaps (�1.1–1.5 eV) and exhibited remarkable
stability under ambient conditions. On the other hand, the
two-fold Diels–Alder reaction of 4-PA with suitable dienophiles
gave closed-shell CA 2, CA 3 and CA 4. Our synthetic strategy
reported herein shed light on the development of open-shell
zigzag-edged NGs with tailor-made magnetic properties with
high stability, which can be useful for the advancement of
carbon-based nanomaterials with superior quantum per-
formance capability.[20, 21]

Experimental Section

Synthesis of PA 1

Compound PA 1 was synthesized by following the previous
report.[28]

Synthesis of BPT 1

A Schlenk flask was charged with PA 1 (55.0 mg, 0.058 mmol), and
p-chloranil (28.4 mg, 0.116 mmol) along with dry toluene (10 mL)
under argon. The flask was placed in a preheated oil bath at 105 8C
and magnetically stirred for 24 h. The solution brought to RT and
the solvent was removed in vacuo. The crude solid was purified by
silica gel column chromatography with DCM/iso-hexane mixture as
eluent to afford BPT 1, along with its monochloro derivative, as
dark greenish yellow solid. The minor monochloro BPT 1 impurity
is inseparable and the combined yield is 40 % (26 mg). Rf = 0.55
(iso-hexane/DCM 1:1 v/v). 1H NMR (500 MHz, C2D2Cl4, 60 8C): d=
9.43 (d, 10.2, 1 H), 9.34 (d, 10.2, 1 H), 9.08 (d, 7.6, 2 H), 7.93 (t, 7.5,
2 H), 7.8–7.7 (2 H), 7.68 (d, 10.2, 1 H), 7.64 (d, 10.2, 1 H), 7.21 (d, 10.2,
2 H), 7.19 (d, 10.2, 2 H), 7.09 (d, 10.2, 2 H), 7.06 (d, 10.2, 2 H), 6.73 (2
x s, 4 H), 2.37 (s, 6 H), 1.87 (s, 6 H), 1.79 (s, 6 H), 1.47 (s, 9 H),
1.46 ppm (s, 9 H). 13C NMR (125 MHz, C2D2Cl4, 60 8C): d= 178.0,
149.2, 149.0, 143.0, 142.9, 141.3, 140.5, 139.8, 136–137, 132.4,
132.0, 131.8, 131.4, 131.0, 130.4, 129.0, 128.9, 128.2, 128.1, 128.0,
127.7, 127.3, 127.1, 126.6, 126.4, 125.6, 125.1, 125.0, 124.5, 123.5,
122.8, 122.3, 121.8, 34.2, 31.3, 21.0, 20.9 ppm. Detailed 1H and 13C
signal assignments are given in Table S3. HR-MS MALDI (m/z): calcd
for C80H58Cl2O2 [M]+ , 1120.381; found, 1120.385.

Table 1. Electrochemical and optical data of BPTs and CAs.[a]

labs [nm] E1
red [V] E2

red [V] E3
red [V] E1

ox [V] E2
red [V] HOMO [eV] LUMO [eV] Eopt

g /EEC
g [eV]

BPT 1 333, 381, 488, 809, 920 (br) �0.55 �1.00 �1.29 0.58 1.10 �4.98 �3.85 1.09/1.13
BPT 2 410, 568, 788 �0.85 �1.30 – 0.62 1.14 �5.02 �3.55 1.50/1.47
CA 1 412, 655, 816 (br) �0.48 �0.99 �1.31 0.85 1.36 �5.25 �3.92 1.26/1.33
CA 2 403, 581, 630 �1.07 �1.47 – 0.76 1.34 �5.16 �3.33 1.91/1.83
CA 3 405, 586, 635 �1.09 �1.47 – 0.75 1.31 �5.15 �3.31 1.90/1.84
CA 4 439, 601, 648 �0.87 �1.31 – 0.89 1.40 �5.29 �3.53 1.80/1.76

[a] E1�3
red and E1�2

ox are half-wave potentials of the reductive and oxidative waves (vs. Ag/AgCl), respectively. The HOMO/LUMO are determined by the equa-
tion: HOMO/LUMO =�(4.4 + E1

ox/red) eV.

Figure 4. Cyclic voltammetry of BPTs and CAs in dry DCM with 0.1 m

Bu4NPF6 as the supporting electrolyte, Ag/AgCl as reference electrode, Pt
disk as working electrode, and Pt wire as counter electrode. Scan rate used
is 50–250 mV.
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Synthesis of BPT 2

Compound PA 1 (53.5 mg, 0.056 mmol), and DDQ (25.5 mg,
0.113 mmol) along with dry DCM (6 mL) were charged in a dry
25 mL Schlenk tube and stirred at RT for 24 h under argon. The sol-
vent was removed in vacuo and the crude solid was purified by
silica gel column chromatography with DCM as eluent to afford
BPT 2 (11.5 mg, 20 %) as dark-brown solid. Rf = 0.61 (DCM). 1H NMR
(500 MHz, C2D2Cl4, 60 8C): d 9.06 (d, 7.4, 2 H), 8.23 and 8.22 (2 x d,
9.7, 4 H), 7.91 (2 H), 7.73–7.65 (3 H), 7.60 (d, 9.7, 1 H), 7.20 (d, 8.5,
2 H), 7.18 (d, 8.5, 2 H), 7.05 (d, 8.5, 2 H), 7.03 (d, 8.5, 2 H), 6.73 (s,
2 H), 6.72 (s, 2 H), 2.36 (s, 6 H), 1.86 (s, 6 H), 1.77 (s, 6 H), 1.46 and
1.45 ppm (2 � s, 18 H) ppm. 13C NMR (125 MHz, C2D2Cl4, 60 8C): d=

149.2, 149.1, 141.4, 140.6, 140.0, 139.4, 137.2, 136.7, 136.6, 136.5,
136.4, 136.3, 136.0, 133.8, 132.7, 132.6, 132.1, 132.0, 131.9, 131.4,
131.1, 130.9, 130.8, 129.4, 129.0, 128.8, 128.3, 128.2, 127.7, 127.2,
126.6, 126.2, 125.5, 125.3, 125.1, 124.8, 124.1, 123.9, 123.7, 123.6,
123.5, 122.9, 122.7, 122.2, 121.8, 121.6, 116.3, 106.4, 34.2, 31.3, 21.0,
20.9, 20.8 ppm. Detailed 1H and 13C signal assignments are given in
Table S3. HR-MS MALDI (m/z): calcd for C78H58N2 [M]+ , 1022.460;
found, 1022.466.

Synthesis of CA 1

A solution of BPT 1 (10.5 mg, 0.009 mmol), diethyl acetylenedicar-
boxylate (3) (477.6 mg, 2.81 mmol), and p-chloranil (6.9 mg,
0.028 mmol) in dry toluene (4 mL) was heated at 105 8C with
gentle stirring under argon. After 24 h, excess of p-chloranil
(20.0 mg) was added to the reaction mixture and continued heat-
ing for 2 h. The solvent was removed in vacuo and the crude solid
was purified by silica gel column chromatography with DCM as
eluent to afford CA 1 (3 mg, 25 %) as dark-green solid. Rf = 0.63
(DCM). 1H NMR (500 MHz, C2D2Cl4, 60 8C): d= 10.13 (d, 10.1, 1 H),
9.97 (d, 10.0, 1 H), 9.21 (d, 9.5, 1 H), 8.67 (d, 9.5, 1 H), 8.58 (d, 10.1,
1 H), 8.55 (d, 10.0, 1 H), 8.67 (d, 9.5, 1 H), 8.60 (d, 9.5, 1 H), 7.45 (d,
7.9, 2 H), 7.42–7.32 (6 H), 6.91 (s, 2 H), 6.89 (s, 2 H), 4.79 and 4.77 (2 x
q, 7.2, 4 H), 2.50 (s, 6 H), 1.82 (s, 6 H), 1.79 (s, 6 H), 1.64 and 1.62 (2 x
t, 7.2, 6 H), 1.60 (s, 9 H), 1.58 ppm (s, 9 H). 13C NMR (125 MHz,
C2D2Cl4, 60 8C): d= 179.0, 168.7, 168.5, 149.5, 149.4, 143.1, 142.9,
140.3, 139.5, 139.4, 138.8, 137.9, 137.7, 137.3, 137.1, 137.0, 136.9,
136.8, 132.2, 131.1, 131.0, 130.4, 129.7, 129.6, 129.2, 129.0, 128.9,
128.6, 128.4, 128.3, 128.1, 128.0, 127.5, 127.3, 127.2, 126.4, 125.9,
125.6, 125.5, 125.1, 123.6, 123.5, 123.4, 122.9, 122.1, 122.0, 121.7,
121.6, 121.3, 120.9, 120.6, 120.3, 119.8, 119.7, 119.5, 62.4, 62.3, 34.3,
31.5, 31.4, 21.3, 21.2, 14.2 ppm. Detailed 1H and 13C signal assign-
ments are given in Table S3. HR-MS MALDI (m/z): calcd for
C88H66Cl2O6 [M]+ , 1288.424; found, 1288.428.

Synthesis of CA 2

A Schlenk flask was charged with PA 1 (50.0 mg, 0.053 mmol), 3
(470.7 mg, 2.63 mmol), and p-chloranil (32.3 mg, 0.131 mmol)
along with dry toluene (10 mL) under argon. The solution was
heated at 105 8C and magnetically stirred for 20 h. The resultant
dark brown solution was mixed with excess of p-chloranil
(80.0 mg) and heated for another 4 h. The solution brought to RT
and the solvent was removed in vacuo. The crude solid purified by
silica gel column chromatography with DCM as eluent to afford CA
2 (21.6 mg, 32 %) as purplish green solid. Rf = 0.21 (DCM). 1H NMR
(500 MHz, CD2Cl2, 30 8C): d= 9.11 (d, 9.7, 2 H), 9.10 (d, 9.7, 2 H), 8.55
(d, 9.7, 2 H), 8.50 (d, 9.7, 2 H), 7.35 (8.3, 8 H), 6.89 (s, 4 H), 4.73 and
4.72 (2 x q, 7.2, 8 H), 1.77 (s, 12 H), 1.58 and 1.59 (2 x t, 7.2, 12 H),
1.54 (s, 18 H), 2.46 (s, 6 H) ppm. 13C NMR (125 MHz, CD2Cl2, 30 8C): d

169.3, 169.2, 149.7, 139.0, 138.8, 138.2, 137.6, 137.2, 131.2, 130.2,

129.8, 129.6, 128.8, 128.4, 127.5, 127.3, 127.2, 126.0, 125.9, 125.7,
125.3, 124.1, 122.1, 122.0, 121.8, 121.6, 120.7, 120.5, 120.3, 62.8,
34.8, 31.7, 21.5, 14.5 ppm. Detailed 1H and 13C signal assignments
are given in Table S4. HR-MS MALDI (m/z): calcd for C90H76O8 [M]+ ,
1284.554; found, 1284.558.

Synthesis of CA 3

A mixture of PA 1 (31.0 mg, 0.033 mmol), 1,4-diphenyl-2-butyne-
1,4-dione (4) (224.0 mg, 0.912 mmol), and p-chloranil (20.0 mg,
0.081 mmol) in dry toluene (6 mL) was heated at 105 8C with stir-
ring under argon. After 24 h, the resultant dark brown solution was
mixed with excess of p-chloranil (50.0 mg) and heated for another
4 h. The solvent was removed in vacuo and the solid was purified
by silica gel column chromatography with DCM as eluent to afford
CA 3 (13.8 mg, 30 %) as dark green solid. Rf = 0.37 (DCM). 1H NMR
(500 MHz, C2D2Cl4, 30 8C): d= 8.53 (d, 9.6, 4 H), 8.40 (d, 9.6, 2 H),
8.31 (d, 9.6, 2 H), 7.87 and 7.84 (2 � d, 8.0, 8 H), 7.58 (4 H), 7.40 and
7.38 (2 x t, 8.0, 8 H), 7.28 (d, 7.9, 4 H), 7.24 (d, 7.9, 4 H), 6.79 (s, 4 H),
2.39 (s, 6 H), 1.74 (s, 12 H), 1.46 (s, 18 H) ppm. 13C NMR (125 MHz,
C2D2Cl4, 30 8C): d= 199.5, 199.3, 149.0, 138.5, 138.0, 137.6, 137.3,
136.9, 136.5, 133.7, 133.1, 133.0, 130.5, 130.3, 129.5, 129.0, 128.9,
128.5, 128.2, 127.6, 126.9, 125.9, 125.7, 125.4, 125.1, 123.5, 121.5,
121.1, 121.0, 120.9, 120.3, 120.1, 119.9, 34.2, 31.4, 21.2 ppm. De-
tailed 1H and 13C signal assignments are given in Table S4. HR-MS
MALDI (m/z): calcd for C106H76O4 [M]+ , 1412.574; found, 1412.568.

Synthesis of CA 4

Compound PA 1 (7.0 mg, 0.007 mmol), N-phenylmaleimide (5)
(63.7 mg, 0.367 mmol), and p-chloranil (4.5 mg, 0.018 mmol) were
mixed with dry toluene (3 mL) and heated at 105 8C with stirring
under argon. After 24 h, excess of p-chloranil (20.0 mg) was added
to the reaction tube and continued the heating for another 4 h.
The solvent was removed in vacuo and solid was purified by silica
gel column chromatography with DCM as eluent to afford CA 4
(3.0 mg, 31 %) as dark green solid. Rf = 0.36 (DCM). 1H NMR
(500 MHz, C2D2Cl4, 60 8C): d= 10.09 (d, 9.2, 2 H), 10.07 (d, 9.2, 2 H),
8.77 (d, 9.2, 2 H), 8.74 (d, 9.2, 2 H), 7.78 (d, 7.8, 4 H), 7.68 (t, 7.8, 4 H),
7.56 (t, 7.8, 2 H), 7.38 (s, 8 H), 6.93 (s, 4 H), 2.52 (s, 6 H), 1.82 (s, 12 H),
1.58 ppm (s, 18 H). No 13C NMR data due to low solubility. Detailed
1H signal assignments are given in Table S4. HR-MS MALDI (m/z):
calcd for C94H66N2O4 [M]+ , 1286.502; found, 1286.498.
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