Aldol Reactions of Conformationally Stable Axially Chiral Thiohydantoin Derivatives

Sevgi Sarigul Ozbek, Melis Bacak Erdik, and Ilknur Dogan*

Cite This: ACS Omega 2021, 6, 27823-27832

Read Online

| ACCESS \| 国 Metrics \& More Article Recommendations | (s) Supporting Information |
| :--- | :--- | :--- |

Abstract

Two novel axially chiral ortho-trifluoromethylphenyl thiohydantoin derivatives have been prepared atroposelectively from the reaction of \mathbf{R} and \mathbf{S} alanine methyl ester HCl salts with ortho-trifluoromethylphenyl isothiocyanate in the presence of triethyl amine. It was found that after purification of the crude product by simple recrystallization, the \mathbf{R} amino acid esters yielded thiohydantoins having solely \mathbf{M} axial chirality whereas the \mathbf{S} ones returned the \mathbf{P} isomers only. This result prompted us to perform sterically controlled aldol reactions on \mathbf{M} and \mathbf{P} thiohydantoin atropisomers. It was found that during the aldol reaction of $3-0$-trifluoromethyl-5methylthiohydantoins, the o-trifluoromethyl group of the M isomers efficiently shielded the Si face of the intermediate and in this way, enabled the selective formation of only the \mathbf{R} configured aldol products at C5 of the heterocyclic ring. The \mathbf{P} thiohydantoins, on the other hand, yielded

P(or M) enolate only the S C5 configured aldol products as a result of the Re face shielding of the orthotrifluoromethyl group of intermediate enolates. A noteworthy face selectivity of the benzaldehyde molecule was not observed (anti/ syn only $3 / 2$) during the aldolization of trifluoromethylphenyl derivatives of thiohydantoins. Aldol reactions were also done using the previously synthesized axially chiral thiohydantoins with ortho-Cl, Br , and I phenyl substituents which had predominantly \mathbf{P} conformations (\mathbf{P} / \mathbf{M} ratios $>95 \%$), and the stereochemical outcomes were compared with those of the ortho-trifluoromethyl substituted ones. $80-90 \%$ face selectivity of the benzaldehyde molecule was observed for the axially chiral o-halophenyl substituted thiohydantoins. The syntheses done with axially chiral 3 -ortho-trifluoromethylphenyl- and 3 -ortho-iodophenyl-5-methyl thiohydantoins enabled stereoselective formation of quaternized chiral carbon centers at C5 of the thiohydantoin ring.

■ INTRODUCTION

Axially chiral compounds are important in various different fields such as catalysis, medicine, and materials science. ${ }^{1,2}$ Thiohydantoins are cyclic amino acid derivatives which are considered "privileged scaffolds" in drug discovery and have been shown to have numerous pharmacological activities. ${ }^{3,4}$ Aldol reactions are very well known and widely studied $\mathrm{C}-\mathrm{C}$ bond-forming reactions. However, although the enantioselective and diastereoselective aldol reactions have been developed significantly, the atroposelective versions of them are rare. ${ }^{5}$ The Sparr group performed atroposelective arene-forming aldol reactions using proline-driven organocatalysts and further used them elegantly in some natural products ${ }^{6-10}$ and axially chiral amide syntheses. ${ }^{11}$ Here, we report atroposelective aldol reactions of axially chiral thiohydantoin derivatives using a different approach. The methodology has been developed previously by Curran, ${ }^{12}$ Clayden, ${ }^{13}$ and Simpkins ${ }^{5}$ for some addition and cycloaddition reactions of sterically congested ortho-aryl-substituted axially chiral imide and amide derivatives where the bulky ortho-substituent protected one face of the molecule so that the reaction took place from the other face. The synthesis became asymmetric if optically active starting compounds were used. ${ }^{14-19}$ We had previously reported the atroposelective synthesis of axially chiral thiohydantoin derivatives, ${ }^{3}$ in which highly P conformations were obtained. The present work aims to perform sterically controlled
atroposelective aldol addition reactions of them and of the newly synthesized novel ortho-trifluoromethylphenyl-substituted thiohydantoin derivatives. The novel ortho-trifluoromethylphenyl thiohydantoin derivatives which were used as starting compounds for the atroposelective aldol reactions could be obtained in only one type of axially chiral form: either \mathbf{P} or \mathbf{M} depending on whether the starting amino acid was S or \mathbf{R} at it's α carbon. \mathbf{S} amino acids returned \mathbf{P} thiohydantoins, whereas \mathbf{R} returned \mathbf{M}. We presumed that the CF_{3} substituent, which is known to cause a high barrier to rotation from previous studies, ${ }^{20,21}$ or the halo substituents Cl, Br, or I will efficiently hinder the enolate attack on the aldehyde from the side where it stands, so that the attack will take place from the other side, and in this way, render an asymmetric synthesis. We had previously reported the aldol reactions of axially chiral 3-(o-aryl)-thiazolidine-4-ones ${ }^{22}$ and oxazolidinediones ${ }^{23}$ where starting compounds were racemic and therefore returned racemic products.

[^0]

Table 1. Axially Chiral Thiohydantoin Compounds Studied (1-7), Their Synthesis, Reaction Time, and Yields ${ }^{a}$

		S $\xrightarrow[\mathrm{CH}_{2} \mathrm{Cl}_{2}]{\mathrm{Et}_{3} \mathrm{~N}}$	 SP	
comp.	X	R	reaction time (h)	yield (\%)
1	Br	CH_{3}	1	88
2^{3}	Br	H	1	63
3^{3}	H	H	1	59
4^{3}	Cl	H	1	64
5^{3}	I	H	4	75
6	CF_{3}	CH_{3}	1	79
7	CF_{3}	H	1	77

${ }^{a}$ Compounds 1, 6, and 7 are novel, whereas $2-5$ have been reported before. ${ }^{3}$

Figure 1. (a) HPLC chromatogram of compound 1 obtained after the immediate removal of the reaction solvent; (a') HPLC chromatogram of compound 2 obtained after the immediate removal of the reaction solvent.

Scheme 1. Synthesis of the Aldol Products (2a-7a); the Reaction Has Been Shown on the M Isomer

Rxn time (h) Yield \%

2a) $\mathrm{X}=\mathrm{Br}$	$\mathrm{R}=\mathrm{H}$	$\mathrm{R}^{\prime}=\mathrm{CH}_{3}$	3	41
3a) $\mathrm{X}=\mathrm{H}$	$\mathrm{R}=\mathrm{H}$	$\mathrm{R}^{\prime}=\mathrm{CH}_{3}$	3	66
4a) $\mathrm{X}=\mathrm{Cl}$	$\mathrm{R}=\mathrm{H}$	$\mathrm{R}^{\prime}=\mathrm{CH}_{3}$	3	47
5a) $\mathrm{X}=\mathrm{I}$	$\mathrm{R}=\mathrm{H}$	$\mathrm{R}^{\prime}=\mathrm{CH}_{3}$	3	25
6a) $\mathrm{X}=\mathrm{CF}_{3}$	$\mathrm{R}=\mathrm{CH}_{3}$	$\mathrm{R}^{\prime}=\mathrm{H}$	3	35
7a) $\mathrm{X}=\mathrm{CF}_{3}$	$\mathrm{R}=\mathrm{H}$	$\mathrm{R}^{\prime}=\mathrm{CH}_{3}$	3	32

Figure 2. HPLC chromatograms (a) of compound 6 obtained after the immediate removal of the reaction solvent, (a^{\prime}) of compound 6 after recrystallization from ethyl acetate/hexane, (b) of compound 7 obtained after the immediate removal of the reaction solvent, and (b') of compound 7 after recrystallization from ethyl acetate/hexane.

RESULTS AND DISCUSSION

Axially chiral thiohydantoins have been synthesized by the previously utilized method ${ }^{3}$ by treating the amino acid methyl ester HCl salts with ortho-phenyl isothiocyanates in the presence of triethyl amine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Table 1). The axially chiral stereoisomers of the products have been identified by comparing their ${ }^{1} \mathrm{H}$ NMR spectra with their high-performance liquid chromatography (HPLC) chromatograms obtained on optically active sorbents. To confirm the isomeric assignments, we started this work by synthesizing (R)-3-(o-bromophenyl)-5-methylthiohydantoin (1) and compared its HPLC chromatogram with that of (S)-3-(o-bromophenyl)-5-methylthiohydantoin (2), which was studied before ${ }^{3}$ (Figure 1). For (S)-3-(o-bromo-phenyl)-5-methylthiohydantoin, the elution order of the isomeric peaks in the HPLC chromatogram was assigned as (from the first-appearing peak to the last) SM/RP/SP/RM with ratios 3:14:83:0. ${ }^{3}$ We presumed that starting the same synthesis with the R-alanine methyl ester would yield the $\mathbf{R M}$ isomer of the axially chiral thiohydantoin because $\mathbf{R M}$ is also transoid like SP (considering the methyl group at C-5 and the o-bromo substituent). As a matter of fact, the HPLC chromatogram of the thiohydantoin obtained from the R-alanine methyl ester, namely the 5R-5-methyl- N -o-bromophenylthiohydantoin (1a), showed the same retention time of the isomer previously assigned to $\mathbf{R M}$, and the corresponding isomeric ratio was obtained as 8:4:0:88, with the last peak (RM) having the highest intensity (Figure 1). Because within these molecules the C5 and the ophenyl substituents prefer to stay transoid with respect to each
other, ${ }^{3}$ on starting the thiohydantoin synthesis with \mathbf{S} alanine, $\mathbf{S P}$ was the major product, whereas on starting with \mathbf{R} alanine, the last peak on the chromatogram which had been assigned to RM turned out to be the major product.

Having shown that isomeric assignments can be done via HPLC analyses, the synthesis of the $o-\mathrm{CF}_{3}$ derivatives $(6,7)$ were planned with the hope of obtaining quantitatively \mathbf{P} or quantitatively \mathbf{M} conformers of thiohydantoins with this large substituent. ${ }^{20,21}$ With this aim, first, (R)-5-methyl-3-o-trifluoromethylphenylthiohydantoin (6) was synthesized (Scheme 1), and the isomeric ratio of the crude product was determined by comparing ${ }^{1} \mathrm{H}$ NMR with HPLC on CHIRALPAK IC, as RM/ SP/SM/RP 53:9:38:0 (Figure 2a). After recrystallization from ethyl acetate/hexane, the product was indeed obtained as a 57:43 mixture of RM and SM isomers only (Figure $2 a^{\prime}$). The (S)-5-methyl-3-o-trifluoromethylphenylthiohydantoin (7), on the other hand, yielded RM/SP/SM/RP 1.4:52.4:0:46.2 at first, and after recrystallization, the \mathbf{P} isomers this time were obtained as a 54.2:45.8 ($\mathbf{S P} / \mathbf{R P}$) mixture (Figure 2b, \mathbf{b}^{\prime}). Apparently, racemization has taken place ${ }^{24}$ at C5 of $\mathbf{6}$ and 7 . When the $\mathbf{R M}$ isomer was resolved micropreparatively by HPLC on a chiral column and the collected isomer was reinjected into HPLC for analysis, it was found that it converted to SM to give a 59:41 mixture of RM and SM isomers. The mechanism of racemization is under investigation. However, the important result for us was that on starting with \mathbf{R} alanine, the product was obtained as the M conformer, whereas on starting with \mathbf{S} alanine, the axially chiral thiohydantoin was synthesized only as \mathbf{P}. The \mathbf{S} and \mathbf{R}

RP

P Enolate

M Enolate

RM
$\xrightarrow[-78^{\circ} \mathrm{C}]{\text { LDA }}$

anti

Attack From Less Hindered Side

Attack From
More Hindered Side

Attack From Less Hindered Side

Figure 3. Enolization mechanism of the aldol reaction.
configurations will be lost upon enolate formation in the aldol reaction, and the \mathbf{P} and \mathbf{M} axial chirality obtained from \mathbf{S} - and \mathbf{R} alanine, respectively, will control the selectivity of the aldol reaction.

The \mathbf{M} conformation of thiohydantoin $\mathbf{6}$ did not change upon staying in toluene at $25^{\circ} \mathrm{C}$ for 48 h . The barrier to rotation around the chiral axis was determined as $117 \mathrm{~kJ} / \mathrm{mol}$ by thermal racemization at $60^{\circ} \mathrm{C}$ following the conversion of $\mathbf{R M}$ to $\mathbf{R P}$ and SM to SP by HPLC on a chiral column (see Supporting

Information). In this way, it was shown that any rotation will not take place at room temperature and below.

We then focused our attention to doing aldol reactions on the previously studied $(2-5)^{3}$ and newly synthesized thiohydantoins $(6,7)$ with benzaldehyde. The synthesis has been done at $-78^{\circ} \mathrm{C}$ in tetrahydrofuran (THF). First, the thiohydantoin was treated with LDA (lithium diisopropylamide) for 1 h to form the enolate by the abstraction of hydrogen at C-5 of the heterocyclic ring and then, benzaldehyde was added and the reaction was continued for 3 h (Scheme 1). ${ }^{22,23}$

SPR*
(anti)

RMS*
(anti)

RMR*
(syn)

Figure 4. Possible isomers of the aldol adducts of 5-methyl-3-o-arylthiohydantoins.

The previously reported thiohydantoins (2-5) have been synthesized predominantly in \mathbf{P} conformations (\mathbf{P} / \mathbf{M} ratios > $95 \%) .{ }^{3}$ Starting with a 3:6:91:0 isomeric ratio of SM/RP/SP/ $\mathbf{R M}^{3}$ of $\mathbf{2}$ would be equivalent to starting with $97 \% \mathbf{P}$ and $3 \% \mathbf{M}$ because upon the formation of the intermediate enolate after reaction with LDA, the C5 would be planar and thus loose its chirality, whereas the chiral axis will persist. The attack of the enolate on benzaldehyde would reform the C5 chiral center stereoselectively. The stereoselectivity of the reaction would depend on the extent of the shielding effect of the \mathbf{P} isomer's ortho substituent on the face of the enolate where it is present (Figure 3).
In the aldol adducts, because there are three chiral elements, which are the chiral center at C5 of the heterocyclic ring, the chiral axis ($\mathrm{N}_{\mathrm{sp}^{2}}-\mathrm{C}_{\text {aryl }}$ bond), and the newly formed chiral center which is denoted by *, eight isomers (SPR*, SPS*, RPS*, RPR*, RMS*, RMR*, SMR*, and SMS*) as four diastereomeric pairs are expected to form (Figure 4). Syn/anti assignments have been done by referring to the stereochemical studies carried out previously on related compounds. ${ }^{4}$
In order to make the assignments more easily, the aldol reaction was first tried with compound $\mathbf{3}$ which has no chiral axis. In this way, only two isomeric pairs SR* and RS* (anti) and SS* and RR* (syn) are expected to form because of the absence of the chiral axis (Figure 5).
The ${ }^{1} \mathrm{H}$ NMR spectrum of the aldol product 3a taken in CDCl_{3} without any purification showed two singlets at 4.94 and 4.88 ppm , which correspond to the signal of the hydrogen at the newly formed chiral center for the minor and the major isomeric pairs with the ratio of $21: 79$ by per cent (Figure 6). This syn/anti selectivity has also been observed for the structurally related aldol adducts. ${ }^{4}$

Based on the results obtained for compound 3 a in which the phenyl ring at C 6 prefers to be on the equatorial position, ${ }^{4}$ isomers of the axially chiral aldol products 2a, 4a, and 5a were assigned by ${ }^{1} \mathrm{H}$ NMR taken in CDCl_{3} without any purification. The barriers to rotation reported earlier as $116.2,109.8$, and $118.4 \mathrm{~kJ} / \mathrm{mol}$ for $\mathbf{2}, \mathbf{4}$, and 5 , respectively, at $60^{\circ} \mathrm{C}^{3}$ show that conformations of the axially chiral thiohydantoins will not change during the aldol reaction. In the ${ }^{1} \mathrm{H}$ NMR spectrum of the products, for $2 \mathbf{a}$ and $\mathbf{4 a}$, four singlets which belong to the hydrogen attached to the newly formed chiral center around 5 ppm were seen. This indicates the formation of all isomers with the ratio of 2:7:23:68 for the o-bromo (Figure 7a) and 2:8:21:69 for the o-chloro (Figure 7b) derivatives. However, for compound 5a which bears an o-iodo substituent, only two singlets appeared in the corresponding region with a diastereomeric ratio of 29:71 (Figure 7c). These ratios summarized in Table 2 show that the protection of $o-\mathrm{Br}$ and o - Cl is less than 100% while o-I fully protects the side where it is.

The formation of the aldol products can be explained by the enolization mechanism (Figure 3) in which the major isomers are formed due to the attack from the less hindered side of the \mathbf{P} and \mathbf{M} enolates, forming SPR* and SPS* and their enantiomers RMS* and RMR*, and the minor ones are formed because of the attack from the more hindered side, producing RPS* and RPR* and their mirror images SMR* and SMS*. If the formed enolate is 100% protected from the side where the o-aryl substituent is present toward the electrophilic attack of benzaldehyde, only the isomers SPR* and SPS* from the P and their enantiomers, RMS* and RMR* from the \mathbf{M}, are expected to form, as obtained for $\mathbf{5 a}, \mathbf{6 a}$, and $\mathbf{7 a}$. However, if the protection is less than 100%, all of the isomers should be seen in the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude products, as seen for compounds $\mathbf{2 a}$ and $\mathbf{4 a}$.

SR*

(anti)

(syn)

RS*

Figure 5. Structures of aldol products having no chiral axis (3a).

Figure 6. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of compound 3a in CDCl_{3} without any purification.

In order to make the assignments correctly, it was thought that the ratio of SPR*/SPS* should be similar to the one of RPS*/ RPR* because if benzaldehyde is attached selectively while forming SPR* and SPS*, it may be assumed to have the similar selectivity for producing RPS* and RPR*. Based on this idea and the results obtained for compound 3 a where the large phenyl ring is preferentially in the equatorial position, the assignments in ${ }^{1} \mathrm{H}$ NMR were done for the axially chiral aldol isomers $(\mathbf{2 a}-7 \mathbf{a})$. When the singlets from the most upfield to the
most downfield are assigned as SPR*, RPS*, SPS*, and RPR* for the 2a-5a diastereomers (and also their enantiomers), respectively (Figure 7a-c), similar ratios between SPR*:SPS* and RPS*: RPR* were found, which are 75:25 and 78:22 for 2a, 90:10 and 91:9 for 4a, and 71:29 (SPR*:SPS*) for 5a (no RPR*and RPS* were produced).

The degree of protection by the o-substituent was determined by the per cent ratio of the sum of SPR* and SPS*, formed due to the attack from the less hindered side, over the sum of RPS* and RPR*, produced by the attack from the more hindered side (Figure 3). 75:25 for 2a, 77:23 for 4a, and 100\% for 5a, 6a, and 7 a were found from the integrations of the singlets around 5 ppm in ${ }^{1} \mathrm{H}$ NMR spectra of each crude compound (Figures 7 and 8 and Table 3) in CDCl_{3}. These ratios show that there is no difference between bromo and chloro derivatives in terms of face selectivity of the electrophilic attack of benzaldehyde. However, the protection of o-halogen reaches to a maximum for the biggest halogen, iodo, in which full protection was seen.
When the aldol reaction of 6 (starting with RM and SM isomers only) was done with benzaldehyde (Scheme 1), ${ }^{1} \mathrm{H}$ NMR of the crude product ($\mathbf{6 a}$) in CDCl_{3} showed the presence of two isomers with a ratio of 20:80 (Figure 7d). In ${ }^{1} \mathrm{H}$ NMR of the purified product, on the other hand, a single isomer was seen in CDCl_{3} (Figure 8a), but two isomers with a ratio of 2:3 were seen in DMSO- d_{6} and in DMF- d_{7} (Figure 8a'). These results have been interpreted in the following way: during the aldol reaction, the ortho substituent CF_{3} shielded the Si face of the intermediate enolate so that attack on the benzaldehyde

Figure 7. Partial ${ }^{1} \mathrm{H}$ NMR spectrum of crude compounds (a) 2a, (b) 4a, (c) $\mathbf{5 a}$ (d) $\mathbf{6 a}$, and (e) $\mathbf{7 a}$ in CDCl_{3}.
Table 2. Isomeric Ratios of the Aldol Reaction of the Compounds 2a-7a

compounds	$\mathbf{P} / \mathbf{M}^{a}$	isomer ratios before purification ${ }^{b}\left(\mathbf{R P R}^{*} / \mathbf{R P S}^{*}\right):\left(\mathbf{S P S}^{*} / \mathbf{S P R}^{*}\right)$	isomer ratios after purification $\left(\mathbf{R P R}^{*} / \mathbf{R P S}^{*}\right):\left(\mathbf{S P S}^{*} / \mathbf{S P R}^{*}\right)$
2a	$97: 3$	$(2: 23):(7: 68)$	$(3: 31):(7: 59)^{c}$
3a	racemic	$21: 79^{e}$	$5: 95$
4a	$97: 3$	$(2: 21):(8: 69)$	$(0: 40):(0: 60)^{c}$
5a	$95: 5$	$(0: 0):(29: 71)$	$(0: 0):(7: 93)^{c}$
6a	$0: 100$	$(20):(80)^{f}$	$(0):(100)^{c, f}(0: 0):(40: 60)^{d, f}$
7a	$100: 0$	$(37):(63)$	$(0):(100)^{c}(0: 0):(40: 60)^{d}$

${ }^{a} \mathbf{P} / \mathbf{M}$ ratio is the ratio of the $(\mathbf{S P}+\mathbf{R P}):(\mathbf{S M}+\mathbf{R M})$ of the starting thiohydantoin. ${ }^{b}$ The isomer ratio was obtained from the integrations of the singlets observed for the hydrogen at the benzylic carbon around 5 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum taken in CDCl_{3} after the reaction without any purification. ${ }^{c}$ The isomer ratio was obtained from the integrations of the singlets observed for the hydrogen at the benzylic carbon around 5 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum taken in CDCl_{3} after precipitation from diethyl ether/petroleum ether and ethyl acetate/hexane. ${ }^{d}$ The isomer ratio was obtained from the integrations of the singlets observed for the hydrogen at the benzylic carbon around 5 ppm in the ${ }^{1} \mathrm{H}$ NMR spectrum taken in DMSO- d_{6} after precipitation from ethylacetate/hexane. ${ }^{e}$ Because the product has no axial chirality, only the isomers $\mathbf{S R}^{*} \& \mathbf{R S}^{*}$ (major) and

Figure 8. (a) Partial ${ }^{1} \mathrm{H}$ NMR spectrum of purified $\mathbf{6 a}$ in $\mathrm{CDCl}_{3} ;\left(\mathrm{a}^{\prime}\right)$ partial ${ }^{1} \mathrm{H}$ NMR spectrum of purified 6a in DMSO- d_{6}; (b) partial ${ }^{1} \mathrm{H}$ NMR spectrum of purified 7a in CDCl_{3}; and (b^{\prime}) partial ${ }^{1} \mathrm{H}$ NMR spectrum of purified 7a in DMSO- d_{6}.
occurred predominantly (ratio 20:80) from the Re face producing R configured aldol products at C5 of the thiohydantoin ring. Because the product isomers are diastereomers of each other, they principally should be separable, and, in fact, simple recrystallization eliminated the minor isomer. In CDCl_{3}, the syn and anti aldol products could not be discriminated (Figure 8a). However, in hydrogen-bonding solvents, they were. In DMSO- d_{6} and DMF- d_{7}, two doublets were seen for the OH protons and two different broad singlets

Table 3. Isomer Ratios of the Starting Thiohydantoins (2-7) and the Corresponding Aldol Products (2a-7a)

starting thiohydantoin	aldol product	S/R at C5	syn/anti ${ }^{\text {a }}$	syn/anti
2 (P/M 97:3)	2a	75:25	9:91	10:90 ${ }^{\text {c }}$
3 (racemic)	3a	79:21	21:79	5:95 ${ }^{\text {c }}$
4 (P/M 97:3)	4a	77:23	10:90	$0: 100^{\text {c }}$
5 (P/M 95:5)	5 a	100:0	29:71	7:93 ${ }^{\text {c }}$
6 (P/M 0:100)	6a	20:80	b	40:60 ${ }^{\text {d }}$
7 (P/M 100:0)	7 a	63:37	b	40:60 ${ }^{\text {d }}$

$a_{\text {syn/anti }}$ isomer ratio was determined from the ratio of (RPR + $\mathbf{S P S}):(\mathbf{R P S}+\mathbf{S P R})$ isomers obtained from the integrations of the singlets observed in the ${ }^{1} \mathrm{H}$ NMR spectrum taken in CDCl_{3} before purification. ${ }^{b}$ The syn/anti isomer ratio could not be determined because the isomers could not be separated. ${ }^{\text {c }}$ The syn/anti isomer ratio was determined from the ${ }^{1} \mathrm{H}$ NMR spectrum taken in CDCl_{3} after purification. ${ }^{d}$ The syn/anti isomer ratio was determined from the ${ }^{1} \mathrm{H}$ NMR spectrum taken in DMSO- d_{6} after purification.
for the hydrogen at C6 of the two isomers (Figure 8a'). The ortho hydrogen of CF_{3}-phenyl appeared at about 6 ppm because of the shielding effect of the phenyl group bonded to C6 (Figure $8 \mathrm{a}, \mathrm{b}$). The two isomeric aldol products were designated as RMS* (anti) and RMR* (syn), R being the chiral center at C5 and \mathbf{R}^{*} and \mathbf{S}^{*} being the newly formed chiral centers at C6 (Scheme 1 and Figure 3). Because the aldol reaction started with 6 having only M axial chirality, the product's conformation should also be \mathbf{M}.

Doing the same reaction starting with isomers of 7, SP, and RP yielded, after purification, only the SPR* (anti) and SPS*(syn) aldol products (7a) with a 3:2 ratio (Figure 8b'). Thus, CF_{3}, like iodine as an ortho substituent, enabled full protection during the aldol reactions of 6 and 7 .

Thus, for the o-iodophenyl (5a) and the o-trifluoromethylphenyl thiohydantoin derivatives ($6 \mathbf{a}, 7 \mathbf{a}$), a complete atroposelectivity was observed for forming the chiral center at C-5. For the smaller sized ortho substituent bearing derivatives 2 and 4 , lower atroposelectivities were observed.

- CONCLUSIONS

The synthesis of the novel $o-\mathrm{CF}_{3}$ bearing axially chiral thiohydantoins $\mathbf{6}$ and 7 yielded solely \mathbf{M} and \mathbf{P} conformed products, respectively. Starting with \mathbf{R} alanine, the product was obtained as the \mathbf{M} conformer. On the other hand, starting with \mathbf{S} yielded only the \mathbf{P} conformer.

The aldol reactions of the compounds (2-7) followed an enolization mechanism in which the \mathbf{P} or \mathbf{M} enolate formed from the reaction of LDA with the corresponding thiohydantoin produced the aldol adducts ($\mathbf{2 a}-\mathbf{7 a}$). Among the aldol products 2a-7a of 5-methyl-3-o-aryl thiohydantoins, 2-7, the selectivity at C5 depended on the ortho-phenyl substituent at N3, resulting from the enolate attack occurring dominantly from the less hindered side of the ortho-substituted compound. The largest substituents o-iodo and $o-\mathrm{CF}_{3}$ yielded 100% selectivity. In addition, a 70:30 to 91:9 face selectivity was observed upon the formation of 2a-5a for the attachment of benzaldehyde in favor of the anti adduct whereas no appreciable face selectivity was observed upon the formation of $\mathbf{6 a}$ and 7 a .

- EXPERIMENTAL PROCEDURE

Materials and Methods. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra of all compounds were recorded on a Varian Mercury VX-400 MHz-BB. Liquid chromatography analyses with an ultraviolet (UV) detector ($\lambda=254 \mathrm{~nm}$) were performed using CHIRALPAK IC columns (particle size, $5 \mu \mathrm{~m}$; column size, $250 \times 4.6 \mathrm{~mm}^{2}$) as the stationary phase. Melting points were determined on an Electrothermal 9100 melting point apparatus. All reagents and solvents were obtained commercially (Aldrich, Merck) and used without further purification.

General Procedure for Thiohydantoin Derivatives (1 and 6-9). Compounds 1, 6, and 7 were synthesized by treating the amino acid methyl ester HCl salts with ortho-phenyl isothiocyanates in the presence of triethyl amine $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under reflux for 1 h . For the synthesis of compounds, R and S alanine and phenyl alanine methyl ester HCl salts were used as starting amino acids. The crude product was washed with distilled water and saturated salt solution. Finally, the solution was dried over MgSO_{4} and filtered. The solvent was removed. The crude product recrystallized from ethyl acetate/ hexane.

5-Methyl-3-o-bromophenylthiohydantoin (1). The compound was synthesized according to the general procedure. 0.48 $\mathrm{mL}(3.58 \mathrm{mmol})$ of o-bromophenyl isothiocyanate was added to a solution of $0.5 \mathrm{~g}(3.58 \mathrm{mmol})$ of D -alanine methyl ester HCl salt and 0.5 mL of $(3.58 \mathrm{mmol}) \mathrm{Et}_{3} \mathrm{~N}$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: $0.56 \mathrm{~g}(55 \%)$; white solid, $\mathrm{mp} 220{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.74-7.26(\mathrm{~m}, 10 \mathrm{H}$, aromatic ring and NH$) ; 4.46$ and 4.34 (two quartets, $2 \mathrm{H}, \alpha-\mathrm{H}$ at C-5); 1.66 and $1.58(\mathrm{~d}, 6 \mathrm{H}$, methyl signals at C-5). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.76$, 173.19, 133.57, 133.52, 132.17, 131.35, 131.23, 131.04, 128.52, $128.44,123.38,55.87,55.74,17.46,16.90 \mathrm{ppm}$ (diastereomeric isomers gave different carbon signals). HRMS (TOF MS ES ${ }^{+}$): calcd for $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{BrN}_{2} \mathrm{OSH}^{+}$, 284.9697; found, 284.9697.

5-Methyl-3-o-trifluoromethylphenylthiohydantoin (6). The compound was synthesized according to the general procedure. $0.54 \mathrm{~mL}(3.58 \mathrm{mmol})$ of 2-(trifluoromethyl) phenyl isothiocyanate was added to a solution of $0.5 \mathrm{~g}(3.58 \mathrm{mmol})$ of $\mathrm{D}-$ alanine methyl ester HCl salt and $0.5 \mathrm{~mL}(3.58 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: $0.59 \mathrm{~g}(60 \%)$; white solid, $\mathrm{mp} 238-239$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77-7.12(\mathrm{~m}, 10 \mathrm{H}$, aromatic ring and NH), 4.39 and 4.27 (two quartets, $2 \mathrm{H}, \alpha$-H at $\mathrm{C}-5$), 1.55 and 1.53 (two doublets, H , methyl signals at $\mathrm{C}-5$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 183.40,183.30,173.90,173.85$, 133.14, 132.18, 131.75, 130.74, 130.40, 129.20, 128.89, 127.71, 124.15, 121.60, 55.98, 55.75, 17.07, 16.60 ppm (diastereomeric isomers gave different carbon signals). HRMS (TOF MS ES ${ }^{+}$): calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OSH}^{+}$, 275.0466; found, 275.0467.

5-Methyl-3-o-trifluoromethylphenylthiohydantoin (7). The compound was synthesized according to the general procedure. $0.54 \mathrm{~mL}(3.58 \mathrm{mmol})$ of 2-(trifluoromethyl) phenyl isothiocyanate was added to a solution of $0.5 \mathrm{~g}(3.58 \mathrm{mmol})$ of L alanine methyl ester HCl salt and $0.5 \mathrm{~mL}(3.58 \mathrm{mmol})$ of $\mathrm{Et}_{3} \mathrm{~N}$ in 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Yield: $0.41 \mathrm{~g}(43.5 \%)$; white solid, $\mathrm{mp} 238-$ $239{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.77-7.25(\mathrm{~m}, 10 \mathrm{H}$, aromatic ring and NH), 4.39 and 4.26 (two quartets, $2 \mathrm{H}, \alpha-\mathrm{H}$ at $\mathrm{C}-5$), 1.55 and 1.54 (two doublets, H , methyl signals at $\mathrm{C}-5$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 183.30,173.74,133.12,133.07$, 132.05, 131.86, 130.38, 127.71, 127.77, 124.18, 121.63, 121.51, $55.90,55.67,17.18,16.70 \mathrm{ppm}$. (diastereomeric isomers gave different carbon signals). HRMS (TOF MS ES ${ }^{+}$): calcd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OSH}^{+}, 275.0466$; found, 275.0465.

General Procedure for the Aldol Reaction (2a-7a). The aldol reactions were carried out under nitrogen. To the solution of 5-methyl-3-o-aryl thiohydantoins $(0.16 \mathrm{M})$ in THF at $-78{ }^{\circ} \mathrm{C}$ was added LDA ($2 \mathrm{M}, 2.4$ equiv). The mixture was stirred for 1 h for enolate formation and then benzaldehyde (2 equiv) was added. The reaction mixture was stirred for $2-3 \mathrm{~h}$ at $-78^{\circ} \mathrm{C}$ and quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (2 equiv). The solution was extracted with diethyl ether three times and dried over anhydrous CaCl_{2}. The ether was evaporated, and the crude product was precipitated from diethyl ether/petroleum ether and ethyl acetate/hexane.

5-(Hydroxy(phenyl)methyl)-5-methyl-3-o-bromophenyl Thiohydantoin (2a). The compound was synthesized according to the general procedure using $0.25 \mathrm{~g}(0.88 \mathrm{mmol})$ of compound 2 in 5.5 mL of THF, $1.05 \mathrm{~mL}(2.10 \mathrm{mmol})$ of LDA, and 0.18 mL $(1.75 \mathrm{mmol})$ of benzaldehyde. Yield: 0.14 g (41%), mp 158$160{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.76$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.74-7.00(\mathrm{~m}, 9 \mathrm{H}$, aromatic ring), $6.05(\mathrm{~m}, 1 \mathrm{H}$, aromatic proton), $5.11,5.08,5.06$, and $5.01(\mathrm{~s}, 1 \mathrm{H}$, benzylic H$), 1.91$, 1.83, and $1.70\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\alpha-\mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR (100 MHz , CDCl_{3}): $\delta 181.6,173.3,137.3,137.2,133.5,133.4,133.2,131.8$, 131.3, 131.2, 131.1, 130.5, 129.3, 129.23, 129.19, 129.17, 128.99, 128.93, 128.6, 128.5, 128.3, 127.7, 127.24, 127.21, $127.0,123.5,123.3,69.5,68.6,20.3,20.1 \mathrm{ppm}$ (diastereomeric isomers gave different carbon signals). HRMS (TOF MS ES ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}$, 391.0116; found, 391.0117.

5-(Hydroxy(phenyl)methyl)-5-methyl-3-phenyl Thiohydantoin (3a). The compound was synthesized according to the general procedure using $0.23 \mathrm{~g}(1.12 \mathrm{mmol})$ of compound 3 in 7.0 mL of THF, $1.3 \mathrm{~mL}(2.68 \mathrm{mmol})$ of LDA, and 0.23 mL $(2.23 \mathrm{mmol})$ of benzaldehyde. Yield: $0.23 \mathrm{~g}(66 \%), \mathrm{mp} 135-$ $136{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (br s, $1 \mathrm{H}, \mathrm{NH}$); $7.45-7.25(\mathrm{~m}, 8 \mathrm{H}$, aromatic rings); $6.63(\mathrm{~m}, 2 \mathrm{H}$, aromatic proton); 5.07 and $5.01(\mathrm{~s}, 1 \mathrm{H}$, benzylic H$) ; 1.83\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\alpha-\mathrm{C}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.8,174.3,137.2$,
132.3, 129.4, 129.2, 129.0, 128.7, 128.0, 127.2, 69.0, 20.0, 19.5 ppm. HRMS (TOF MS ES ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}$, 313.1011; found, 313.1023.

5-(Hydroxy(phenyl)methyl)-5-methyl-3-o-chlorophenyl Thiohydantoin (4a). The compound was synthesized according to the general procedure using $0.50 \mathrm{~g}(2.08 \mathrm{mmol})$ of compound 4 in 13 mL of THF, $2.5 \mathrm{~mL}(4.99 \mathrm{mmol})$ of LDA, and 0.42 mL (4.16 mmol) of benzaldehyde. Yield: $0.34 \mathrm{~g}(47 \%), \mathrm{mp} 165-$ $166{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.61$ (br s, $1 \mathrm{H}, \mathrm{NH}$), $7.46-7.16(\mathrm{~m}, 9 \mathrm{H}$, aromatic ring), $6.07(\mathrm{dd}, 1 \mathrm{H}$, aromatic proton), 5.04 and $5.02(\mathrm{~s}, 1 \mathrm{H}$, benzylic H$), 2.86$ and 2.58 (br s, $1 \mathrm{H},-\mathrm{OH}), 1.83$ and $1.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\alpha-\mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 181.8,173.4,137.2,136.9,133.4,133.2,131.1$, $130.9,130.8,130.5,130.3,130.2,130.0,129.29,129.26,128.9$, 128.6, 127.6, 127.5, 127.2, 69.3, 68.0, 20.1, 19.9 ppm (diastereomeric isomers gave different carbon signals). HRMS (TOF MS ES ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}, 347.0621$; found, 347.0624.

5-(Hydroxy(phenyl)methyl)-5-methyl-3-o-iodophenyl Thiohydantoin (5a). The compound was synthesized according to the general procedure using $0.25 \mathrm{~g}(0.75 \mathrm{mmol})$ of compound 5 in 4.7 mL of THF, $0.9 \mathrm{~mL}(1.81 \mathrm{mmol})$ of LDA, and 0.15 mL $(1.51 \mathrm{mmol})$ of benzaldehyde. Yield: $0.084 \mathrm{~g}(25 \%), \mathrm{mp} 176-$ $179{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.00-8.00(\mathrm{~m}, 10 \mathrm{H}$, NH and aromatic ring), $5.98(\mathrm{~d}, 1 \mathrm{H}$, aromatic proton), 5.05 and $5.01\left(\mathrm{~s}, 1 \mathrm{H}\right.$, benzylic H), $2.68(\mathrm{br} \mathrm{s}, 1 \mathrm{H},-\mathrm{OH}), 1.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\alpha-\mathrm{C}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 181.5,173.1,139.7$, 139.5, 137.2, 135.3, 131.3, 130.5, 129.8, 129.5, 129.4, 129.2, 129.0, 128.6, 127.3, 127.0, 99.2, 98.9, 69.5, 68.6, 20.3, 20.2 ppm (diastereomeric isomers gave different carbon signals). HRMS (TOF MS ES ${ }^{+}$): calcd for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{IN}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}, 438.9977$; found, 438.9976.

5-(Hydroxy(phenyl)methyl)-5-methyl-3-o-trifluoromethylphenyl Thiohydantoin (6a). The compound was synthesized according to the general procedure using $0.25 \mathrm{~g}(0.9 \mathrm{mmol})$ of compound 6 in 5.7 mL of THF, $1.09 \mathrm{~mL}(2.18 \mathrm{mmol})$ of LDA, and $0.60 \mathrm{~mL}(1.82 \mathrm{mmol})$ of benzaldehyde. Yield: $0.12 \mathrm{~g}(35 \%)$, $\mathrm{mp} 184-186{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.74-7.46$ $(\mathrm{m}, 9 \mathrm{H}$, aromatic ring and NH$), 5.93(\mathrm{~d}, 1 \mathrm{H}$, aromatic H$), 5.05$ $\left(\mathrm{s}, 2 \mathrm{H}\right.$, at C6), $1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\alpha-\mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}$, DMSO- d_{6}) : $\delta 10.92(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 7.77-7.27(\mathrm{~m}, 8 \mathrm{H}$, aromatic ring), $6.29(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$, aromatic H), 5.80 and 5.76 (two doublets, $1 \mathrm{H},-\mathrm{OH}$), 4.74-4.75 (two singlets, 2 H , at C6), 1.83 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\alpha-\mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 182.45$, 173.72, 137.18, 132.83, 131.32, 130.06, 129.31, 128.63, 127.39, 127.31, 127.36, 76.98, 69.39, 20.00 ppm (diastereomeric isomers gave different carbon signals). HRMS (TOF MS ES^{+}): calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}, 381.0885$; found, 381.0885 .

5-(Hydroxy(phenyl)methyl)-5-methyl-3-o-trifluoromethylphenyl Thiohydantoin (7a). The compound was synthesized according to the general procedure using $0.5 \mathrm{~g}(1.82 \mathrm{mmol})$ of compound 7 in 11.4 mL of THF, $2.17 \mathrm{~mL}(4.37 \mathrm{mmol})$ of LDA, and $1.2 \mathrm{~mL}(3.64 \mathrm{mmol})$ of benzaldehyde. Yield: $0.22 \mathrm{~g}(32 \%)$, mp 207-209 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.93-7.45$ $(\mathrm{m}, 9 \mathrm{H}$, aromatic ring and NH$), 5.94(\mathrm{~d}, 1 \mathrm{H}$, aromatic H$), 5.05$ ($\mathrm{s}, 1 \mathrm{H}$, benzylic H), $1.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\alpha-\mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 10.96$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), $7.77-7.26$ (m, 8 H , aromatic ring), $6.30(\mathrm{~d}, 1 \mathrm{H}$, aromatic H$), 5.79$ and 5.75 (two doublets, $1 \mathrm{H},-\mathrm{OH}$), 4.74-4.75 (two singlets, 2 H , benzylic H), $1.55\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ at $\left.\alpha-\mathrm{C}\right) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 184.59, 173.78, 137.23, 132.89, 131.37, 130.47, 130.11, 129.35, 128.67, 127.43, 127.07, 125.33, 69.45, 20.04 ppm (diastereo-
meric isomers gave different carbon signals). HRMS (TOF MS ES^{+}): calcd for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SH}^{+}, 381.0885$; found, 381.0885.

ASSOCIATED CONTENT

(s) Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsomega.1c03452.

Copies of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra for all new compounds and the chromatograms of the thermal interconversion study (PDF)

- AUTHOR INFORMATION

Corresponding Author

Ilknur Dogan - Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey; © orcid.org/0000-0003-1920-8453; Email: dogan@boun.edu.tr

Authors

Sevgi Sarigul Ozbek - Faculty of Pharmacy, Acibadem Mehmet Ali Aydinlar University, Atasehir, Istanbul 34752, Turkey
Melis Bacak Erdik - Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
Complete contact information is available at:
https://pubs.acs.org/10.1021/acsomega.1c03452

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This project was supported by the Bogazici University Research Fund (BAP) with the project numbers 16443,7760 and the project codes 19B05P8, 13B05D10.

REFERENCES

(1) Fugard, A. J.; Lahdenperä, A. S. K.; Tan, J. S. J.; Mekareeya, A.; Paton, R. S.; Smith, M. D. Hydrogen-Bond-Enabled Dynamic Kinetic Resolution of AxiallyChiral Amides MediatedbyaChiral Counterion. Angew. Chem., Int. Ed. 2019, 58, 2795-2798.
(2) Mancinelli, M.; Bencivenni, G.; Pecorari, D.; Mazzanti, A. Stereochemistry and Recent Applications of Axially Chiral Organic Molecules. Eur. J. Org. Chem. 2020, 4070-4086.
(3) Sarigul, S.; Dogan, I. Atroposelective Synthesis of Axially Chiral Thiohydantoin Derivatives. J. Org. Chem. 2016, 81, 5895-5902.
(4) Khatik, G. L.; Kaur, J.; Kumar, V.; Tikoo, K.; Venugopalan, P.; Nair, V. A. Aldol derivatives of Thioxoimidazolidinones as potential anti-prostate cancer agents. Eur. J. Med. Chem. 2011, 46, 3291-3301.
(5) Hughes, A. D.; Price, D. A.; Shishkin, O.; Simpkins, N. S. Diastereoselective Enolate Chemistry using Atropisomeric Amide. Tetrahedron Lett. 1996, 37, 7607-7610.
(6) Lotter, D.; Castrogiovanni, A.; Neuburger, M.; Sparr, C. CatalystControlled Stereodivergent Synthesis of Atropisomeric Multiaxis Systems. ACS Cent. Sci. 2018, 4, 656-660.
(7) Link, A.; Sparr, C. Stereoselective arene formation. Chem. Soc. Rev. 2018, 47, 3804-3815.
(8) Fäseke, V. C.; Witzig, R. M.; Link, A.; Lotter, D.; Sparr, C. Catalytic Arene-forming aldol condensation: Stereoselective synthesissof rotationally restricted aromatic compounds. Chimia 2017, 71, 596-599.
(9) Lotter, D.; Neuburger, M.; Rickhaus, M.; Häussinger, D.; Sparr, C. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Configurationally Stable Oligo-1,2-naphthylenes. Angew. Chem., Int. Ed. 2016, 55, 2920-2923.
(10) Link, A.; Sparr, C. Organocatalytic Atroposelective Aldol Condensation: Synthesis of Axially Chiral Biaryls by Arene Formation. Angew. Chem., Int. Ed. 2014, 53, 5458-5461.
(11) Fäseke, V. C.; Sparr, C. Stereoselective Arene-Forming Aldol Condensation: Synthesis of Axially Chiral Aromatic Amides. Angew. Chem., Int. Ed. 2016, 55, 7261-7264.
(12) Curran, D. P.; Qi, H.; Geib, S. J.; DeMello, N. C. Atroposelective Thermal Reactions of Axially Twisted Amides and Imides. J. Am. Chem. Soc. 1994, 116, 3131-3132.
(13) Clayden, J. Stereocontrol with rotationally restricted amides. Synett 1988, 810-816.
(14) Clayden, J. Non-Biaryl Atropisomers: New Classes of Chiral Reagents, Auxiliaries, and Ligands? Angew. Chem., Int. Ed. Engl. 1997, 36, 949-951.
(15) Bennett, D. J.; Blake, A. J.; Cooke, P. A.; Godfrey, C. R. A.; Pickering, P. L.; Simpkins, N. S.; Walker, M. D.; Wilson, C. Stereoselectivity in reactions of atropisomeric lactams and imides. Tetrahedron 2004, 60, 4491-4511.
(16) Kitagawa, O.; Izawa, H.; Sato, K.; Dobashi, A.; Taguchi, T.; Shiro, M. Optically Active Axially Chiral Anilide and Maleimide Derivatives as New Chiral Reagents: Synthesis and Application to Asymmetric DielsAlder Reaction. J. Org. Chem. 1998, 63, 2634-2640.
(17) Kitagawa, O.; Matsuoka, M.; Iida, A. α-Alkylation of N-C Axially Chiral Quinazolinone Derivatives Bearing Various ortho-Substituted Phenyl Groups: Relation between Diastereoselectivity and the orthoSubstituent. Synlett 2018, 29, 2126-2130.
(18) Takahashi, I.; Suzuki, Y.; Kitagawa, O. Asymmetric Synthesis of Atropisomeric Compounds with an N-C Chiral Axis. Org. Prep. Proced. Int. 2014, 46, 1-23.
(19) Matsuoka, M.; Goto, M.; Wzorek, A.; Soloshonok, V. A.; Kitagawa, O. Diastereoselective α-Alkylation of Metallo Enamines Generated from N-C Axially Chiral Mebroqualone Derivatives. Org. Lett. 2017, 19, 2650-2653.
(20) Belot, V.; Farran, D.; Jean, M.; Albalat, M.; Vanthuyne, N.; Roussel, C. Steric Scale of Common Substituents from Rotational Barriers of N-(o-Substituted aryl)thiazoline-2-thione Atropisomers. J. Org. Chem. 2017, 82, 10188-10200.
(21) Gunasekaran, P.; Perumal, S.; Menéndez, J. C.; Mancinelli, M.; Ranieri, S.; Mazzanti, A. Axial Chirality of 4-Arylpyrazolo[3,4b]pyridines. Conformational Analysis and Absolute Configuration. J. Org. Chem. 2014, 79, 11039-11050.
(22) Erol Gunal, S.; Dogan, I. Aldol Reactions of Axially Chiral 5-Methyl-2-(o-aryl)imino-3-(o-aryl)-thiazolidine-4-ones. Molecules 2016, 21, 788-794.
(23) Demir-Ordu, Ö.; Doğan, İ. Stereoselective lithiation and alkylation and aldol reactions of chiral 5 -methyl-3-(o-aryl)-oxazolidinones. Tetrahedron: Asymmetry 2010, 21, 2455-2464.
(24) Haslak, Z. P.; Agopcan Cinar, S.; Sarigul Ozbek, S.; Monard, G.; Dogan, I.; Aviyente, V. Elucidation of the atroposelectivity in the synthesis of axially chiral thiohydantoin derivatives. Org. Biomol. Chem. 2020, 18, 2233-2241.

[^0]: Received: July 1, 2021
 Accepted: October 1, 2021
 Published: October 15, 2021

