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SUMMARY
In complex diseases, the phenotypic variability can be explained by genetic variation (G), environmental stimuli
(E), and interaction of genetic and environmental factors (G-by-E effects), amongwhich the contributionG-by-E
remains largely unknown. In this study, we focus on ten major neuropsychiatric disorders using data for
138,383 United States families with 404,475 unique individuals.We show that, while gene-environment interac-
tions account for only a small portion of the total phenotypic variance for a subset of disorders (depression,
adjustment disorder, substance abuse), they explain a rather large portion of the phenotypic variation of the
remaining disorders: over 20% for migraine and close to or over 30% for anxiety/phobic disorder, attention-
deficit/hyperactivity disorder, recurrent headaches, sleep disorders, and post-traumatic stress disorder. In
this study, we have incorporated—in the same analysis—clinical data, family pedigrees, the spatial distribution
of individuals, their socioeconomic and demographic confounders, and a collection of environmentalmeasure-
ments.
INTRODUCTION

The study of phenotypic trait heritability is one of themost impor-

tant topics in biology. Heritability is the proportion of the overall

trait variance that can be explained by genetic variation under an

explicitly defined genetic penetrance model. In practice, herita-

bility has been used to indicate the strength of a trait’s response

to artificial selection in domesticated organisms. As expected,

this is not very productive when attempting to artificially select

for traits with low heritability. Since the earliest days in the field,

geneticists have imagined the possibility of the existence of

complex interactions between genetic variation and environ-

mental stimuli, often denoted as G 3 E (‘‘the G-by-E effect’’).

However, measuring such interactions in real-world data has

proved rather difficult.1–6 A hypothetically ideal dataset for

analyzing how environmental and genetic factors affect human

disease would possess the following properties:

(1) The data would need to contain the complete germline

genomic sequence for a large number of individuals.

While such human datasets are available today, our ideal

data would link all study individuals into a unified genetic

pedigree, which would allow for the inference of genetic

models associated with the vertical trait transmission.

(2) For each study participant, the data would contain com-

plete phenotypic profiles across all human traits. This is
Cell Reports
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very challenging, as myriads of phenotypic characteris-

tics, which change throughout individuals’ lives, would

have to be recorded. Currently—at best—human obser-

vational data contains snapshots of medical histories

and collections of biometric, metabolic, and clinical mea-

surements for each individual, for a limited window of their

ontogenetic timeline, usually capturing a few years (or

less) of each timeline.

(3) For each individual, the data would document a complete

record of exterior environmental events and interventions,

including exposures to changes in climate, tidal waves of

uncountable bacterial, viral, fungal, and protozoic encoun-

ters, billions of environmental molecular species entering

the individual’s body over time, and exposure to electro-

magnetic fields and the bombardment of elementary parti-

cles, as well as the individual’s diet, exercise routines, and

social support structure. These factors are typically the

worst-documented part of human life, because the set of

relevant stimuli is astronomically vast and must be re-

corded continuously from conception to death.

Werewe able to generate a gigantic genotype3 environment3

phenotype 3 time data matrix, it would be used to fit a battery of

increasingly complex mathematical models encapsulating the

probability of observing a specific phenotype, given genetic and

environmental inputs. The models that we are comparing
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represent alternative theories of how genetics, environments, and

their interactions contribute to disease onset. The degree of each

model’s fit to the data for a disease then explicitly quantifies the

corresponding theory’s value with respect to the disease.

Generating such a gargantuan dataset for a practical-size

cohort of at least a few thousand individuals is prohibitively

expensive at this time (the genetics alone would require a budget

of tens of millions of US dollars). Because these imaginary, ideal

datasets are not available—and unlikely to be generated in the

near future—the real-life heritability human disease estimates

rely on (1) access to simplified-structure, cheaper datasets and

(2) mathematical models with strong, simplifying assumptions

permitting inference from incomplete data. There are threemajor

groups of mathematical approaches—twin, pedigree, and ge-

netic association studies—which constitute the modern toolbox

for dissecting disease etiology.

Twin studies
This type of data includes limited phenotypic descriptors (dis-

ease or no disease) and data regarding genetic relatedness be-

tween twins (monozygotic or dizygotic, abbreviated as DZ and

MZ), with 100% and 50% genetic similarity of MZ and DZ twins,

respectively. With the strong assumption that the environment is

identical for both individuals in each twin pair, we can then use a

simple model to attribute disease status in concordance to the

twins’ genetic similarity.7–11

Pedigree studies
These limited phenotypic data include disease or no-disease

statuses for each family member. Genetic data are reduced to

a pedigree structure, in which siblings share half of the genetic

variants with each parent and with each other. No explicit envi-

ronmental data are provided. Model assumptions can include

the same environment for all individuals described in the dataset

(earlier models), or distinct shared environments for siblings,

spouses, families, and individuals (in the more recent and so-

phisticated models).12

Whole-genome sequences and genetic association
studies
In this case, the genetic data include individual-level genotypes

for a large number of participants, possibly with knowledge of

family structure for a subset of individuals. Phenotypic data in-

volves disease status. Typically there are no environmental

data available, and individual-specific environments are implic-

itly assumed to be identical for all participants.13

One should expect that each simplifying assumption in a

mathematical heritability model results in biased parameter esti-

mates. In twin analyses, all concordant disease states between

twins are explained genetically. Therefore, we would expect

that heritability estimates from twin data would be the highest.

On the one hand, association studies focus on the explanatory

power of common genetic variation—therefore, by design, heri-

tabilities estimated with association data are smaller than esti-

mates that would be obtained from total genetic variation (i.e.,

common plus rare plus ultra-rare/individual). On the other

hand, association analysis typically ignores environmental

data, which means that heritability estimates should be inflated
2 Cell Reports Medicine 3, 100736, September 20, 2022
with respect to hypothetical association studies with explicit

environmental data included. Family pedigree analyses incorpo-

rate both limited genetic and limited environmental data and thus

promise better-balanced heritability estimates. Keeping the

strengths and weaknesses of the currently available tools in

mind, we expect that richer data and more complex models

are needed in order to dissect the influence of environment

and genetics on human traits.
What we propose here
To represent genetics we will use family trees, as in the pedigree

studies mentioned above. We will implicitly represent environ-

mental influences in random effects, associated by the predeter-

mined environmental relationship (familial, environment shared

by couples, siblings, and families). More interestingly, we will

construct models that consider gene-environment interactions

and compare them with their counterparts in the absence of

the mixed-effect regression’s interaction term (Table 1). On the

phenotypic side, we will use disease presence or absence status

for a collection of diseases rather than a single disease. Further-

more, we will incorporate explicit environmental data—each

family’s geographic position will be associated with multidimen-

sional environmental measurements, systematically collected

over United States (US) territories. For each family we will also

include the sociodemographic, economic, and topographic pa-

rameters linked to their geographic position. In addition, by

incorporating families’ geographic proximity in the model, we

will be inferring implicit environmental variation that is not ex-

plained by explicit environmental measurements.
RESULTS

We fit the models in a Markov chain Monte Carlo procedure with

a Bayesian framework (see STAR Methods) for the ten most

common neuropsychiatric disorders in our data: anxiety phobic

disorder, depression, migraine, adjustment disorder, substance

abuse, attention-deficit hyperactivity disorder (ADHD), bipolar

disorder, unspecified recurrent headaches, sleep disorder, and

post-traumatic stress disorder (PTSD). Stratified by models, Ta-

ble 2, shows the mean estimates of the heritability and environ-

mental statistics, indicating how much of the outcome variation

can be explained by the individual environment (e2), the familial

environment (f2), the environment shared by couples (c2) and sib-

lings (s2), and the shared geographic location of residence (p2).

Table 2 also provides how much variation can be accounted

for by the interactions between the aforementioned environ-

mental and genetic effects. The widely applicable information

criterion (WAIC14) and Pareto-smoothed importance sampling

leave-one-out cross-validation (PSIS-LOO-CV15) in Table 2 are

Bayesian information criteria that estimate the out-of-sample

prediction error. Like themore commonly knownAkaike informa-

tion criterion, AIC,16 both the Bayesian WAIC and PSIS-LOO-CV

reward goodness of fit, but penalize model complexity and large

parameter space size. They are commonly used to compare a

collection of competing models fit to the same data. Models

with the smallest WAIC or PSIS-LOO-CV provide the optimum

balance between complexity and explanatory powers.



Table 1. Model setups and statistics

Model Fixed effects Random effects Statistics

Linear model 0 Demo + Env G + E h2, e2

Linear model 1 Demo + Env Geo + G + E p2, h2, e2

Interaction model 1 Demo + Env Geo + G + E + GE p2, h2, e2, he2

Linear model 2 Demo + Env Geo + G + F + C + S + E p2, h2, f2, c2, s2, e2

Interaction model 2 Demo + Env Geo + G + F + C + S + E + GF + GC + GS +

GE

p2, h2, f2, c2, s2, e2, hf2, hc2, hs2, he2

The fixed-effect terms are sex + age (Demo) and environmental quality indices (Env).

The random-effect terms are defined by the partition of the phenotype explained by the following. Geo, geographic position, described by coordinates

(latitude and longitude); G, genetics; E, the individually independent environment; F, the environment shared by family members; C, the environment

shared by couples; S, the environment shared by siblings; GE, the interaction between genetics and the individually independent environment; GF, the

interaction between genetics and the family-shared environment; GC, the interaction between genetics and the couples-shared environment; GS, the

interaction between genetics and the siblings-shared environment.
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Figure 1 shows heritability estimates juxtaposed with model-

specific WAIC values, which are also provided in Table 2. For

each of the neuropsychiatric diseases we discussed, we

plotted a model selection graph on the top panel, indicating

the WAIC change along two forward selection traces (the green

and golden points). The bar plot on the bottom panel of Figure 1

shows how much variance could be explained by each effect

variable, grouped into four categories: heritability (gray bars),

geographic location (violet bars), environmental factors (yel-

low-orange bars), and gene-environmental interactions (blue

bars). We can draw the following conclusions from this

analysis.

First, interaction models (IM1 and IM2) fit the data better than

their linear counterparts (LM1 and LM2) in 17 out of 20 compar-

isons. The three exceptions are LM2 versus IM2 in adjustment

disorder and substance abuse, and LM1 versus IM1 in bipolar

disorder. The lower WAIC estimates suggest the interaction

models fit the data better than the linear model, with smaller in-

formation loss.14

Correspondingly, gene-environment interactions seem to

explain a significant portion of the total phenotypic variance.

For example, gene-environment interactions under the best-

fitting IM1 model explain over 29% of the total anxiety/phobic

disorder phenotypic variance (blue bars in the upper left bar

plot of Figure 1). Similarly, under the IM2 model, the interaction

terms explain close to 30% of the total variance for unspecified

recurrent headaches, sleep disorders, and PTSD.

By contrast, for some diseases, such as substance abuse and

adjustment disorder, the gene-environment interactions do not

appear to explain a significant portion of trait variance, so that

interaction models are outcompeted by linear models according

to WAIC and the associated confidence intervals.

Additionally, heritability estimates differ significantly between

linear and interaction models. For ADHD, the simplest G + E

(LM0) model corresponds to an extremely high heritability esti-

mate (95%). However, the best (in terms of the WAIC model),

IM2, incorporating all environmental and interaction effects, cor-

responds to a much lower heritability of 55%. Similarly, for bipo-

lar disorder, heritability is as high as 80% for LM0, while for the

WAIC-best model, IM2, it drops to 53%. This pattern is common

across all of the neuropsychiatric disorders that we studied: The

simpler models (LM0, LM1, and IM1) tend to provide higher her-
itability estimates compared with the more complex models

(LM2 and IM2).

If we apply a different model selection criterion, called PSIS-

LOO-CV,17 model selection choices are exactly reproduced for

all diseases except for the comparison between IM1 and IM2

in unspecified recurrent headache (Table 2). In the case of un-

specified recurrent headache, the confidence intervals of

PSIS-LOO-CV overlap for IM1 and IM2 models, suggesting

that PSIS-LOO-CV cannot choose between these two interac-

tion models. While WAIC estimates differ significantly between

IM1 and IM2, the two model selection criteria give consistent

choices, with PSIS-LOO-CV providing more uncertainty. We

therefore believe that our results are robust.

Besides the findings regarding the G-by-E effects and herita-

bilities, estimates of p2, the proportion of variance contributed by

each family’s geographic position, are remarkably variable

across disorders. For anxiety/phobic disorder, migraine, sub-

stance abuse, and bipolar disorder, the geographic position

does not explain much of the variance (under 2% in all models,

including the WAIC-best model). By contrast, for ADHD and

PTSD, the geographic variation contributes more profoundly to

the overall variance. The p2 estimates for ADHD and PTSD are

close to 6%, according to their WAIC-best model LM2. Figures 2

and S1 show the geographic random effects’ posterior mean es-

timates fpðxÞ (see Equation 8 in the models section of STAR

Methods). Given the geographic coordinates vector x, function

fpðxÞ was described by a Gaussian process assuming adjacent

geographic locations have close values.

For both ADHD and PTSD, all models across the complexity

spectrum (LM1, IM1, LM2, and IM2) give nearly identical patterns

of fpðxÞ estimates across the continental US (see Figure S1). This

suggests that individuals living in the southern US and near the

Great Lakes region may have been exposed to a higher risk of

ADHD due to (as yet unidentified) geographic/environmental ef-

fects. Similarly, residents of the US west coast and the New En-

gland region bear higher PTSD. Note that we explicitly tried to

account for geographically associated environmental factors

by incorporating environmental quality indices (therefore, known

air, water, and land pollutants have already been adjusted for

[see Table 1 and the models section of STAR Methods]).

We also inspected the fixed-effect estimates of demographic

(sex and age) and environmental factors (fixed environmental
Cell Reports Medicine 3, 100736, September 20, 2022 3



Table 2. Mean estimates and 95% highest posterior density credible intervals of the heritability and environmental statistics (see Table S1 for details on simulations and

inferences under the proposed models)

p2 h2 f2 c2 s2 e2 hf2 hc2 hs2 he2 WAIC

PSIS-LOO-

CV

Anxiety phobic disorder

LM0 – 53.52

(44.94,

64.42)%

– – – 46.48

(35.58,

55.06)%

– – – – 257,729.31

(256,459.62,

258,999.00)

291,289.56

(289,805.55,

292,773.57)

LM1 1.40

(0.96,

1.97)%

47.50

(43.82,

52.54)%

– – – 51.10

(45.92,

54.86)%

– – – – 240,648.05

(239,482.50,

241,813.60)

284,715.61

(283,263.98,

286,167.24)

IM1 2.35

(1.53,

3.04)%

31.92

(20.40,

55.46)%

– – – 36.36

(27.03,

44.87)%

– – – 29.37

(14.29,

42.94)%

195,306.87

(194,145.39,

196,468.35)

263,091.00

(261,644.38,

264,537.62)

LM2 1.54

(0.98,

2.10)%

56.44

(50.26,

60.70)%

1.99

(0.32,

4.06)%

31.45

(27.93,

33.82)%

5.12

(1.70,

9.43)%

3.47

(0.50,

7.39)%

– – – – 269,150.17

(267,800.73,

270,499.61)

296,226.08

(294,703.79,

297,748.37)

IM2 2.02

(1.29,

2.84)%

47.42

(26.90,

60.63)%

1.97

(0.08,

5.22)%

19.47

(12.41,

25.20)%

4.66

(0.61,

9.82)%

3.40

(0.29,

6.94)%

0.95

(0.00,

4.69)%

12.70 (4.31,

23.10)%

4.05 (0.00,

11.12)%

3.37 (0.00,

10.86)%

245,390.66

(244,122.11,

246,659.21)

284,535.98

(283,018.76,

286,053.20)

Depression

LM0 – 69.48

(61.50,

79.38)%

– – – 30.52

(20.62,

38.50)%

– – – – 176,007.77

(174,690.14,

177,325.40)

197,970.08

(196,439.77,

199,500.39)

LM1 2.55

(1.52,

3.65)%

68.76

(57.32,

82.22)%

– – – 28.69

(14.56,

40.43)%

– – – – 178,182.13

(176,836.49,

179,527.77)

197,324.49

(195,796.14,

198,852.84)

IM1 4.69

(3.21,

6.02)%

55.35

(44.43,

69.13)%

– – – 12.87 (8.29,

19.87)%

– – – 27.10

(17.38,

38.25)%

139,055.19

(137,852.02,

140,258.36)

184,686.67

(183,193.74,

186,179.60)

LM2 2.07

(1.34,

2.94)%

49.53

(43.08,

55.48)%

8.57

(3.43,

12.94)%

35.00

(31.65,

37.78)%

2.97

(0.07,

7.40)%

1.86 (0.14,

5.47)%

– – – – 143,671.22

(142,640.64,

144,711.80)

177,874.25

(176,496.13,

179,252.37)

IM2 2.30

(1.25,

3.58)%

50.30

(43.53,

57.38)%

7.12

(1.21,

15.90)%

31.18

(20.32,

38.22)%

1.68

(0.07,

4.59)%

1.99 (0.02,

5.57)%

0.49

(0.00,

1.76)%

1.98 (0.00,

11.24)%

0.77 (0.00,

2.57)%

2.19 (0.00,

7.99)%

135,787.57

(134,804.02,

136,771.12)

173,205.69

(171,849.96,

174,561.42)

Migraine

LM0 – 57.31

(44.37,

74.73)%

– – – 42.69

(25.27,

55.63)%

– – – – 179,692.88

(178,303.44,

181,082.32)

194,241.46

(192,718.76,

195,764.16)

LM1 0.60

(0.35,

0.89)%

48.47

(38.09,

60.94)%

– – – 50.93

(38.44,

61.42)%

– – – – 165,004.39

(163,752.75,

166,256.03)

188,446.05

(186,970.39,

189,921.71)

(Continued on next page)
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Table 2. Continued

p2 h2 f2 c2 s2 e2 hf2 hc2 hs2 he2 WAIC

PSIS-LOO-

CV

IM1 1.06 (0.63,

1.51)%

31.14

(17.40,

49.83)%

– – – 45.89

(33.71,

56.61)%

– – – 21.91 (8.35,

43.25)%

133,837.58

(132,839.27,

134,835.89)

177,214.09

(175,772.12,

178,656.06)

LM2 0.65 (0.35,

0.99)%

49.41

(38.69,

64.85)%

3.01 (0.32,

8.21)%

14.01 (9.56,

18.79)%

13.84 (4.89,

23.04)%

19.07 (4.49,

35.67)%

– – – – 174,572.51

(173,229.81,

175,915.21)

192,363.95

(190,855.34,

193,872.56)

IM2 0.77 (0.42,

1.17)%

46.82

(35.62,

57.99)%

4.57 (0.48,

11.64)%

11.86 (4.53,

20.00)%

15.54 (5.05,

24.94)%

13.17 (0.68,

33.14)%

1.34

(0.00,

4.34)%

2.23 (0.00,

8.44)%

1.88 (0.00,

4.93)%

1.82 (0.00,

6.34)%

170,124.00

(168,807.66,

171,440.34)

191,132.71

(189,617.06,

192,648.36)

Adjustment disorder

LM0 – 68.94

(60.06,

76.83)%

– – – 31.06

(23.17,

39.94)%

– – – – 128,812.67

(127,578.50,

130,046.84)

146,767.54

(145,311.69,

148,223.39)

LM1 4.00 (2.61,

5.52)%

62.14

(53.13,

69.43)%

– – – 33.86

(26.15,

42.96)%

– – – – 125,231.76

(124,031.40,

126,432.12)

144,010.34

(142,578.76,

145,441.92)

IM1 7.55 (5.08,

10.04)%

60.65

(41.43,

76.10)%

– – – 14.57 (2.27,

24.19)%

– – – 17.24 (2.02,

31.67)%

118,529.41

(117,371.56,

119,687.26)

142,509.46

(141,050.65,

143,968.27)

LM2 3.51 (2.47,

4.79)%

27.82

(17.26,

36.92)%

21.65

(15.43,

27.97)%

36.25

(31.03,

41.89)%

5.04 (0.28,

8.96)%

5.73 (0.04,

12.01)%

– – – – 108,221.89

(107,194.65,

109,249.13)

131,849.40

(130,522.81,

133,175.99)

IM2 3.37 (1.90,

4.88)%

32.53

(22.77,

40.77)%

13.60 (5.21,

20.90)%

42.59

(32.21,

51.84)%

2.02 (0.16,

4.50)%

2.71 (0.03,

5.98)%

0.95

(0.00,

3.52)%

0.64 (0.00,

1.73)%

0.99 (0.00,

4.68)%

0.59 (0.00,

1.82)%

113,680.71

(112,586.79,

114,774.63)

134,470.01

(133,113.51,

135,826.51)

Substance abuse

LM0 – 51.67

(40.51,

66.57)%

– – – 48.33

(33.43,

59.49)%

– – – – 119,551.43

(118,226.49,

120,876.37)

128,775.41

(127,324.72,

130,226.10)

LM1 2.10 (0.98,

3.70)%

53.77

(37.89,

89.74)%

– – – 44.12 (6.73,

60.36)%

– – – – 121,334.21

(119,979.12,

122,689.30)

128,047.10

(126,603.56,

129,490.64)

IM1 2.29 (1.07,

3.81)%

40.66

(31.59,

48.66)%

– – – 53.70

(37.49,

61.66)%

– – – 3.35 (0.00,

13.24)%

110,533.35

(109,318.80,

111,747.90)

126,149.23

(124,716.08,

127,582.38)

LM2 1.62 (0.96,

2.38)%

40.13

(32.24,

46.53)%

3.11 (0.20,

5.81)%

34.45

(29.05,

40.41)%

8.03 (2.64,

13.63)%

12.66 (1.95,

21.80)%

– – – – 107,571.67

(106,400.26,

108,743.08)

123,469.25

(122,078.41,

124,860.09)

(Continued on next page)
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Table 2. Continued

p2 h2 f2 c2 s2 e2 hf2 hc2 hs2 he2 WAIC

PSIS-LOO-

CV

IM2 2.31 (1.18,

3.66)%

41.65

(30.25,

53.14)%

3.62 (0.17,

8.70)%

26.16

(15.56,

36.32)%

8.49 (2.01,

15.28)%

6.79 (0.35,

14.17)%

1.58

(0.00,

5.55)%

7.58 (0.00,

17.21)%

1.06 (0.00,

3.60)%

0.75 (0.00,

2.88)%

111,049.17

(109,814.90,

112,283.44)

125,555.95

(124,121.80,

126,990.10)

ADHD

LM0 – 95.22

(88.59,

99.88)%

– – – 4.78 (0.12,

11.41)%

– – – – 90,855.79

(89,773.01,

91,938.57)

106,646.84

(105,399.46,

107,894.22)

LM1 3.48 (2.28,

4.60)%

88.19

(80.62,

94.62)%

– – – 8.33 (1.39,

15.59)%

– – – – 89,893.81

(88,885.66,

90,901.96)

107,365.15

(106,110.44,

108,619.86)

IM1 3.52 (2.25,

4.91)%

76.58

(69.83,

83.63)%

– – – 4.36 (2.04,

10.07)%

– – – 15.53

(10.16,

21.20)%

75,706.35

(74,759.16,

76,653.54)

94,878.98

(93,761.72,

95,996.24)

LM2 3.49 (2.26,

4.94)%

48.23

(36.21,

58.38)%

24.60

(15.25,

39.05)%

17.15

(11.38,

21.71)%

1.67 (0.02,

3.48)%

4.85 (0.07,

13.24)%

– – – – 89,568.83

(88,558.49,

90,579.17)

106,050.93

(104,810.11,

107,291.75)

IM2 5.80 (4.09,

8.00)%

55.22

(42.20,

67.84)%

3.22 (0.01,

9.37)%

2.45 (0.00,

10.93)%

1.72 (0.05,

4.94)%

1.48 (0.02,

3.44)%

8.66

(1.04,

20.44)%

21.11 (9.64,

30.64)%

0.14 (0.00,

0.68)%

0.21 (0.00,

1.14)%

57,894.43

(57,295.36,

58,493.50)

89,048.44

(88,006.33,

90,090.55)

Bipolar disorder

LM0 – 79.66

(72.10,

87.38)%

– – – 20.34

(12.62,

27.90)%

– – – – 65,719.01

(64,697.44,

66,740.58)

75,862.89

(74,636.60,

77,089.18)

LM1 0.97 (0.50,

1.52)%

77.43

(72.13,

86.46)%

– – – 21.61

(12.68,

27.25)%

– – – – 64,106.44

(63,110.64,

65,102.24)

75,406.16

(74,191.33,

76,620.99)

IM1 1.50 (0.68,

2.44)%

81.57

(73.34,

90.50)%

– – – 4.76 (0.15,

12.39)%

– – – 12.18 (0.80,

22.00)%

65,983.85

(64,891.17,

67,076.53)

77,988.95

(76,723.30,

79,254.60)

LM2 0.94 (0.49,

1.52)%

45.68

(27.56,

61.37)%

16.49 (6.45,

25.97)%

21.96

(11.29,

28.34)%

3.65 (0.28,

7.20)%

11.27 (0.48,

26.99)%

– – – – 58,846.71

(57,951.28,

59,742.14)

72,074.67

(70,913.27,

73,236.07)

IM2 2.18 (1.02,

3.67)%

53.22

(25.43,

73.22)%

4.27 (0.14,

10.92)%

6.60 (0.01,

20.06)%

2.02 (0.02,

5.92)%

3.16 (0.02,

9.74)%

4.04

(0.00,

12.78)%

22.43 (7.43,

34.23)%

0.42 (0.00,

1.74))%

1.64 (0.00,

6.69)%

36,754.75

(36,228.37,

37,281.13)

60,323.29

(59,349.95,

61,296.63)

Unspecified recurrent headaches

LM0 – 52.90

(24.75,

96.63)%

– – – 47.10 (3.37,

75.25)%

– – – – 63,569.71

(62,403.35,

64,736.07)

65,366.62

(64,182.07,

66,551.17)

(Continued on next page)
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Table 2. Continued

p2 h2 f2 c2 s2 e2 hf2 hc2 hs2 he2 WAIC

PSIS-LOO-

CV

LM1 2.34 (1.51,

3.39)%

40.78

(31.76,

51.20)%

– – – 56.88

(46.03,

66.40)%

– – – – 55,287.67

(54,290.48,

56,284.86)

64,434.32

(63,281.10,

65,587.54)

IM1 6.23 (4.26,

8.83)%

23.77 (6.32,

55.84)%

– – – 33.96 (0.70,

55.89) %

– – – 36.04

(24.66,

43.17)%

40,592.46

(39,731.29,

41,453.63)

52,606.16

(51,683.98,

53,528.34)

LM2 2.25 (1.43,

3.23)%

26.62 (8.83,

42.34)%

8.10 (0.34,

15.60)%

18.24 (6.89,

28.40)%

18.79 (2.90,

32.95)%

26.00 (6.99,

43.40)%

– – – – 55,280.79

(54,321.10,

56,240.48)

63,910.85

(62,759.02,

65,062.68)

IM2 5.48 (3.30,

7.65)%

17.68 (3.69,

39.63)%

3.52 (0.04,

8.36)%

11.98 (0.01,

25.74)%

10.57 (0.03,

22.92,

14.11)%

14.11 (0.74,

27.30)%

0.92

(0.00,

4.20)%

19.91 (5.66,

38.30)%

6.83 (0.00,

23.99)%

8.99 (0.00,

25.35)%

32,654.79

(32,126.08,

33,183.50)

53,238.40

(52,274.86,

54,201.94)

Sleep disorder

LM0 – 47.50

(33.86,

61.38)%

– – – 52.50

(38.62,

66.14)%

– – – – 60,866.74

(59,747.27,

61,986.21)

65,015.00

(63,799.64,

66,230.36)

LM1 2.11 (1.29,

2.99)%

40.15

(30.78,

50.45)%

– – – 57.74

(46.95,

67.26)%

– – – – 55,129.58

(54,075.63,

56,183.53)

61,872.96

(60,726.07,

63,019.85)

IM1 5.55 (3.45,

7.70)%

13.61 (1.71,

28.47)%

– – – 45.90

(32.31,

60.71)%

– – – 34.93

(18.56,

50.17)%

37,786.65

(37,132.72,

38,440.58)

56,917.80

(55,828.63,

58,006.97)

LM2 1.72 (1.07,

2.41)%

30.80

(19.42,

40.54)%

4.26 (0.51,

9.21)%

23.13

(16.25,

30.14)%

12.99 (2.71,

24.09)%

27.09

(17.05,

40.25)%

– – – – 49,665.71

(48,785.67,

50,545.75)

59,973.66

(58,857.58,

61,089.74)

IM2 4.16 (2.22,

6.17)%

24.29 (2.33,

48.33)%

3.73 (0.03,

9.92)%

7.83 (0.01,

22.19)%

13.66 (3.14,

26.56)%

14.11 (3.33,

36.75)%

0.38 (0.00,

1.75)%

24.22 (6.00,

40.01)%

3.82 (0.00,

10.80)%

3.80 (0.00,

14.40)%

34,098.02

(33,515.27,

34,680.77)

53,307.66

(52,302.53,

54,312.79)

PTSD

LM0 – 65.28

(52.03,

85.61)%

– – – 34.72

(14.39,

47.97)%

– – – – 30,127.48

(29,251.32,

31,003.64)

32,319.99

(31,361.90,

33,278.08)

LM1 3.10 (1.17,

5.79)%

63.15

(47.25,

79.69)%

– – – 33.75

(16.16,

50.53))%

– – – – 29,902.80

(29,032.46,

30,773.14)

32,125.35

(31,172.61,

33,078.09)

IM1 7.71 (3.36,

13.88)%

42.44

(18.04,

64.50)%

– – – 11.38 (0.07,

30.44)%

– – – 38.48

(28.64,

49.33)%

15,312.56

(14,903.66,

15,721.46)

25,411.63

(24,645.78,

26,177.48)

(Continued on next page)
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quality index [EQI] scores) in our data for these tenmost common

neuropsychiatric diseases. Figure 3 shows the posterior distribu-

tion of the log-odds (logit) change contributed by one’s sex ac-

cording to each disease’s WAIC-best model. We code females

in zero andmales in one, so a greater log-odds change suggests

a higher risk in males. After controlling for other effects, we

observed high risks of ADHD and substance abuse in males

and high risks of migraine, unspecified recurrent headaches,

and PTSD in females (Figure 3). Similarly, Figure 4 summarizes

the log-odds change contributed by the numeric age according

to each disease’s WAIC-best model. Higher estimates of fixed

effects in Figure 4 indicate higher risks associated with older

age; for example, sleep disorders are more prevalent in the older

population. Negative values of the estimate, as obtained for

ADHD and bipolar disorder, indicate that these disorders are

more common in the younger population (Figure 4).

We then analyzed how the fixed-effect environmental qualities

affect our neuropsychiatric diseases’ log-odds. Figure S2 shows

the nonlinear effects estimated for the five EQI domains (air, wa-

ter, land, sociodemographic, and built environment) based on

each disease’s WAIC-best model. We summarized and stan-

dardized each EQI domain by a principal component analysis

(PCA) procedure into one-dimensional PCA scores. Higher

scores generally reflect worse environmental quality. To visualize

the result, we converted the PCA scores to percentiles based on

the score distribution in the whole population and used the 2.5th

to 97.5th percentiles as the x axis limits of the plots. The blue

segments of the lines indicate EQI regions that do not change

the log-odds significantly. The olive segments are EQI regions

that influence the disease log-odds significantly. The figures

demonstrate the miscellaneous effects of various environmental

qualities. For air quality, worse environments (high scores) may

be associated with increased risks of depression, adjustment

disorder, ADHD, and bipolar disorder (first column of Figure S2).

On the contrary, residents in areas of worse air quality seem to

have lower risks of anxiety phobic disorder, unspecified recur-

rent headaches, sleep disorder, and PTSD (first column of Fig-

ure S2). Compared with air quality, water quality has only minor

effects on the studied neuropsychiatric diseases’ log-odds (sec-

ond column in Figure S2). Additionally, lower sociodemographic

quality scores may be associated with elevated risks of depres-

sion, adjustment disorder, and ADHD, as well as decreased risk

of unspecified recurrent headaches (fourth column in Figure S2).

The last column of Figure S2 suggests the broad impact of built-

environmental quality, which appears linked to significantly

higher risks of depression, adjustment disorder, substance

abuse, ADHD, bipolar disorder, and sleep disorder.

DISCUSSION

For selectionists working with domesticated species the notion

of heritability is an instrument, while the remaining environmental

variability is a nuisance. In the case of human disease, the situa-

tion may be quite the opposite. Associations between genetic

variation and disease may lead to genetic tests and indicate

molecular pathways that should be targeted for treatment.

However, for most complex diseases, genetic variation is not

very instrumental in disease treatment; predicted genetic



Figure 1. Model WAIC estimates and the mean estimates of heritability and environmental statistics

Bar plots show the posterior mean heritability estimates (h2, gray), variance explained by the geographic location (p2, violet), variances explained by shared

environments (f2, familial; c2, couple-shared; s2, sibling-shared: yellow/orange-colored bars), and variances explained by gene-environment interactions (hf2,

gene-familial; hc2, gene-couple-shared-environmental; hs2, gene-sibling-shared environmental: blue-colored bars) given in the five models for the ten most

diagnosed neuropsychiatric diseases in our data. LM0, LM1, and LM2 are the three linear models that consider only the additive effects of genetics and shared

environments as defined in Table 1. IM1 and IM2 are the two interaction models. Corresponding to their linear counterpart (LM1 and LM2), these two models

consider the gene-environmental interactions as defined in Table 1. The five models form two forward selection traces: Linear model 0 (LM0)~x Linear model 1

(LM1)~x Interaction model 1 (IM1) and Linear model 2 (LM2)~x Interaction model 2 (IM2). Within each trace, the later models encompass all the preceding models’

variables. The widely applicable information criterion (WAIC) rewards goodness of fit but penalizes more complex models. The lower the WAIC, the better the

model. The scatterplot above each bar plot illustrates which model could be considered as the best one for each disease.
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predisposition to complex disease is often seen as a verdict

rather than an actionable warning or advice.

This is not so with environmental predisposition to disease. If

we knew a certain environmental stimulus might trigger a partic-

ular disease, we could take preventive measures or design life

strategies aimed at avoiding dangerous triggers. Similarly, with

interactions of genetic and environmental signals, information

can become practical and clinically actionable. If we were able

to ascertain a catalog of genetic variants interacting with specific

environmental stimuli, we could design personalized environ-

mental plans for patients at risk.

For the tenmost frequently diagnosed neuropsychiatric condi-

tions in our data, we designed a group of Bayesian regression

models incorporating various genetic, environmental, and de-
mographic effects. By comparing models with G-by-E interac-

tions with their linear counterparts, we established the existence

of interactions with considerable strength between the genetic

variations and environmental stimuli affecting the manifestation

of neuropsychiatric disorders. We also estimated a set of model

parameters measuring the strength of association between the

patient’s geographic location, sex, age, and the local environ-

ment’s quality with the likelihood of disease manifestation.

Unexplained geographic variations (see Figures 2 and S1) can

serve as a basis for future association studies. For example, we

can scan myriad environmental factors to explain the difference

in ADHD rates in California versus Georgia. Furthermore, it is re-

assuring to ‘‘rediscover’’ known factors that affect the pheno-

typic variation in neuropsychiatric disorders. For example,
Cell Reports Medicine 3, 100736, September 20, 2022 9
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ADHD is associated with a younger age, while sleep disorder is a

feature in much older people (see Figure 4).18,19 Similarly, sex

bias in diseases is well reported: migraine affects females

more often while substance abuse is biased toward males (see

Figure 3).20–23

Fixed effects estimated for EQIs (see Figure S2) indicate

curious associations between the quality of the immediate envi-

ronment and the rate of neuropsychiatric disorders. In the obser-

vational setting of our analyses, we can talk about environmental

quality’s predictive properties affecting disease rates but avoid

any statements implying causality. For example, we can observe

that deteriorating air quality is associated with increased rates of

ADHD and decreased rates of sleep disorders. Specially de-

signed observational studies (for example, involving an instru-

mental variable) might closely approximate randomized clinical

trial causality analysis, but we will defer this to future follow-up

studies.

Our analyses open additional research opportunities. One

possible step forward would be to validate these findings in large

population biobanks with genetic data (such as UK Biobank or

FinnGen). The present work has demonstrated that much is wait-

ing for investigation. We can compute the interactions between

genetics and concrete environmental indices, such as

geographic locations, pollutants, and socioeconomic factors.

This analysis could produce more easily interpretable results

than ours; we only considered interactions between random ge-

netic and environmental effects that are more difficult to inter-

pret. Moreover, we can exploit experiments and sequencing

data to dig deeper into interactions between particular genetic

variants and exterior conditions. By designing specific assays

and methods, it is also possible to determine these interactions’

directions and mechanisms. Does the G act as a modifier of the

environmental effects, E? Does the E act as a modifier of the G?

Are genetic epistasis (G-by-G) and E-by-E effects involved in dis-

ease etiology? Future efforts could answer these questions and

allow us to map out strategic plans for preventive and precision

medicine.

Limitations of the study
Our study finds substantial gene-environment interactions in

common neuropsychiatric diseases through elegant methods.

However, there remain many unsolved puzzles.

Data and methods

Our estimation method relies on the presumption that the pedi-

gree and residency information truthfully reflect the real situation.

In the current version of IBM’s Health MarketScan database, de-

mographic and family information is limited to age, sex, area of

residence, and information about family members enrolled under

the same health insurance policy. The data only label if a family

member is a ‘‘parent’’ or a ‘‘child’’—adoption or biological rela-
Figure 2. Mean estimates of the geographic random effects under bes

These figure plots show the posterior mean estimates of the geographic random e

section of STARMethods). Wemodeled the geographic random effects fpðxÞ usin
value random effects (assumption of smoothness). We did include residents of H

We omitted these results because the discontinuity between the geographic loca

poor extrapolation power also makes it difficult to estimate the random effects re

residents of other non-continental US islands.
tion has not been meticulously documented. We also do not

know how the residency information truthfully reflects the actual

environmental exposure. This inconsistency between our as-

sumptions and the information in data (or lack thereof) might

compromise our estimation accuracy, even with the large scale

of our data and the quality control steps we have performed.

Our analysis and corresponding results are based on popula-

tions that consistently lived in the same geographic location dur-

ing the study period. We excluded from our analysis a relatively

small subset of families who lived in more than one place during

the study period. Environmental exposures for such populations

were more difficult to estimate and incorporate into our model.

Therefore, caution should be exercised when interpreting and

generalizing the results reported in this study.

On the methodology side, we relied on a fully Bayesian

approach that provided merits such as a model-centered infer-

ence process, intuitive uncertainty quantification, and the avail-

ability of versatile model comparisons and regularization tools.

However, a Bayesian method also entails many disadvantages.

A Bayesian sampling only guarantees convergence to the poste-

rior distribution, as its iteration time continues to infinity. For real-

world complex models, various advanced tools such as multiple

independent samplings, variational inference initialization, and

No-U-Turn samplers24 can be implemented to avoid instability

and accelerate convergence (see the Bayesian inference section

of STAR Methods for a more in-depth discussion about how we

adapted the method to better approximate the variables). How-

ever, it is still difficult to tell how many steps we need to find an

adequate sampling with an acceptable error. For complicated

problems like ours, Bayesian methods also demand significant

computational resources; for example, they require large mem-

ory for sampling storage. The process is also probably slower

than frequentist maximum-likelihood approaches because

Bayesian sampling requires repeated random number genera-

tion, which is not typically parallelizable and optimized in a reg-

ular computer.

Results interpretation

It is not definite what, precisely, the G-by-E effects represent.

One well-liked interpretation reads the gene-environmental

interaction as heterogeneous genetic effects conditioned on

different environments or exterior exposures.25–27 This interpre-

tation provides a solution for the ‘‘missing heritability’’ puzzle,

given that the G-by-E effect may comprise a considerable part

of the heritable factor, undetectable in former linear models.26,27

The one-directional interpretation (E influences G, heteroge-

neous genetics in response to the environment) is far from the

only plausible interpretation. Conversely, it is also possible that

genetics may affect the environment or the exterior exposure.

Certain genotypes might influence one’s preference for diets

and living conditions. People are also continuously transforming
t-fit model for each disease

ffects for each disease’sWAIC-best model (fpðxÞ) (see Equation 8 in themodels

g a Gaussian process assuming that adjacent geographic locations have close-

awaii and Alaska in our estimation process, but the results are not shown here.

tions disobeys the Gaussian process’s presumptions. The Gaussian process’s

lated to outlying states such as Alaska and Hawaii. Our data do not record any
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Figure 3. Posterior distribution of the log-

odds (logit) change contributed by one’s

sex according to each disease’s WAIC-

best model

For each disease’s WAIC-best model, this figure

delineates the posterior distribution of the regres-

sion coefficient estimate associated with the

dummy-codes sex (female = 0, male = 1). Because

we used a logit link, the coefficient estimate rep-

resents the log-odds difference of the risk (in terms

of diagnosis probability) between males and fe-

males. High values in this figure indicate high risks

for males, and low values indicate high risks for

females, after controlling for other effects in the

regression.
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their surrounding environments, in which process behavior-

related genes might be involved. The most important clinical

ramification of our analysis is that it should be possible to identify

genetic variations that render people vulnerable to specific envi-

ronmental stimuli. This is clinically relevant because it opens av-

enues to personalized preventive medical interventions.

The reader might wonder how to interpret high values of hc2 for

bipolar disorder, PTSD, and ADHD, coupled with reduced esti-

mates of heritability. Essentially, the model and data ‘‘tell us’’

that, in nuclear families, parents (couple-specific, gene-environ-

ment interaction, denoted with subscript c) are more similar

genetically and environmentally than randomly expected for spe-

cific disorders, such as PTSD and ADHD. For PTSD this may

mean that both parents, but not offspring, might have been

exposed to similar stressors, resulting in PTSD. Another reason

for high hc2 could be assortative mating: data suggest that cou-

ples tend to have similar psychological trends, such as ADHD.
12 Cell Reports Medicine 3, 100736, September 20, 2022
They are also possibly more genetically

similar with each other than a randomly

drawn couple. Because heritability is an

additive genetics’ portion of the overall
phenotypic variance, increase in hc2 necessarily reduces esti-

mates in h2 (heritability).

In this study, we estimated only the linear G-by-E effects with a

most simplified model (one genetic variant by one environmental

input), estimating their total input into the phenotypic variation,

without the ability to identify specific genetic variants and envi-

ronmental factors. It is plausible—and even likely—that higher

orders of factor interactions may play a role in phenotypic varia-

tions. For example, genetic epistasis and environment-environ-

mental effects could ‘‘collaborate’’ to produce G-by-G-by-E or

G-by-E-by-E interaction effects. The next important target would

be to map specific genetic variant-environmental stimulus pairs

for each disorder and ascertain the mechanism(s) of these inter-

actions. Achieving this goal is likely to require the construction of

new datasets approaching the ‘‘ideal’’ dataset described in this

article’s introduction or bench experiments focusing on partic-

ular genes.
Figure 4. Posterior distribution of the log-

odds (logit) change contributed by patient’s

numeric age according to each disease’s

WAIC-best model

For each disease’s WAIC-best model, this figure

delineates the posterior distribution of the regres-

sion coefficient estimate associated with numeric

age. Because we used a logit link, the coefficient

estimate represents the log-odds’ change of the

risk (in terms of the probability of diagnosis) at

every year older. High values in this figure indicate

high risks for seniors, and low values indicate high

risks for juniors, after controlling for other effects in

the regression.
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As possibly the most famous saying among statisticians goes,

‘‘all models are wrong, but some are useful;’’28 ourmodels are no

exception. They possess explicit assumptions and implementa-

tion choices leading to potential biases, but they also signifi-

cantly improve on the traditional, simpler models riddled with

even stronger assumptions. In terms of assumptions, we intro-

duced a series of increasing-fidelity models, mentioned in both

the introduction and STAR Methods. Of course, even the most

complicated set of assumptions that we use here is necessarily

an abstracted version of a muchmore complicated real process.

In terms of implementation, we made a series of choices with

possibly detrimental consequences. For example, to estimate

the posterior distribution over model parameter values, we im-

plemented a Bayesian Markov chain Monte Carlo procedure.

This implementation incorporated multiple checks for conver-

gence of the Markov chain (reaching the limiting stationary distri-

bution, where the frequencies of the parameter values closely

approximate the true posterior probability). The procedure that

we used is proven to be theoretically sound in principle, but

because the convergence is guaranteed only by its theoretical

limit (after an infinite number of iterations have passed), we could

not guarantee that our model properly estimated posterior distri-

butions for all parameters.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not use any experimental models.

METHOD DETAILS

In this study, we focused on dissecting the etiology of ten major neuropsychiatric disorders, documented for 138 thousand US fam-

ilies, containing nearly half a million unique individuals. We introduced a collection of increasing-complexity Bayesian models, the

simplest of which – traditional mixed-effect generalized linear regression models – contains only fixed-effect demographic and envi-

ronmental data plus random-effect genetic and environmental factors. The new, more complicated mixed-effect regression models

incorporate a series of additional random effects accounting for interactions between genetic and environmental factors. For ten

representative neuropsychiatric diseases (most frequently diagnosed in the US), we then estimated howmuch of the phenotypic vari-

ation came from genetic factors, different environmental factors, or interactions between them, using the insurance claim data from

138 thousand US families. Our results suggest that gene-environment interactions account for substantial common neuropsychiatric

disorder risk variability.

Data and study population
Ourmain data resource is the IBMHealthMarketScan dataset,29 which records the health histories of over 150million unique patients

across the US from 2003 to the present. The data also documents both the kinship and county-level place of residence for patients.

We chose to analyze individuals who consistently lived in the same geographical location and were enrolled in our data for at least six

years, so that we could assume they had been exposed to the same environment for some time. From this filtered population, we

selected 138 thousand families (404 thousand individuals), including parents and their above-16-year-old children.

We used a comprehensive collection of raw environmental measurements, deriving from them environmental quality indices (EQIs)

developed by the US Environmental Protection Agency (EPA) to quantify the fixed environmental factor in our mixed-effects

models.30,31 For every county, the EQI gave a numerical quality estimation for five domains: air, water, land, sociodemographic,

and built environment. It is worth noting that each domain index already summarized many relevant variables, and lower scores
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suggest better environmental quality in general. For the air, water, and land domain, the EPA EQIs represent the overall quality

considering numerous pollutants and contaminants. The sociodemographic domain represents environmental quality related to in-

come, education, employment, crime, and other socioeconomic elements, while the build-environment domain summarizes factors

that are primarily associated with housing quality, proximity to roads, and the intensity of traffic on these roads.

Modeling
We employed a mixed-effects generalized linear regression modeling methodology, using logit-link for binary disease outcome. The

fixed-effects included basic demographic factors (such as sex and age groups) and we split the environmental quality indices by

categories: air, water, land, sociodemographic, and built-environmental (e.g., housing and highway safety). For the random effects,

we designed specific relationship matrices which determined correlation structures across individuals. For example, we specified

genetic random effects with a multivariate normal distribution using the genetic relationship matrix (GRM), which indicated the relat-

edness between individuals. Similarly, environmental random effects shared by family members, couples, or siblings also followed

distributions controlled by corresponding relationship matrices (see the Models section of STAR Methods). In addition, we consid-

ered the geographic random effects modelled by a Gaussian process (GP). Specifically, the GP’s kernel defined the strength of the

correlation between two patients’ geographic random effects according to the distance between them. We assumed people living

closely would share similar environments and, thus, highly-correlated geographic random effects (see the Models section of STAR

Methods).

We also considered the interaction between genetic and environmental random effects. By forwardly adding variables, we con-

structed a group of models from the simple to the more complex. Table 1 summarizes what additive effects were considered in

each (named) model. We categorized the models into two forward selection traces: Linear model 0 (LM0) ~x Linear model 1 (LM1)
~x Interaction model 1 (IM1) and Linear model 2 (LM2)~x Interaction model 2 (IM2). Within each trace, the later models encompassed

all the preceding models’ variables. The forward selection traces allowed us to determine whether models with additional variables

could better describe the data by comparing the information criterion estimates.

Finally, it was possible for us to define statistics that quantified how much outcome variation (logit-probability of disease)

could be explained by these additive random effects. For example, heritability (h2) corresponds to the genetic random effect.

In Table 1, we show the statistics p2, h2, f2, c2, s2, e2, hf2, hc2, hs2, and he2, which represent how much outcome variation can

be attributed to the geographic factors, genetic factors, familial environments, couple-shared environments, sibling-shared en-

vironments, individually-independent environments, interactions between genetics and familial environments, interactions be-

tween genetics and couple-shared environments, interactions between genetics and sibling-shared environments, and interac-

tions between genetics and individual environments, correspondingly. Note that the individually independent environment

effects E may include personal experiences in school or the workplace that are not shared with family members, and it could

also encompass noises in the clinical assessment or other errors. Please refer to the Models section of STAR Methods for the

model definition details.

QUANTIFICATION AND STATISTICAL ANALYSIS

We used a Bayesian procedure to infer parameters of the mixed-effects model. Details about the statistical analysis and software

used can be found in Supplemental Information. We conducted statistical simulations to assess whether the inference under the

model can untangle effects of genetics, environmental factors, and gene-environment interactions from appropriately simulated

data. Details about the statistical simulations can be found in Supplemental Information. This study did not use anymethods to deter-

mine whether the data met assumptions of the statistical approach.

Models
Linear model 0 (LM0)

For a disease outcome, we assumed that the probability of presenting this disease is p. The logit-probability, defined as l =

log
�

p
1�p

�
, could be expressed in an additive mixed-effects model:

l = Xb+ fqðqÞ+G+E; (Equation 1)

where X is the design matrix of the demographic fixed effects, including the effects of age and sex. For the fixed effect controlled by

environmental quality indices q = ðq1;q2;.;qmÞ, we assumed a polynomial model:

fqðqÞ = f ð1Þq ðq1Þ+ f ð2Þq ðq2Þ+.+ f ðmÞ
q ðqmÞ: (Equation 2)

Our model includes five (m = 5) different types of environmental qualities quantified by summary indices: air, water, land, socio-

demographic, and build-environment domains. We set the degree of the polynomial function fq and its components f
ð1Þ
q . f

ðmÞ
q to be

three (cubic).
e2 Cell Reports Medicine 3, 100736, September 20, 2022
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G is the genetic effect contributing to the phenotype, and E is the individually-independent environmental effect. For an individual

group, their genetic effects were associated by the genetic relationship matrix (GRM,SG). As an example, the GRM for a family of two

parents and one child should be close to

SG =

2
4 1:0 0:0 0:5
0:0 1:0 0:5
0:5 0:5 1:0

3
5; (Equation 3)

where the first two rows and columns represent the parents, and the last row and column represents the child. Then, we assumed the

genetic effects followed a multivariate normal distribution:

G � MvNormal
�
mean = 0; cov = sG

2SG

�
: (Equation 4)

The individually-independent environmental effects also followed a multivariate, normal distribution with its covariance equal to a

multiple of the identity matrix I:

E � MvNormal
�
mean = 0; cov = sE

2I
�
: (Equation 5)

In these expressions, sG
2 and sE

2 are the constants we wanted to find. For a population, the variance-covariance of l is

VarðlÞ = sG
2SG + sE

2I: (Equation 6)

Finally, we defined the heritability h2 and the independent environmental factor e2 as

h2 =
sG

2

sG
2 + sE

2
; (Equation 7.1)
e2 =
sE

2

sG
2 + sE

2
: (Equation 7.2)
Linear model 1 (LM1)
Besides the effects contributed by the basic demographic information (sex and age) and environmental quality, we acknowledged

that geographic position might also play a part in disease etiology.

Given a patient’s dwelling’s latitude and longitude (coordinates) x = ðx1;x2Þ, the random effect, as a part of the logit-probability l, is

fpðxÞ, which follows a Gaussian process (GP):

fpðxÞ � GPðmean = 0; cov = kðx; x0ÞÞ: (Equation 8)

The Gaussian process model constrains the distribution of fpðxÞ, so that the joint distribution of two data points fpðxÞ and fpðx0Þ is a
multivariate normal: �

fpðxÞ
fpðx0Þ

�
� MvNormal

�
mean =

�
0
0

�
; cov =

�
kðx; xÞ kðx; x0Þ
kðx; x0Þ kðx0; x0Þ

�	
: (Equation 9)

Therefore, if we chose the kernel function kð$; $Þ appropriately, we can fit a function fpðxÞ that created two random effects fpðxÞ and
fpðx0Þ; which would be more similar for coordinates x and x0 close to each other.

Here, we used the exponentiated quadratic kernel function, which is commonly used in geo-statistics and applications describing

quantities distributed in a smooth metric space:

kðx; x0Þ = sP
2$exp

�
� x � x02

2[ 2

	
; (Equation 10)

where sP
2 and [ were the scale parameters, we fit through the Markov chain Monte Carlo (MCMC) process.

In all, as a forward addition to the simplest linear model 0 (LM0), we expressed the logit-probability of a disease presenting for an

individual as:

l = b0 + bsex$Sex+ bage$Age+ fqðqÞ+ fpðxÞ+G+E = Xb+ fqðqÞ+ fpðxÞ+G+E: (Equation 11)

The variance-covariance of l for a group of individuals was:

VarðlÞ = sP
2KP + sG

2SG + sE
2I; (Equation 12.1)

where sP
2KP was the covariance matrix associating individuals based on their geographic locations, and the row m, column n

element of the Kp matrix in Expression (12.1) is defined as follows:

Kpðm; nÞ = exp
�
� xm � xn

2[ 2

�
: (Equation 12.2)
Cell Reports Medicine 3, 100736, September 20, 2022 e3
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This can be derived from the kernel function, Expression (10), as we did in Expression (9).

Consequently, the geographic position factor p2, which quantifies howmuch variation can be explained by one’s coordinates, the

heritability h2, and the independent environmental factor e2 were

p2 =
sP

2

sP
2 + sG

2 + sE
2
; (Equation 13.1)
h2 =
sG

2

sP
2 + sG

2 + sE
2
; (Equation 13.2)
e2 =
sE

2

sP
2 + sG

2 + sE
2
: (Equation 13.3)
Interaction Model 1 (IM1)
We then considered the interaction between the genetic effect and the environmental effect. The logit-probability of having a disease

can be expressed as

l = Xb+ fqðqÞ+ fpðxÞ+G+E + kGE$G$E; (Equation 14)

The scale factor kGE determines howmuch effect the interaction contributes to the phenotype.G and E were the same genetic and

environmental effects as they were given in the linear models 0 and 1.

The variance-covariance of l was

VarðlÞ = sP
2KP + sG

2SG + sE
2I+ kGE

2
sG

2sE
2SG1I; (Equation 15)

Note that the above expression, demonstrates the method by which we fit the model specified in Expression (14), not (15). Expres-

sion (15) functioned as an intermediate step for calculating the total variance based on the estimates of sp
2, sG

2, sE
2, etc. SG1 I is

equal to SG, but this did not affect the identifiability of the model defined in Expression (14) considering that random vector G is

certainly not equal to the random vector multiplication G3E (as the elements in the random vector E are not all ones).

We assumed that the genetic effect and the environmental effects are statistically independent. The operator 1 represents the

elementwise (Hadamard) product. The geographic position factor p2, the heritability h2, and the independent environmental factor

e2 are

p2 =
sP

2

sP
2 + sG

2 + sE
2 + kGE

2
sG

2 sE
2
; (Equation 16.1)
h2 =
sG

2

sP
2 + sG

2 + sE
2 + kGE

2
sG

2 sE
2
; (Equation 16.2)
e2 =
sE

2

sP
2 + sG

2 + sE
2 + kGE

2
sG

2 sE
2
: (Equation 16.3)

Furthermore, interactions between genetics and the environment can also explain the variance of the logit-probability. We defined

a new interaction factor

he2 =
kGE

2
sG

2 sE
2

sP
2 + sG

2 + sE
2 + kGE

2
sG

2 sE
2
; (Equation 17)
Linear Model 2 (LM2)
The linear models 0 and 1 incorporate the individually-independent environmental effect E only. However, because family members,

couples, and siblingsmay have shared similar behaviors andmilieus, we also included other types of environmental effects. Here, the

linear model 2 consider the family effect F, the couple effect C, and the sibling effect S in addition to the individually-independent

environmental effect E:

l = Xb+ fqðqÞ+ fpðxÞ+G+F +C+S+E: (Equation 18)

These additional environmental effects were assumed to follow multivariate normal distributions:

F � MvNormal
�
mean = 0; cov = sF

2SF

�
; (Equation 19.1)
e4 Cell Reports Medicine 3, 100736, September 20, 2022
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C � MvNormal
�
mean = 0; cov = sC

2SC

�
; (Equation 19.2)
S � MvNormal
�
mean = 0; cov = sS

2SS

�
: (Equation 19.3)

We determined the relationship matricesSF ,SC, andSS by howmuch of the kinship-specific environment they shared on average.

The relationship matrices for a family of two parents (shown in the first two rows and columns) and two children (shown in the last two

rows and columns) are:

SF =

2
664
1:0 1:0 1:0 1:0
1:0 1:0 1:0 1:0
1:0 1:0 1:0 1:0
1:0 1:0 1:0 1:0

3
775; (Equation 20.1)
SC =

2
664
1:0 1:0 0:0 0:0
1:0 1:0 0:0 0:0
0:0 0:0 1:0 0:0
0:0 0:0 0:0 1:0

3
775; (Equation 20.2)
SS =

2
664
1:0 0:0 0:0 0:0
0:0 1:0 0:0 0:0
0:0 0:0 1:0 1:0
0:0 0:0 1:0 1:0

3
775: (Equation 20.3)

The variance-covariance of l can then be estimated:

VarðlÞ = sP
2KP + sG

2SG + sF
2SF + sC

2SC + sS
2SS + sE

2I: (Equation 21)

We defined the heritability h2 and other statistics specifying environmental effects as:

p2 =
sP

2

sP
2 + sG

2 + sF
2 + sC

2 + sS
2 + sE

2
; (Equation 22.1)
h2 =
sG

2

sP
2 + sG

2 + sF
2 + sC

2 + sS
2 + sE

2
; (Equation 22.2)
f2 =
sF

2

sP
2 + sG

2 + sF
2 + sC

2 + sS
2 + sE

2
; (Equation 22.3)
c2 =
sC

2

sP
2 + sG

2 + sF
2 + sC

2 + sS
2 + sE

2
; (Equation 22.4)
s2 =
sS

2

sP
2 + sG

2 + sF
2 + sC

2 + sS
2 + sE

2
; (Equation 22.5)
e2 =
sE

2

sP
2 + sG

2 + sF
2 + sC

2 + sS
2 + sE

2
: (Equation 22.6)
Interaction model 2 (IM2)
Similar to our process in the experimental models 1 and 2, we added interaction terms to the above-defined linear model 2. Thus, in

this model, the logit-probability of having a disease is:
Cell Reports Medicine 3, 100736, September 20, 2022 e5
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l = Xb+ fqðqÞ+ fpðxÞ+G+F +C+S+E + kGF$G $F + kGC$G $C+ kGS$G $S+ kGE$G $E: (Equation 23)

The variance-covariance of l is:

VarðlÞ = sP
2KP + sG

2SG + sF
2SF + sC

2SC + sS
2SS + sE

2I+ kGF
2
sG

2 sF
2 SG1SF + kGC

2
sG

2 sC
2 SG1SC

+ kGS
2
sG

2 sS
2 SG1SS + kGE

2
sG

2 sE
2 SG1 I:

(Equation 24)

We defined the heritability h2 and statistics specifying the environmental effects (geographic position: p2, family: f2, couple: c2,

sibling: s2, and independent: e2) as we did in Expressions 16 and 22. Likewise, statistics quantifying the genetic interactions (ge-

netics-family: hf2, genetics-couple: hc2, genetics-sibling: hs2, and genetics-individual-environment: he2) were given according to

their partitions in VarðlÞ, similar to the Expression 17.

Bayesian inference
The models specified in Expressions (1), (11), (14), (18), and (23) are nonlinear mixed-effects models, which we can represent in a

general form:

l = fðXb; k1Z1;.; knZnÞ; (Equation 25)

where Xb are fixed effects, and Z1.Zn are random effects controlled by certain association matrices SZ – such as the individually-

independent environmental effects as given in Expression (5) – and the genetic effect G constrained by the pedigree:

Zn � MvNormal
�
mean = 0; cov = sZn

2SZ

�
: (Equation 26)

kn is the scale factor for the random effects Zn. Our target was to estimate not only the coefficients b and k = fk1;.; kng but also the

variances s2 = f sZ1

2. sZn
2g. To accomplish this, we started by considering the likelihood function

L
�
b; k; s2;Zjy� = Prðyjl = fðXb; k1Z1;.; knZnÞÞ; (Equation 27)

where y is the binary disease outcome linked to the logit-probability l = log
�

p
1�p

�
, and Z = fZ1.Zng is a collection representing all

random effects – similar to the collections k and s2.

However, this likelihood was not computable because of the unobserved random effects Z. To find the maximum likelihood (ML)

estimates for b; k; and s2, we had to integrate out the random term Z:

L
�
b; k;s2jy� =

Z
Prðyjl = fðXb; k1Z1;.; knZnÞÞPr

�
Z


s2

�
dZ: (Equation 28)

Wewere then free to apply suitable methods, such as stochastic gradient decant (SGD) or the expectation-maximization algorithm

(EM) to approximate the maximum likelihood estimates – with one caveat: The ML approaches are known to underestimate the var-

iances.s32,33 There exist modifications ofMLmethods, for example, restrictedmaximum likelihood (REML), in which both the random

term Z and the fixed effects coefficient bwould be integrated out in order to better estimate the variances.34 But the REML also has its

limitations; because of the integration of the fixed components, comparison would not be sensible between models of different fixed

effects design.35

We chose to use a fully Bayesian framework to avoid the drawbacks of ML and other related Frequentist methods. Solving the

model with a Bayesian’s view provided several advantages towards solving our problem. First, for any statistical model, the Bayesian

method follows an intuitive, easy-to-construct flow –model and prior specification first, and all the inferences would be automated on

the computer’s side. The model-centered, uniform flow allowed us to focus our attention on exploring various models (LM0 to IM2)

and their biological interpretations – with no liability to solve a novel nonlinear model. Additionally, Bayesian methods allowed us to

quantify the statistical uncertainty in a natural manner because the inference would be done in a sampling process (MCMC). In a fully

Bayesian framework, mean, credible intervals, or other distribution statistics are computable upon obtaining the samplings. By

contrast, the ML and other related Frequentist methods do not provide an integrated method for estimate inferences and their un-

certainties – the ML estimations may involve first-order approaches like SGD, while approximating the confidence intervals involved

typically require a separated calculation of the likelihood’s higher-order derivative.36,37 Bayesian methods also offer further benefits

such as model comparisons, especially when working with high-dimensional models (WAIC and PSIS-LOO), and versatile regulari-

zation approaches through shrinkage and moldable priors.38,39

Priors
To find the posterior distribution of a parameter q under a Bayesian framework, we first needed to specify the prior according to the

Bayes theorem PðqjDataÞfPðqÞ3 PðDatajqÞ = Prior3 Likelihood. We avoided overfitting through implementing Bayesian shrinkage

priors. The simplest example of shrinkage priors is Laplace distribution, which puts more weight in samplings close to zero and there-

fore rewards underfit estimates. We used the horseshoe shrinkage prior40 for the fixed-effects parameters (like the demographic

predictor parameter b in the Expression 1 and the polynomial function parameter in Expression 2), so we imposed sparsity and reg-

ularization to avoid overly complicated models. For parameters restricted to be positive, such as the variance scale factor sG
2 and
e6 Cell Reports Medicine 3, 100736, September 20, 2022
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sE
2 in Expression 6, we used the zero-avoiding Gamma prior, as recommended by Chung et al.41 and the Stan prior choice

recommendations.42

Sampling
After specifying the hierarchical models with priors and likelihood functions, Bayesian inferencemethods rely on a sampling algorithm

(sampler) to draw from the posterior distribution and approximate the posterior efficiently. In the present study, we usedHoffman and

Gelman’s No-U-Turn sampler (NUTS)24 designed for high-dimensional, ill-shaped target distributions. The No-U-Turn sampler tunes

the step size automatically and directs sampling by looking to the gradient information. Compared to vanilla Markov chain Monte

Carlo methods, the No-U-Turn sampler24 more quickly depicts complex posterior distributions. We initialized the sampling process

using automatic differentiation variational inference (ADVI),43 providing the MCMCwith an optimized start similar to the Frequentist’s

maximum likelihood methods.44 We then sampled four times independently using NUTS to estimate all the variables. The mean es-

timates were calculated by combining all four independent samplings to avoid possible sampling instability.

Statistical simulations of inference under the assumed model
Compared to prior research in heritability estimation, our model incorporates additional effects of gene-environment interactions.

The identifiability and performance might appear questionable for estimation under the new model. Therefore, we conducted statis-

tical simulations to assess whether the inference under the model can untangle effects of genetics, environmental factors, and gene-

environment interactions from appropriately simulated data, see Table S1.

We considered a simplified interaction model. The logit-probability of having a disease can be expressed as

l = Xb+ fqðqÞ+G+E + kGE$G$E; (Equation 29)

where X is the design matrix of the demographic fixed effects, including the effects of age and sex. fqðqÞ is a cubic polynomial func-

tion modeling the fixed effects of environmental quality indices, including air, water, land, sociodemographic, and build-environment

domains. G is the random effect of genetic factors, E is the random effects of environmental factors, and kGE$G$E quantifies the in-

fluence of gene-environment interactions.

We assigned five sets of genetic variance scale sG
2 and environmental variance scale sE

2: sG
2 = 1;sE

2 = 5; sG
2 = 2;sE

2 = 4;

sG
2 = 3;sE

2 = 3; sG
2 = 4;sE

2 = 2; and sG
2 = 5;sE

2 = 1. The scale factor kGE is set to be 1
3, and the gene-environment interac-

tions can be determined accordingly. These five experimental sets cover diverse phenotypic conditions regarding the genetic and

environmental influences, ranging from dominantly environmental to dominantly genetic traits. The true h2, e2, and he2 can be calcu-

lated using the following expressions

h2 =
sG

2

sG
2 + sE

2 + kGE
2
sG

2 sE
2
; (Equation 30)
e2 =
sE

2

sG
2 + sE

2 + kGE
2
sG

2 sE
2
: (Equation 31)
he2 =
kGE

2
sG

2 sE
2

sG
2 + sE

2 + kGE
2
sG

2 sE
2
; (Equation 32)

For each experimental set, we sampled 1,000 families from our data, and generated corresponding binary phenotypewith the logit-

probability defined in Expression 29. Given the simulated phenotypic data, family relationship information, and the model, we then

conducted the Bayesian inference using themethodwe descried in theBayesian Inference section of the supplementary information.

We repeated this sampling and inference process 100 times for each experimental set and computed the corresponding 95

percent credible intervals for h2, e2, and he2. By examining if the pre-set, true h2, e2, and he2 fell in the credible intervals, we can

estimate the coverage probability

Coverage probability = PrðClo % s % CupÞ; (Equation 33)

where s is the true value of a statistic (h2, e2, or he2), and ðClo; CupÞ is the corresponding credible interval for s, which we estimated

100 times independently with different family samples.
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