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Abstract: Novel turmeric rhizome extract nanoparticles (TE-NPs) were developed from fractions
of dried turmeric (Curcuma longa Linn.) rhizome. Phytochemical studies, by using HPLC and
TLC, of the fractions obtained from ethanol extraction and solvent–solvent extraction showed that
turmeric rhizome ethanol extract (EV) and chloroform fraction (CF) were composed mainly of three
curcuminoids and turmeric oil. Hexane fraction (HE) was composed mainly of turmeric oil while
ethyl acetate fraction (EA) was composed mainly of three curcuminoids. The optimal TE-NPs
formulation with particle size of 159.6 ± 1.7 nm and curcumin content of 357.48 ± 8.39 µM was
successfully developed from 47-run D-optimal mixture–process variables experimental design. Three
regression models of z-average, d50, and d90 could be developed with a reasonable accuracy of
prediction (predicted r2 values were in the range of 0.9120–0.9992). An in vitro cytotoxicity study
using MTT assay demonstrated that the optimal TE-NPs remarkably exhibited the higher cytotoxic
effect on human hepatoma cells, HepG2, when compared with free curcumin. This study is the first
to report nanoparticles prepared from turmeric rhizome extract and their cytotoxic activity to hepatic
cancer cells compared with pure curcumin. These nanoparticles might serve as a potential delivery
system for cancer therapy.

Keywords: turmeric rhizome extract; turmeric oil; curcumin; HepG2; nanoparticles; anticancer

1. Introduction

Turmeric is a dried rhizome of Curcuma longa Linn. of the family Zingiberaceae. It is
mostly cultivated in Southern and Southeast Asia [1]. A number of pharmacological activi-
ties, especially anticancer activities, of compounds contained in turmeric were reported [2].
Most of them showed the pharmacological activities of curcumin, the major active com-
pound found in the turmeric rhizome [2–5]. Anticancer activities of its analog compounds
and turmeric oil were also reported [6–9]. Turmeric and curcumin can be considered as
safe [10,11]. However, the low aqueous solubility and poor stability of curcumin led to
limitations of its use as a therapeutic agent. Many advanced technologies were proposed to
overcome this limitation [12–14].

Nanotechnology had been the one potential strategy for treatment of cancer dis-
eases [15–19]. The nanoscale materials are currently being investigated to improve their
specificity towards cancer cells and towards subcellular compartments in order to re-
duce systemic toxicity [15–20]. Curcumin has also been developed in nanoscale [21–37].
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For example, Shaikh and coworkers (2009) [29] prepared curcumin-loaded poly(lactide-
co-glycolide) (curcumin loaded PLGA) nanoparticles by using an emulsion–diffusion–
evaporation method. Curcumin-loaded PLGA nanoparticles demonstrated at least 9-fold
increase in oral bioavailability when compared with curcumin administered with piperine
as an absorption enhancer. Anand and colleagues (2010) [21] prepared curcumin-loaded
PLGA-PEG nanoparticles by a nanoprecipitation technique. In vitro study showed that
curcumin nanoparticles exhibited rapid cellular uptake and induced apoptosis in human
chronic myeloid leukemia (KBM-5). Additionally, curcumin nanoparticles could inhibit
cell proliferation of various tumor cells, i.e., human leukemia (KBM-5 and Jurkat), prostate
(DU145), breast (MDA-MB-231), colon (HCT116), and esophageal (SEG-1) cancer cells.
Mohanty C. and Coworkers (2010) [27] prepared curcumin nanoparticles by an emulsi-
fying method with a group of surfactants, i.e., glycerol monooleate (GMO), polyvinyl
alcohol (PVA), and Pluronic®. These curcumin nanoparticles were more effective than
curcumin against different cancer cells. In addition, Zhao L and coworkers (2012) [37]
prepared curcumin-loaded mixed micelles (Cur-PF) that were composed of Pluronic P123
and Pluronic F68. They found that Cur-PF presented a sustained release property. O/W
nanoemulsion containing curcumin was prepared by using high-speed and high-pressure
homogenization [34]. Medium chain triacylglycerols (MCT) and Tween 20 were used
as oil phase and emulsifier, respectively. This 1% curcumin o/w nanoemulsion exhib-
ited an inhibition effect of 12-O-tetradecanoyl- horbol-13-acetate (TPA)-induced edema of
mouse ear.

The enhancements of anticancer activities were found when nanoparticles of an an-
ticancer drug were coated with hyaluronic acid [38–40]. This may be because the high
binding affinity of hyaluronic acid to the CD44 receptor, which overexpresses in tumor
cell [39,41–43].

The spontaneous nanoemulsion formed by the solvent displacement method called the
Ouzo effect was originally found in anise-flavored alcoholic beverages [44–55]. Vitale and
Katz explained that the effect occurs when solutions are rapidly brought into the metastable
region by the addition of water. When the solubility of some of solutes decreases more
rapidly, supersaturation is then large, and homogeneous nuclei form spontaneously [47].

A number of studies in the literature have focused on the nanoparticle formation of
curcumin. The study of nanoparticle formation from turmeric rhizome extract has not yet
been reported. In this study, we aimed to develop nanoparticles from various turmeric
rhizome fractions by using the solvent displacement method and investigated the cytotoxic
activity of the obtained turmeric rhizome extract nanoparticles toward HepG2 cells.

2. Results and Discussion
2.1. Curcuminoids Content of Turmeric Rhizome Fractions

The chromatograms of turmeric rhizome fractions analyzed by thin layer chromatog-
raphy (TLC) detected by ultraviolet (UV) and spray reagent are shown in Figure 1. It was
found that turmeric rhizome fractions except aqueous fraction (AQ) (track 9) developed
chromatographic bands with hRf values corresponding to the standard three curcuminoids
(Figure 1). The hRf values of standards, curcumin (CM, track 1), desmethoxycurcumin
(DCM, track 2), and bisdesmethoxycurcumin (BDCM, track 3) determined by spraying with
10% phosphomolybdic spray reagent were 18.13, 16.88, and 10.00, respectively. In addition,
the turmeric rhizome ethanol extract (EV), hexane fraction (HE), and chloroform fraction
(CF) developed blue bands above three bands of standard curcuminoids at hRf values of
78.75, 79.38, and 80.00, respectively. This blue band was clearly seen for HE detected under
UV 254 nm and 10% phosphomolybdic spray reagent (track 5). The remaining two bands
of EV (track 4) and CF (track 6) showed pale blue bands under UV 254. The band at an hRf
value of approximately 80 might be dl-turmerone, one of turmeric oil’s components, as
specified in the Thai Herbal Pharmacopoeia 2020 vol 1 [56].
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Figure 1. TLC chromatograms of standard curcuminoids and all turmeric rhizome fractions. Track 
1 = standard curcumin (CM); 2 = standard desmethoxycurcumin (DCM); 3 = standard bisdesmeth-
oxycurcumin; 4 = EV; 5 = HE; 6 = CF; 7 = EA; 8 = BU; 9 = AQ. Solvent system, benzene/chloroform/eth-
anol (49:49:2 by volume). Detection: (A) = UV 254 nm; (B) = UV 366 nm; (C) = 10% phosphomolybdic 
spray reagent; all heated at 105 °C for 5 min, detected under white light. 

Turmeric rhizome fractions were also analyzed by the validated modified high per-
formance liquid chromatographic method (HPLC) [57]. The HPLC fingerprints of the 
standards and turmeric rhizome fractions are shown in Figure 2. For ethanol extract (EV), 
three peaks that have retention time corresponding to standard curcumin, desmethoxy-
curcumin, and bisdesmethoxycurcumin at 20.63, 19.36, and 17.60 min, respectively, are 
shown. Similar results were found for the other turmeric rhizome fractions except AQ, 
i.e., hexane fraction (HE), chloroform fraction (CF), ethyl acetate fraction (EA), and n-bu-
tanol fraction (BU). The quantitative analysis results of turmeric rhizome fractions are 
shown in Table 1. The results show that all turmeric rhizome fractions except AQ con-
tained various amounts of three main curcuminoids. The highest total curcuminoid con-
tent was found in EA fraction (421.41 mg/g of dried extract), which contained bisdesmeth-
oxycurcumin (BDCM) as the major component. Low curcuminoid content was found in 
HE and BU fractions (4.88 and 12.14 mg/g of dried extract, respectively). TLC and HPLC 
analysis suggested that the phytochemical profile of turmeric rhizome fractions prepared 
in this study were mainly composed of curcuminoids and turmeric oil. This result is con-
sistent with the results reported previously [56,58–61]. 

Table 1. Curcuminoids content of turmeric rhizome fractions analyzed by HPLC (Mean ± SD, n = 
3). 

Fraction 
Curcuminoids Content (mg/g of Dried Extract) 

CM DCM BDCM Total Curcuminoids 
EV 147.97 ± 1.24 68.64 ± 0.57 69.39 ± 0.55 285.99 ± 2.35 
HE 2.21 ± 0.02 1.12 ± 0.01 1.54 ± 0.01 4.88 ± 0.04 
CF 114.05 ± 1.59 52.26 ± 0.75 13.72 ± 0.13 180.04 ± 2.47 
EA 132.09 ± 1.82 88.42 ± 1.31 200.89 ± 3.77 421.41 ± 6.84 
BU 4.38 ± 1.82 4.18 ± 1.74 3.58 ± 1.50 12.14 ± 5.06 
AQ ND ND ND ND 

CM = curcumin; DCM = desmethoxycurcumin; BDCM = bisdesmethoxycurcumin; EV = ethanol 
extract; HE = hexane fraction; CF = chloroform fraction; EA = ethyl acetate fraction; BU = n-butanol 
fraction; AQ = aqueous fraction; ND = cannot be detected. 

Figure 1. TLC chromatograms of standard curcuminoids and all turmeric rhizome fractions.
Track 1 = standard curcumin (CM); 2 = standard desmethoxycurcumin (DCM); 3 = standard bis-
desmethoxycurcumin; 4 = EV; 5 = HE; 6 = CF; 7 = EA; 8 = BU; 9 = AQ. Solvent system, ben-
zene/chloroform/ethanol (49:49:2 by volume). Detection: (A) = UV 254 nm; (B) = UV 366 nm;
(C) = 10% phosphomolybdic spray reagent; all heated at 105 ◦C for 5 min, detected under white light.

Turmeric rhizome fractions were also analyzed by the validated modified high per-
formance liquid chromatographic method (HPLC) [57]. The HPLC fingerprints of the
standards and turmeric rhizome fractions are shown in Figure 2. For ethanol extract (EV),
three peaks that have retention time corresponding to standard curcumin, desmethoxycur-
cumin, and bisdesmethoxycurcumin at 20.63, 19.36, and 17.60 min, respectively, are shown.
Similar results were found for the other turmeric rhizome fractions except AQ, i.e., hexane
fraction (HE), chloroform fraction (CF), ethyl acetate fraction (EA), and n-butanol fraction
(BU). The quantitative analysis results of turmeric rhizome fractions are shown in Table 1.
The results show that all turmeric rhizome fractions except AQ contained various amounts
of three main curcuminoids. The highest total curcuminoid content was found in EA
fraction (421.41 mg/g of dried extract), which contained bisdesmethoxycurcumin (BDCM)
as the major component. Low curcuminoid content was found in HE and BU fractions
(4.88 and 12.14 mg/g of dried extract, respectively). TLC and HPLC analysis suggested
that the phytochemical profile of turmeric rhizome fractions prepared in this study were
mainly composed of curcuminoids and turmeric oil. This result is consistent with the
results reported previously [56,58–61].

Table 1. Curcuminoids content of turmeric rhizome fractions analyzed by HPLC (Mean ± SD, n = 3).

Fraction
Curcuminoids Content (mg/g of Dried Extract)

CM DCM BDCM Total Curcuminoids

EV 147.97 ± 1.24 68.64 ± 0.57 69.39 ± 0.55 285.99 ± 2.35
HE 2.21 ± 0.02 1.12 ± 0.01 1.54 ± 0.01 4.88 ± 0.04
CF 114.05 ± 1.59 52.26 ± 0.75 13.72 ± 0.13 180.04 ± 2.47
EA 132.09 ± 1.82 88.42 ± 1.31 200.89 ± 3.77 421.41 ± 6.84
BU 4.38 ± 1.82 4.18 ± 1.74 3.58 ± 1.50 12.14 ± 5.06
AQ ND ND ND ND

CM = curcumin; DCM = desmethoxycurcumin; BDCM = bisdesmethoxycurcumin; EV = ethanol extract;
HE = hexane fraction; CF = chloroform fraction; EA = ethyl acetate fraction; BU = n-butanol fraction;
AQ = aqueous fraction; ND = cannot be detected.
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2.2. Determination of the Optimal Turmeric Rhizome Extract Nanoparticles Formulation

The curcuminoids content and particle characteristic results of 47 designed TE-NP
formulations are shown in Table S1 (Supplementary Materials).

The significant regression model for dependent variables (p-value < 0.05) with a high
degree of model fitness (r2 = 0.8961–0.9635) were obtained for curcumin content and %LA,
z-average, d50, and d90, defined as Ym1, Ym2, Ym5, Ym6, and Ym7. This indicates that
these regression models have power to explain the effect of independent variables on the
dependent variables of TE-NPs. The regression models for curcumin analysis created in
this work were the combined reduced quadratic × linear models. For particle analysis,
the combined reduced quadratic × 2FI, quadratic × linear, and linear × 2FI models were
obtained for z-average, d50, and d90, respectively.

The regression model equations in terms of actual components and actual factors of
all dependent variables were obtained as follows:√

Ym1 = 0.072A + 5.218B + 4.520C + 0.825AB + 1.930AC + 85.035AD (1)
√

Ym2 = 0.155A +3.576B + 2.914C + 1.699AB + 2.883AC + 0.174AD
+0.301BC − 197.093BD − 0.164BE − 29.685CD
+0.039CE − 0.388ABE− 0.311ACE + 219.773BCD

(2)

Ym5 = 70.592A +61.265B + 62.690C − 2.196AB − 10.592AC + 9.530AE
−7.599BC + 242.050BD + 2.246BE + 3.625CE
+3.484ABE + 742.110BDE

(3)

√
Ym6 = 5.443A +4.603B + 4.962C − 0.582AC + 0.828AE + 102.780BD

+0.520BE + 0.380CE
(4)

√
Ym7 = 7.128A +6.324B + 6.273C + 1.402AE − 12.783BD + 0.443BE

+1.008CE + 154.056 BDE
(5)

where Ym1 = curcumin content (µM), Ym2 = % label amount of curcumin (%LA), Ym5 = z-
average (nm), Ym6 = d50 (nm), Ym7 = d90 (nm), A = HE (%w/w), B = CF (%w/w), C = EA
(%w/w), D = external curcumin (%w/w), and E = sodium hyaluronate (NaHA) (%w/w).
To assess the predictability of the regression model, all models obtained were validated.
The predictive root mean square error (predictive RMSE) and predictive r2 of all regression
models calculated using Equations (1)–(5) are shown in Table 2.

Table 2. The predictive root mean square error (predictive RMSE) and predictive r2 of all regression
model equations.

Regression Model Min Max r2 Predicted r2 RMSE Predicted RMSE

CM content (Ym1) 0.00 ± 0.00 348.67 ± 6.08 0.9603 0.8673 1.14 49.11
%LA of CM (Ym2) 0.00 ± 0.00 112.02 ± 9.71 0.9480 0.7140 0.75 17.38
Z-average (Ym5) 144.5 ± 1.3 281.3 ± 4.4 0.9635 0.9120 8.00 12.00

d50 (Ym6) 152.3 ± 0.6 477.3 ± 25.2 0.9003 0.9891 0.97 26.30
d90 (Ym7) 238.7 ± 7.1 989.7 ± 151.5 0.8961 0.9992 1.80 88.24

Predicted r2 close to one and low predictive RMSE should be obtained for the model
with good predictability. In this study, it was found that regression models for z-average,
d50, and d90 had predicted r2 higher than 0.9 (0.9120–0.9992), and the predictive RMSEs of
these models were 12.00, 26.30, and 88.24, respectively. This indicates the good predictability
of these models. However, the predictabilities of models for curcumin content showed low
power (r2 of 0.8673 and 0.7140 for CM content and %LA of CM, respectively).

The optimal TE-NPs formulation was selected from the optimal region (Figure 3). To
determine the optimal region, the acceptance limits of desired dependent variables were
specified first. The highest curcumin content obtained in MPV design was 348.67 µM. Thus,



Molecules 2022, 27, 896 6 of 15

the acceptance lower limit of curcumin content of 300 µM was used. The acceptance limit of
80–120% LA for curcumin was chosen [62]. Particle size plays a crucial role in the delivery
of nanoparticles to tumor cells. The nanoparticles of appropriate size can be selectively
delivered to tumor cells and can escape from the defensive system of body. Angiogenesis
in cancer cells results in abnormalities—namely, hypervascularization, aberrant vascular ar-
chitecture, extensive production of vascular permeability factors stimulating extravasation
within tumor tissues, and lack of lymphatic drainage. It allows the passive accumulation
of the nanoparticles in tumor tissue, which is known as an enhanced permeability and
retention effect (EPR effect) [63–66]. To achieve the extravasation into a tumor by the EPR
effect, nanoparticles’ size should be below 200 nm [67]. Moreover, nanoparticles must
have an appropriate circulation half-life, avoiding the action of the mononuclear phagocyte
system (MPS) and the reticuloendothelial system (RES). To overcome these effects, the
nanoparticles’ size must not exceed 400 nm to escape from the MPS effect [67]. Thus, the
acceptance upper limit of 200 nm for z-average and d50, and 400 nm for d90 were specified
in this study. The optimal region (black area) that was obtained by overlaying between
dependent variable plots is shown in Figure 3. Each individual point in this optimal region
represents an appropriate TE-NPs formulation. In this study, the optimal TE-NPs formula-
tion consisting of 1.3697 %w/w CF, 1.2970 %w/w EA, and 0.0067 %w/w external curcumin
was selected. The physicochemical properties of the optimal TE-NPs formulations are
shown in Table 3.
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represent the design points.

Table 3. Physicochemical properties of the optimal turmeric rhizome extract nanoparticles stored at
5 ◦C for 3 months (Mean ± SD, n = 3).

Dependent Variables Acceptance Limit Initial 3 Months

CM content (µM) ≥300 µM 357.48 ± 8.39 358.84 ± 4.65
%LA of CM (%LA) 80–120 %LA 92.74 ± 2.18 93.09 ± 1.21

Z-average (nm) ≤200 nm 159.6 ± 1.7 166.6 ± 0.6
d50 (nm) ≤200 nm 169.7 ± 2.1 177.0 ± 1.0
d90 (nm) ≤400 nm 272.3 ± 9.1 276.7 ± 2.5

CM = curcumin.

It was found that the optimal TE-NPs had physicochemical properties within the
acceptance limits. The optimal TE-NPs were stable for up to 3 months when stored at
5 ◦C. Furthermore, the results show that the optimal TE-NPs had curcumin content higher
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than TE-NPs prepared from the ethanol extract (EV) obtained directly from turmeric
rhizome powder extraction. The TEM study confirmed that the optimal TE-NPs had a
spherical shape with a size below 200 nm (Figure 4). Additionally, it was noticed that the
TE-NPs nanoparticles had a special structure that looked like a polyp inside the particle
(Figure 4B, white arrow). This special structure may be the agglomeration of the solid
particles containing the turmeric extract. The result of this study shows that stable TE-NPs
formulation containing increased curcumin content was successfully developed.
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2.3. Cytotoxicity of Turmeric Rhizome Extract Nanoparticles in HepG2 Cells

The cytotoxicity of TE-NPs compared with free curcumin is shown in Table 4 and
Figure 5. It was found that free curcumin and four TE-NPs exhibited a cytotoxicity effect on
the human hepatoma HepG2 cells. The IC50 values were 43, 40, 37, 41, and 42 µM for free
curcumin, CTEV, CTEVHA, CTOP, and CTOPHA, respectively. Although, the IC50 values for
TE-NPs were shown to be slightly lower than those of free curcumin, all TE-NPs formula-
tions showed a significantly stronger inhibition effect than free curcumin at the equivalent
curcumin concentrations of 50–100 µM (p-value < 0.05). The higher inhibition effect of
TE-NPs might be due to other compositions contained in the turmeric rhizome in addition
to curcumin. These compositions were DCM, BDCM, and turmerone compounds [6,7,9].
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Ethanol was also reported to have inhibition effect on HepG2 cells, with an IC50 value of
3.13 %v/v [68–72]. In this experiment, ethanol concentrations of TE-NPs samples were in
the range of 0.001–1.518 %v/v (for CTEV and CTEVHA) and 0.001–0.983 %v/v (for CTOP and
CTOPHA), depending on the equivalent curcumin concentration in each formulation. These
maximum levels of ethanol contained in TE-NPs samples were 2–3 times lower than IC50.
Therefore, it can be assumed that ethanol has a negligible inhibition effect on HepG2 cells.
In addition, it was shown that the treatment using the developed optimal formulations
(CTOP, and CTOPHA) at equivalent curcumin concentration of 50–100 µM inhibited the
proliferation of HepG2 better than CTEV and CTEVHA (p value < 0.05).

Table 4. Cytotoxicity study of selected turmeric rhizome extract nanoparticles by MTT assay
(Mean ± SD, n = 3).

Curcumin
Concentration

(µM)

% Cell Viability
Free Curcumin CTEV CTEVHA CTOP CTOPHA

0.1 100.34 ± 2.31 96.70 ± 2.62 96.76 ± 2.62 90.49 ± 2.45 89.82 ± 2.43
1.0 88.80 ± 1.99 106.38 ± 2.88 102.40 ± 2.78 96.74 ± 2.62 93.34 ± 2.53

10.0 65.39 ± 1.36 83.92 ± 2.27 81.47 ± 2.21 92.63 ± 2.51 95.76 ± 2.60
25.0 58.61 ± 1.17 25.69 ± 0.70 21.19 ± 0.57 72.77 ± 1.97 84.49 ± 2.29
50.0 28.55 ± 0.36 21.78 ± 0.59 16.17 ± 0.44 10.95 ± 0.30 6.45 ± 0.17

100.0 15.28 ± 0.00 14.18 ± 0.38 13.92 ± 0.38 0.60 ± 0.02 0.43 ± 0.01
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Figure 5. Cytotoxicity of turmeric rhizome extract nanoparticles quantified by MTT assay. The
data are expressed as the percentage relative to the vehicle (control) and are shown as mean ± SD
(n = 3). CTEVHA and CTEV = TE-NPs prepared from ethanol extract (EV) with and without sodium
hyaluronate (NaHA), respectively. CTOPHA and CTOP = TE-NPs prepared from optimal formulation
with and without sodium hyaluronate (NaHA), respectively. *, p < 0.05 versus free curcumin.

To investigate the enhancing effect of sodium hyaluronate, TE-NPs formulations with
sodium hyaluronate coating were developed and tested for their inhibitory effect to HepG2
cells. The results show that for CTEVHA and CTOPHA formulations, at 50 µM equivalent
curcumin concentration, the sodium hyaluronate coated TE-NPs formulations showed
significantly higher inhibitory effects than the uncoated formulations (p value < 0.05). This
indicates that sodium hyaluronate coating may enhance the inhibition effect of TE-NPs
toward HepG2 cells. This enhancing effect is dose-dependent.
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3. Materials and Methods
3.1. Materials

Turmeric (Curcuma longa Linn., Zingiberaceae) rhizome powder was purchased from a
medicinal herb store in Bangkok, Thailand. Plant sample was identified by Dr. Pongtip
Sithisarn, Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok,
Thailand. Curcumin 98% was purchased from AK Scientific, Union city, CA, USA. Turmeric
oil was purchased Thai-China Flavours and Fragrances Industry Co. Ltd., Phra Nakhon Si
Ayutthaya, Thailand. Sodium hyaluronate was purchased from Bloomage Freda Biopharm,
Jinan, China. Curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin standards
were purchased from USP, Rockville, MD, USA. Analytical HPLC grade acetonitrile was
purchased from Scharlab S.L., Barcelona, Spain. Absolute ethanol, hexane, chloroform, and
n-butanol were purchased from RCI Labscan Limited, Bangkok, Thailand. Ethyl acetate
was purchased from J.T. Baker, Phillipsburg, NJ, USA. The 95% ethanol was purchased
from The Liquor Distillery Organization, Chachoengsao, Thailand. Water for Injection was
purchased from A.N.B. Laboratories Co., Ltd., Bangkok, Thailand. Benzene was purchased
from Panreac quimica SA, Barcelona, Spain. Dimethyl sulfoxide (DMSO) ≥99.5%, 3-[4,5-
dimethylthiazole-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) dye, phosphomolybdic
acid hydrate, and Dulbecco’s Modified Eagle Medium (DMEM) were purchased from
Sigma-Aldrich, St. Louis, MO, USA. Phosphate-buffered solution pH 7.4 and fetal bovine
serum (FBS) were purchased from JR Scientific, Inc., Woodland, CA, USA. Penicillin strep-
tomycin solution was purchased from Life Technologies, Carlsbad, CA, USA.

3.2. Preparation of Turmeric Rhizome Fraction

Turmeric powder (200 g) was mixed with 95% ethanol (600 g). After being kept at
room temperature for 48 h, the mixture was filtered through filter paper (Whatman no. 2)
and nylon filter pore size 0.45 µm, consecutively. The filtrate was dried at 50 ◦C. The
ethanol extract (EV) was dispersed in water with weight to volume ratio of EV/water
of 1:10. The mixture was sonicated for 10 min. Solvent–solvent extraction process was
conducted using four solvents including hexane, chloroform, ethyl acetate, and n-butanol.
The ratio of solvent/EV aqueous dispersion used was 1:1 by volume. First, hexane was
added into EV aqueous dispersion, stirred for 30 min, and left at room temperature until
the aqueous phase was completely separated from the hexane phase. Then the hexane
phase was withdrawn. Hexane extraction was repeated with the remaining turmeric
aqueous dispersion for two times. Three collected parts of hexane phase were combined
and dried at 50 ◦C by using a rotary evaporator model Buchi Rota vapor R200 (BÜCHI
Labortechnik AG, Flawil, Switzerland). The remaining turmeric aqueous dispersion was
further extracted using chloroform with the extraction procedure exactly the same as that
described above for hexane. The remaining turmeric aqueous dispersion was further
extracted by using ethyl acetate and then n-butanol, consecutively. The dried turmeric
rhizome fractions obtained from solvent extraction—i.e., ethanol extract (EV), hexane
fraction (HE), chloroform fraction (CF), ethyl acetate fraction (EA), n-butanol fraction (BU),
and the remaining aqueous fraction (AQ)—were weighed and dissolved in 95% ethanol to
obtain the final concentration of 2.5 %w/w. The fractions in ethanol were prepared and
kept in a glass bottle with screw cap, stored at 5 ◦C, and protected from light until use.

3.3. Characterization and Curcuminoids Content Analysis of Turmeric Rhizome Extracts

Phytochemical analysis of turmeric rhizome fractions was carried out by using thin
layer chromatography (TLC). Five microliters of turmeric rhizome fractions and 0.05 %w/v
standard curcumin, desmethoxycurcumin, and bisdesmethoxycurcumin were separately
spotted on a TLC plate (silica gel GF254). Benzene/chloroform/ethanol 49:49:2 by volume
was used as a solvent system. The solvent front was 8 cm. After development, the TLC
plate was examined under UV at the wavelengths of 254 nm and 366 nm in a UV chamber.
Then, the TLC plate was sprayed with 10% phosphomolybdic acid spray reagent and
heated at 105 ◦C for 5 min. The hRf values of the samples were calculated and compared
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with hRf values of the standards and hRf values specified in Thai Herbal Pharmacopoeia
2020, Volume 1 [56].

Curcuminoid content of turmeric rhizome fractions (curcumin, desmethoxycurcumin,
and bisdesmethoxycurcumin) were quantitatively analyzed using a modified HPLC method
developed by Wichitnithad W and coworkers (2009) [57]. A Shimadzu-VP system equipped
with a SCL-10A VP controller, a LC-10AD VP pump, a SIL-10AD VP auto- injector, a
DGU-14 degasser, an SPD-10A VP UV-VIS detector, and Shimadzu CLASS-VP software
(Shimadzo corporation, Kyoto, Japan) were used together with Hypersil GOLD C18 column
(250 × 4.6 mm i.d.; 5 µm, Thermo Fisher Scientific Inc., Waltham, MA, USA). A reverse-
phase HPLC analysis was carried out by using an isocratic system with 1% acetic acid and
acetonitrile at the volume ratio of 61:39 as a mobile phase at a flow rate of 1.2 mL/min.
The injection volume was 10 µL and analytical time was 25 min. A detection wavelength
of 425 nm was used. The method that was used was validated for accuracy, precision,
specificity, linearity, and sensitivity.

3.4. Preparation of Turmeric Rhizome Extract Nanoparticles

Turmeric rhizome extract nanoparticles (TE-NPs) were spontaneously formed by the
solvent displacement method called the Ouzo effect, which was first named and described
by Vitale and Katz in 2003 [47]. The formulations consisted of 2.5 %w/w turmeric rhizome
fraction in ethanol solution, Water for Injection (WFI), external curcumin (extCM), and/or
sodium hyaluronate (NaHA). By using a syringe with a 25G needle, turmeric rhizome
fraction in ethanol solution at certain quantity by weight was dropped into WFI at the rate
of 60 drops per minute. The mixture was continuously stirred at 400 rpm for 10 min. For
cases where extCM was used, it was completely dissolved in turmeric rhizome fraction in
ethanol solution by sonication for 10 min before subsequent nanoparticles formation. For
cases where NaHA was added, 0.1 %w/w NaHA aqueous solution was dropped into the
TE-NPs dispersion. The TE-NPs dispersion was continuously stirred at 400 rpm for 10 min.

3.5. Characterization and Curcuminoids Content Analysis of Turmeric Rhizome
Extract Nanoparticles

The particle characteristics (z-average, d50, d90, derived count rate, and PDI) and zeta
potential values of TE-NPs were studied by dynamic light scattering technique (DLS) using
Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK). The measurement was
set at equilibrated time of 2 min, 173◦ detection optics backscatter detection, numbers of
run 10 times, run duration 10 s, and the measurement was carried out in triplicates. The
refractive index required for size measurement was determined by Abbe Refractometer
NAR-3T (Atago, Tokyo, Japan) set at 25 ◦C and the wavelength of 589 nm. The refractive
index of turmeric rhizome fraction of 1.38 was used. Curcuminoids content in TE-NPs were
quantitatively analyzed using a validated modified HPLC method, described above.

3.6. Determination of the Optimal Turmeric Rhizome Extract Nanoparticles Formulation

To determine the optimal TE-NPs formulation, the regression model was constructed
by using the mixture–process variables experimental (MPV) design [73]. The quantity of
2.5 %w/w HE, CF, and EA ethanol solutions were selected as mixture components. The
quantity of external curcumin (extCM) and 0.1 %w/w sodium hyaluronate (NaHA) aqueous
solution were selected as process variables. Physicochemical properties of TE-NPs—namely,
curcuminoid contents, %LA of curcuminoids, and particle characteristics—were dependent
variables. The ranges of actual and coded mixture components and process variables are
shown in Table 5 The 47-run MPV design was generated by Design-Expert 9 (Stat-Ease,
Inc., Minneapolis, MN, USA) using the best optimal design algorithm with D-optimality
criterion. The basis for 47 runs was the 36 terms in the MPV model, 5 extra-points to assess
model lack-of-fit, 5 replicated points, and 1 additional center point. TE-NPs were prepared
by the method described above.
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Table 5. Variables used in MPV design.

Variables
Actual Variables Coded Variables

Unit Low High Low High

Mixture components
2.5 %w/w HE %w/w 0 2.6667 0 1
2.5 %w/w CF %w/w 0 2.6667 0 1
2.5 %w/w EA %w/w 0 2.6667 0 1

Process variables
External CM %w/w 0 0.0067 −1 1

0.1 %w/w NaHA %w/w 0 3.3333 −1 1
HE = hexane fraction; CF = chloroform fraction; EA = ethyl acetate fraction; CM = curcumin; and
NaHA = sodium hyaluronate.

The physicochemical properties of TE-NPs were measured, and the results were used
to construct regression models by ANOVA with backward elimination regression at alpha
of 0.05. The predictability of regression models was validated by an external data set of
10 formulations that were not included in the MPV design data set. To demonstrate the
predictability, the predictive root mean square error (predictive RMSE) and predictive r2

were calculated according to the following equations [74]:

predictive RMSE =

√√√√∑
(

yexperimental − ypredicted

)2

N
(6)

predictive r2 = 1−
∑
(

yexperimental − ypredicted

)2

∑
(

yexperimental − ymean

)2 (7)

where yexperimental is the dependent variable value obtained from the experiment, ymean is
an average dependent variable of the results obtained from the experiment, ypredicted is the
dependent variable value obtained from the regression model, and N is total number of
experimental points.

To determine the optimal TE-NPs formulation, the contour plots were constructed
with the acceptance ranges of the desired dependent variables and overlayed by Design
Expert 9. The overlapping area was an optimal region. Each individual point in this optimal
region represented an appropriate formulation. The optimal formulation could be selected
from this region.

3.7. Preparation, Characterization, and Cytotoxicity Test of the Optimal Turmeric Rhizome
Extract Nanoparticles

The optimal turmeric rhizome extract nanoparticles formulation (CTOP) obtained from
MPV design was prepared by the method described above with aseptic techniques. The
physicochemical properties and particle morphology of CTOP were determined. The parti-
cle morphology was observed by using a transmission electron microscope (TEM) model
Hitachi HT7700 (Hitachi High-Technologies Corporation, Tokyo, Japan) with accelerated
voltage preset of 80 kV. Two techniques were used to prepare the sample. First, the TE-NPs
dispersion was dropped on a paraffin film. A Formvar-coated copper grid was gently
placed on the drop for 2 min, removed, stained by 2% uranyl acetate solution, and left
overnight in desiccator before study. Second, the grid was placed on the drop of the TE-NPs
dispersion on the paraffin film, removed, and left overnight in desiccator saturated with
vapor of osmium tetroxide before study.

The cytotoxicity test using MTT assay was carried out for the optimal TE-NPs formu-
lation in comparison with free curcumin and the selected TE-NPs formulations.
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3.7.1. Cell Culture

Human hepatoma (HepG2) cells (catalog number HB-8065 from American Type Cul-
ture Collection; ATCC) were maintained in Dulbecco’s Modified Eagle Medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) and 1:100 penicillin/streptomycin
(10,000 units/mL) at 37 ◦C and 5% CO2.

3.7.2. MTT Assay (Cytotoxicity Assay)

HepG2 cells (1 × 104 cells/well) were cultured in 96-well plates, in 200 µL of DMEM
supplemented with 10% FBS and 1% streptomycin/penicillin solution (Gibco) and in-
cubated at 37 ◦C and 5% CO2 humidified atmosphere for overnight as previously de-
scribed [75]. Cells were treated with solubilized free curcumin in dimethyl sulfoxide
(DMSO) and TE-NPs at the final equivalent curcumin concentrations of 0.1, 1, 10, 25, 50,
and 100 µM. DMSO 1 %v/v was used as a control. This study was performed in triplicate,
with two replicate wells. The relative number of viable cells was determined after 24 h
incubation by adding 1 mg/mL of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium
bromide (MTT) and incubating the cells for a further 4 h. The formazan crystals formed
were dissolved with DMSO. The absorbance values of the solution at wavelength of 570 nm,
which was directly relative to the viable cells, were determined using an Infinite M200
microplate reader (Tecan Sales Austria GmbH, Grödig, Austria). The percentage of cell
viability was calculated as follows:

% Cell viability =
Absorbance of treated cells
Absorbance of control cells

× 100 (8)

3.8. Statistical Analysis

The data obtained are expressed as mean ± standard deviation (SD) of triplicates.
Unpaired t-test or one-way ANOVA was used to compare means (α = 0.05). All analyses
were performed using PASW Statistics for Windows, version 18.0 (SPSS Inc., Chicago,
IL, USA).

4. Conclusions

Nanoparticles were successfully prepared from turmeric rhizome fractions in this
study. By applying 47-run D-optimal mixture–process variables experimental design,
the appropriate formulation of stable nanoparticles was obtained. The optimal TE-NPs
formulation had physicochemical properties within the acceptance limits after a 3-month
storage period. In addition, regression models with good predictability for three desired
dependent variables including z-average, d50, and d90 could be determined. The results
from a cytotoxicity study using human hepatoma HepG2 cells show that the optimal TE-
NPs had stronger cytotoxic effects than free curcumin. Thus, optimal TE-NPs could be
successfully developed by using the mixture–process variables experimental design. It was
found that the aqueous solubility of curcumin was increased in the optimal formulation
system. Moreover, the addition of curcumin in the TE-NPs formulation might be applicable
for cases where there is a biological variation of curcuminoids content. It should be noted
that an inhibition effect of TE-NPs was found in an in vitro experiment using HepG2 cells.
Further clinical study should be performed to confirm this result.

Supplementary Materials: The following supporting information can be downloaded online, Table S1:
Physicochemical properties of turmeric rhizome extract nanoparticles formulation obtained from
mixture—process variables experimental design.
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