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Abstract

The small GTPase Rac is known to be an important regulator of cell polarization, cytoskeletal reorganization, and motility of
mammalian cells. In recent microfluidic experiments, HeLa cells endowed with appropriate constructs were subjected to
gradients of the small molecule rapamycin leading to synthetic membrane recruitment of a Rac activator and direct graded
activation of membrane-associated Rac. Rac activation could thus be triggered independent of upstream signaling
mechanisms otherwise responsible for transducing activating gradient signals. The response of the cells to such stimulation
depended on exceeding a threshold of activated Rac. Here we develop a minimal reaction-diffusion model for the GTPase
network alone and for GTPase-phosphoinositide crosstalk that is consistent with experimental observations for the
polarization of the cells. The modeling suggests that mutual inhibition is a more likely mode of cell polarization than
positive feedback of Rac onto its own activation. We use a new analytical tool, Local Perturbation Analysis, to approximate
the partial differential equations by ordinary differential equations for local and global variables. This method helps to
analyze the parameter space and behaviour of the proposed models. The models and experiments suggest that (1) spatially
uniform stimulation serves to sensitize a cell to applied gradients. (2) Feedback between phosphoinositides and Rho
GTPases sensitizes a cell. (3) Cell lengthening/flattening accompanying polarization can increase the sensitivity of a cell and
stabilize an otherwise unstable polarization.
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Introduction

Many types of eukaryotic cells undergo directed motion in

response to external spatial signals in a process known as

chemotaxis. Before starting to move, a given cell polarizes

according to directional cues in the environment, forming nascent

‘‘front’’ and ‘‘back’’ regions. At the front, actin cytoskeleton

assembly powers protrusion, whereas at the back, actomyosin

contracts and pulls up the rear. Orchestrating the localization of

actin network regulators and myosin activators are signalling

molecules such as Rho-GTPases and phosphoinositides (PIs). The

spatio-temporal distribution of such regulatory molecules is thus

critical to the correct polarization, motility, and chemotactic

response of such cells.

Proteins of the family of Rho-GTPases (Rac, Rho, Cdc42) and

the lipid PIs (PIP, PIP2, PIP3), evolutionarily conserved across a

wide range of eukaryotic cells, are implicated in cell polarization.

These have garnered substantial interest as they are among the

first elements in the chemotactic pathway to respond to a stimulus.

Zones rich in Rac, Cdc42, PIP3 are associated with actin

branching and growth, and zones rich in Rho are associated with

myosin induced contraction. In many cell types, these zones are

complementary, defining a ‘‘front’’ and ‘‘back’’ of the cell.

Depending on cell type, the internal graded distribution of the

GTPases and PIs amplifies shallow external gradients (of as little as

1–2% across the cell) into robust internal gradients [1–4]. The

question of how such polarized distributions self-organize has

attracted attention in both experimental and theoretical

studies.

Motivating the theoretical development to be described in this

paper, is a collection of microfluidic experiments outlined in [5]. In

these experiments, mammalian (HeLa) cells were placed in narrow

channels that constrain lateral movement and restricts them to a

single dimension. The cells were modified so that diffusion-driven

linear gradients [6] of a small molecule would induce translocation

of the Rac activator Tiam1 to the plasma membrane; this resulted

in graded Rac activation across the cell length independent of

upstream effectors. Polarization and protrusion were observed in

these experiments with variations depending on the slope and

intercept of the applied stimulus and the strength of PI feedback.

Such experiments provide ideal testing ground for model

development, refinement and validation. Our approach is to first

consider the simplest hypotheses, reject those that are not

supported by experiment, and successively build up the proposed

network. Here we report in detail how models were constructed in

a step-wise process to complement and crosscheck against these

experimental observations. As the experiments also probed the

effect of PI feedback on polarization, we are able to show

agreement between theory and experiment linking GTPase and PI

dynamics. To our knowledge, this is one of the first examples of
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such a match between GTPase-PI model predictions and

observations.

Numerous models of GTPases and PIs have been proposed, but

few have been developed in tandem with experiments. (See [7] for

a recent review of qualitative models.) Models of the PI pathway

are provided in [8,9]. A model of Cdc42 in yeast cells is given by

[10,11]. Models of polarization via three interacting Rho GTPases

include [12–14]. Some of these are based on a Turing mechanism

[15] for spontaneous pattern formation. It was shown by Mori et

al. [16,17] in a reduced model with a single GTPase that rapid

polarization can be achieved by ‘‘wave-pinning’’ as in [13,14]. In

this phenomenon, bistability drives the formation of a wave of

activity that stalls due to substrate depletion. Models of this type

are attractive since they can capture both sub-threshold (bistable)

dynamics observed in [5] and noise sensitive (Turing) dynamics.

Dawes et al. [18] connected the GTPase model [13] with a model

of PI kinetics and explored the role of PI feedback. Marée et al.

[19] have refined and studied this in depth in a 2D model of a

motile cell. Numerous other models such as [8,20,21] consider

fundamental aspects of polarization without identifying specific

regulatory proteins. Some, such as [9] proposed a local excitation

global inhibition (LEGI) model for the dynamics of PI3K, PTEN,

and PIP3 and found experimental agreement in amoeboid cells.

The availability of microfluidic cell polarity data provides a new

opportunity to reconsider a variety of hypotheses in light of real

cell behaviour. The essentially one dimensional geometry of the

apparatus and direct activation of Rac, independent of upstream

components, makes these particular experiments [5] amenable to

model comparison. With this data, it is possible to revisit models

that were purely theoretical so far, test their validity, and revise

their structure. As explained below, this data quickly pointed to

flaws in network connectivity that had been assumed in previous

theoretical models, motivating the stepwise reconstruction of this

connectivity. Here we develop a sequence of polarity models,

starting with the simplest Rac-based polarization mechanism, and

proceeding to include other GTPases that are widely known to be

implicated in cell polarization and motility. For the simplest Rac-

based model, Figure 1a, we rely on our previous theoretical work

on ‘‘wave pinning’’ (WP) [16,17]. This choice is motivated by

observations [5] that cells display clearly distinct behaviours below

versus above a threshold stimulus strength, a feature that the WP

model recapitulates. Extending that work, we include interactions

with phosphoinositides. In subsequent iterations, we incorporate

the remaining GTPases Cdc42 and Rho. We focus on three

particular experimental results: 1) the presence of a temporal

bifurcation in motility response, 2) the apparent distinct functional

effects of the input signal attributes (mean vs. gradient of Rac

activation), and 3) the loss of response in some cases upon removal

of PI feedback. We also explore the previously neglected effect of

cell geometry, specifically cell aspect ratio, on polarization

behaviour.

Results

The development of the model was guided by the experimental

setup, and geared towards understanding the effects of the

experimental manipulations, namely the role of signal parameters,

phosphoinositide feedback, and length change observed in the

responding cells. We consider the membrane-cytosolic cycling of

the GTPases (Figure 2a), described in the next section. In view of

the narrow channel confinement, we approximate cell shape by a

box of length L(t), width w, and depth d(t) satisfying dvw%L as

shown in Figure 2b). The width is constrained by the channels,

and assumed to be fixed. Cell elongation affects L and d inversely

since cell volume is roughly constant over the time frame of the

experiments. The effect of depth ‘‘thinning’’ as a cell elongates

proves to be significant to GTPase membrane cycling, as described

below and in the Methods.

Equations for membrane cycling of a single GTPase
Rho-GTPases are molecular switches that exist in both

membrane-bound and cytosolic states. The membrane bound

forms are activated by GEFs and inactivated by GAPs. Inactive

GTPases are extracted from the membrane by GDIs and

distribute in the cytosol (Figure 2a). In [5], endogenous Rac was

activated by applying a gradient of rapamycin to HeLa cells that

had two constructs. One of these was a fluorescently labelled Rac-

GEF, and a second was a cell membrane anchor. Rapamycin acts

to dimerize these two constructs and localize the GEF at the cell

membrane where it can activate Rac. Our model will be

formulated to take this Rac-GEF activation stimulus into account.

As the membrane-cytosol exchange of small GTPases plays an

important role in the dynamics of these proteins, we first review

aspects of the models that account for this cycling. This

development follows [14], but emphasizes the effect of cell

elongation that was not previously considered therein. We denote

the concentration of a given GTPase by G in its active membrane

form and Gmi, Gc in the inactive membrane bound and cytosolic

forms respectively. We make the biologically reasonable assump-

tions that each Rho protein has a constant total amount, Gt, over

the timescale of the experiments and that membrane cycling

dynamics are much faster than activation/inactivation dynamics

[22]. The latter hypothesis is a convenient simplification, that is

not critical for model dynamics. As in [14], we write down a set of

three balance equations for each GTPase, one PDE for each of the

states defined above. (See the Methods for details, and Table 1 for

meanings and values of all parameters.) Briefly, Dm,Dc are

membrane and cytosolic rates of diffusion of the GTPase, dG is

GAP-mediated inactivation rate, koff is the membrane dissociation

rate, and kon the membrane association rate. IG is a GEF-

Author Summary

Cell polarization is associated with intracellular gradients
of signaling proteins such as Rho GTPases that organize
the cytoskeleton in cell motility. We previously observed
cells in microfluidic channels and studied their polarization
and motility in a simplified (nearly 1 dimensional)
geometry. There, precise gradients of chemically-inducible
molecular probes were presented to elicit gradients of
active Rac, independent of the upstream signaling. Here
we develop a set of spatio-temporal mathematical models
to account for the observed polarization behaviour of
those cells, and their threshold response to induced Rac
activity. These reaction-diffusion models for the interac-
tions of signaling proteins (GTPases Rac, Rho, and Cdc42)
and membrane lipids (phosphoinositides PIP, PIP2, PIP3)
are analyzed by a new method (‘Local Perturbation
Analysis’) that explores the effect that pulses of stimuli
have on local (global) variables, i.e. those intermediates
that have slow (fast) rates of diffusion. Together, the
models and experiments suggest that (1) spatially uniform
stimulation makes the cells more sensitive to applied
gradients. (2) Feedback between phosphoinositides and
Rho GTPases sensitizes a cell. (3) Cell lengthening/
flattening accompanying polarization can increase the
sensitivity of a cell and stabilize an otherwise unstable
polarization.

Modelling Polarization Driven by Graded Stimuli
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Figure 1. Schematics of a sequence of models explored in this paper. a) A basic single GTPase (‘‘wave pinning’’) module with crosstalk to the
phosphoinositides (PIs). The GTPase module can only polarize on its own [16], but not when connected to PIs in this way. b) As before but with an
additional passive Rho module: still no polarization possible with PI crosstalk. c) Mutual inhibitory Rac-Rho module: Polarization observed both with
and without the PI layer. d) A more complete Cdc42-Rac-Rho module that exhibits polarization both with and without PIs. Model equations are
shown in (1), (8), (16) and f1 represents the strength of PI feedback to Rac. Arrows represent upregulation and bars represent inhibition. In all cases,
proposed interactions between GTPases and PIs are taken from the literature [18,24–28].
doi:10.1371/journal.pcbi.1002366.g001

Figure 2. a) Membrane-cytosolic exchange for a single small GTPase. Activation and inactivation of membrane bound forms occur via GEF
phosphorylation and GAP dephosphorylation respectively. The inactive form can cycle on and off the membrane aided by GDI’s. b) Approximation of
cell geometry with a box of dimensions dvw%L. The width is constrained by the microfluidic channels in experiments [5].
doi:10.1371/journal.pcbi.1002366.g002

Modelling Polarization Driven by Graded Stimuli
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mediated activation rate that, we assume, depends on crosstalk. In

each of the models we discuss, we provide the explicit assumption

about the form of IG that captures the assumed crosstalk.

In view of the small thickness of the cell, we neglect gradients in

the depth direction and integrate in both depth (d ) and width (w)

directions to arrive at a 1D spatial model. Cell length is retained as

a parameter as discussed in the Methods. Adopting a quasi steady

state (QSS) assumption that cycling between membrane and

cytosol is very fast, we arrive at a model where each GTPase is

assumed to have two forms, active (G) and composite inactive (Gi).

The latter is a sum of the inactive forms Gmi and Gc (projected

from a 3D cell volume into the 1D spatial domain of the model,

described in more detail in Methods). The GEF mediated reaction

rates and ‘‘effective rates of diffusion’’ are modulated by cell

geometry/length in the equations so obtained:

LG

Lt
~IG�cc(L)

Gi

Gt

{dGGzDmGxx,

LGi

Lt
~{IG�cc(L)

Gi

Gt

zdGGzDmc(L)Gi
xx:

ð1Þ

where

�cc~
c(L)

c(L0)
, c(L)~

kon

(konz(V=L)koff

, Dmc(L)

~c(L)Dmz(1{c(L))Dc:

The parameter Dmc is a composite that weights the respective rates

of diffusion of inactive GTPase forms by the average time spent on

the membrane versus the cytosol. In [14], it was assumed that the

GEF activation reaction could access the entire composite inactive

pool Gi. In reality, this reaction can only access the membrane

bound proportion c(L)Gi. The incorporation of this feature into

the model equations (8) will have a dramatic effect as discussed in

‘Hysteresis and the role of cell length’. Derivation of these model

equations is found in Methods.

Modeling the interacting GTPases, PIs, crosstalk, and
feedback

While Turing instability is often invoked to account for

spontaneous polarization [12,20], this mechanism is not well

suited for describing polarization of HeLa cells [5] or fibroblasts

[23], which have a stable rest state and are polarizable by a

sufficiently strong graded stimulus, but not by weak signals of small

amplitude noise. In contrast, mechanisms based on Turing

instabilities are sensitive to noise of arbitrarily small amplitude.

We will refer to such cells having that property as ‘hypersensitive’.

As HeLa cells are not hypersensitive, we here investigate only

models where a threshold must be breached for a symmetry

breaking event to occur. Mathematically, this threshold type

response results from bistability.

In a spatial setting, models with bistable kinetics and diffusion

can spawn waves of activity that initiate polarization. Typically,

waves propagate into the domain from one or several initial foci.

Halting the wave is essential to lead to a polarized domain, and

this requires that the wave slows down and stops. This has been

shown [16] to occur in conservative systems exhibiting a form of

bistability, referred to as ‘‘wave pinning’’. In this setting, a

threshold based response initiates a wave and conservation leads to

the depletion of an inactive substrate, stalling the wave and leaving

regions of high and low activity separated by a narrow interface.

This is the mechanism for polarization underlying the sequence of

models discussed below. In addition to GTPases, PIs are known to

play an integral role in symmetry breaking that was investigated

experimentally in [5]. Here we describe the sequence of model

explorations that led to the model adopted for the GTPase-PI

signalling layers. We briefly describe the attributes of each model

variant, but only the final version of the model is analyzed in full

detail.

Phosphoinositides are membrane lipids that play well-known

regulatory roles for the actin cytoskeleton. Both PIP2 and PIP3

become highly expressed at the nascent front of a polarizing cell,

and they interact with small GTPases and with actin-associated

proteins. PIs are successively phosphorylated by kinases such as

PI5K, PI3K and dephosphorylated by phosphatases such as

PTEN (bottom layer of panels in Figure 1). The reaction-diffusion

Table 1. Model parameters.

Parameter Name Value Meaning

L0 20 mm Baseline cell length

Ct,Rt,rt 2:4,7:5,3:1 mM Total levels of Cdc42, Rac, and Rho

ÎIc,ÎIR1,ÎIR2,ÎIr 2:95,0:2,0:2,6:6 mMs{1 Cdc42, Rac, and Rho activation rates

a1,a2 1:25,1 mM Cdc42 and Rho half max inhibition levels

n 3 Hill coefficient for inhibitory connections

a 0:65 s{1 Cdc42 dependent Rac activation

dC ,dR,dr 1 s{1 GAP decay rates of activated Rho-proteins

IP1 10:5 mM=s PIP1 input rate

dP1 0:21 s{1 PIP1 decay rate

kPI5K ,kPI3K ,kPTEN 0:084,0:00072,0:432 mM{1s{1 Baseline conversion rates

k21 0:021 s{1 Baseline conversion rate

P3b 0:15 mM Typical level of PIP3

Dm,Dmc(L0),DP 0:1,50,5 mm2=s Diffusion Rates

Note that the parameters kon,Dc,V ,koff relating to membrane cycling of the three GTPases are not included due to their undetermined nature. The primary role of these
parameters is to determine the quasi steady state fraction of membrane attached GTPases, which we instead account for by varying the composite parameter �cc(L).
doi:10.1371/journal.pcbi.1002366.t001
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equations for the PIs are similar to those in [18,19], and given in

detail in the Methods. Proposed interactions between GTPases

and PIs for all models are drawn from literature [18,24–28]. The

functions fPI5K (R,C,r),fPI3K (R,C,r),fPTEN (R,C,r) represent

rates of phosphorylation by PI5K, and PI3K and dephosphory-

lation by PTEN and are assumed to depend on crosstalk from

GTPases, as shown schematically in Figure 1. In testing the

suitability of models described below, we studied properties both

with and without feedback to/from the PIs.

Preexisting GTPase-PI models (Model 0)
While there are many hypotheses for the crosstalk and

interactions between GTPases and PIs, the actual network at play

in any given cell type, subject to various stimulus types and

conditions is generally unknown. We first considered a theoretical

model proposed by Dawes et al. [18] (not shown) and its

modification, studied in detail by Marée et al. [19]. This pre-

existing model couples Cdc42-Rac-Rho GTPase dynamics with PI

exchange and bidirectional feedback. Mutual inhibitory feedback

between Cdc42 and Rho is assumed, as well as positive feedback

from Cdc42 to Rac and from Rac to Rho. This was a reasonable

first candidate for a model of HeLa cell polarization and motility.

In both [18,19], stimulus was assumed to flow via Cdc42

activation to other parts of the signaling pathways. However, the

experiments reported by [5] shortcut the natural signal flow by

directly activating a Rac GEF.

Incorporating this simple change in these previous models led to

a surprising prediction that cells so stimulated should polarize in

the wrong direction (opposite to the stimulus gradient). Thus,

experimental data allowed us to reject this candidate pre-existing

model. In hindsight, the reason for this is clear. In the original

models, traversing the circuit from Rac to Rho to Cdc42 back to

Rac encounters only a single negative feedback. Thus a mild

stimulus-induced asymmetry in the Rac profile feeds back

negatively onto itself. As this feedback is the source of amplifica-

tion, it overpowers the original signal and leads to polarization in a

direction opposing the initial stimulus. In view of the observation

that HeLa cells polarize in the correct direction (up the gradient of

Rac activator), we discarded these previous full models and

decided to reconstruct a new model from the ground up. We use

evidence from [5] and the broader literature on polarization as a

basis to support or discard each model.

In the following sequence of models, we first asked whether a

single GTPase coupled to PIs (Model 1) could account for major

features of the data. We find that a single GTPase module can

account for threshold based polarization with and without PI

feedback. If PI feedback is added, the polarization capability is

enhanced. However it is known that Cdc42 and Rho also

participate in polarization. We next discuss Model 2 where Rho is

passively coupled to the single GTPase polarization model (Model

1). For reasons discussed previously, we reject Models 1,2 as

incomplete. In Model 3, a modification of an existing model in

[13], Rac and Rho are assumed to inhibit each other. This model

has the desired polarization properties, but it omits Cdc42, widely

believed to be one of the master regulators of cell polarity/motility

[29,30]. Model 4, which is the subject of the remainder of the

paper, maintains the structure of Model 3 while incorporating

Cdc42 based on extensive background cell biology literature.

Cooperative Rac (Model 1) with passive Rho (Model 2)
To assemble a new model, we started with the most basic

relevant single-GTPase model due to [16], to which we added the

appropriate feedback. We here identify the single GTPase with

Rac, the target of chemotactic stimuli in the experiments of

interest. The model for a single GTPase is a well studied

cooperative feedback model whose mathematical workings (‘‘wave

pinning’’) were described in [16,17]. Adopting the same assump-

tions, we take Eqs. (1) with G:R representing Rac, and Rac

feedback onto its own GEF-induced activation as

IR~k0z
nR2

K2zR2
: ð2Þ

(k0,n,K are constants representing basal activation, feedback-

induced activation, and level of Rac for a half-saturated feedback

activation via GEF.) In this model, a slow active form and fast

inactive form interconvert. The active form feeds back onto its

own production through cooperative binding. Inactivation is a

first-order process. As discussed in [16], this system exhibits

threshold behaviour, i.e. is consistent with a polarizable (rather

than hypersensitive) cell in the appropriate parameter regime.

We connected the basic GTPase model to the model for PIs as

in Figure 1a. We used Eqn. (16) with feedback terms

fPI3K~
kPI3K

2
1z

R

Rt

� �
, fPI5K~

kPI5K

2
1z

R

Rt

� �
, ð3Þ

and take fPTEN~1. (Here k’s are phosphorylation rates, and Rt is

total level of Rac in the cell.) We also assumed that PIs affect Rac

dynamics by modifying (2) to

IR~k0 1zf1
P3

P3b

� �
z

nR2

K2zR2
, ð4Þ

where P3bw0 is some constant reference level of PIP3 and f1

represents the strength of PIP3 feedback to Rac activation. With

parameters for the GTPase equations taken from [16]

(k0~0{:05, n~1, K~1, d~1, Rt~2:27) and PI-related

parameters in Table 1, this model exhibits wave pinning based

polarization for a range of feedback values f1[½0,1� as required

based on [5]. However, it is widely recognized that Cdc42 and

Rho also participate in cell polarization, so we also consider a

variety of possible connectivities that include these components

along with Rac.

To avoid introducing too many features at once, we first

consider a situation where Rac is a primary regulator that directs

Cdc42 and Rho. Figure 1b illustrates Model 2, given by (1), (2), (6),

(7), (16), where Rac directs Rho, both of which affect the PIs. To

understand how this model behaves, first consider what happens in

the absence of PIs. In that case, the Rac module is identical to

Model 1 and the Rho module is ‘‘enslaved’’ to it. Rac polarizes

and Rho sets up a complementary profile due to the negative

feedback link. Now including PIs merely introduces a secondary

positive feedback.

An important flaw in this model is that in the absence of PI

feedback, Rho cannot influence Rac. While they are not

specifically probed in the experiments that motivate these

investigations, Rho and Cdc42 are observed to be more than

passive regulators enslaved to Rac [29–31]. In this model, PI

feedback between Rac, PIP3, and Rho does form a complete

circuit where Rho can influence Rac through PIP3. However it is

observed in [5] that inhibition of PI3K, which reduces PIP3 levels,

does not destroy polarization. This suggests that a secondary

feedback mediated by PIs is not the primary circuit linking the

three GTPases. Thus, we do not consider Model 2 or any similar

models where Rac unilaterally polarizes and directs the remaining

GTPases as realistic. Additional experiments where Cdc42/Rac

Modelling Polarization Driven by Graded Stimuli
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are experimentally inhibited or knocked out would provide a test

of the hypothesis that they are members of a complete GTPase

circuit as opposed to passive regulators driven by Rac. In the

following iterations we consider minimal models that contain

complete circuits.

Rac-Rho mutual inhibition model (Model 3)
We adapted Model 2 by revising the number and types of

feedback arrows to incorporate mutual Rac-Rho inhibition, as

shown in Figure 1c. Without the PIs, this model recapitulates a

first case studied in [13]. Here the model equations are (1) with

G~R,r and

IR~
ÎIR

2 1z(
r

a1

)n

� �zÎIR

P3

P3b

, ð5Þ

Ir~
ÎIr

2 1z(
R

a2
)n

� � : ð6Þ

(The constants a1,a2,P3b are typical values of Rho, Rac, PIP3

associated with a significant feedback on activation.) The second

term in IR represents PI feedback to Rac. In this case, we use Eqs.

(16), (3) and define

fPTEN~
kPTEN

2
1z

r

rt

� �
, ð7Þ

to describe PI kinetics outlined in Figure 1c.

While this model appears to be schematically similar to Model

2, it incorporates an important structural difference. The

bistability necessary for wave pinning to occur results from mutual

inhibition (two negative feedbacks) as opposed to cooperative

positive feedback. This is a natural next step in light of a result long

posited by Thomas and recently proved [32] that bistability can

result from networks with an even number of negative feedbacks

while an odd number tends to yield limit cycles and other non-

equilibrium dynamics. Reviewing Models 1–3, note that Model 1

had no negative feedbacks. The GTPase portion of the Model 2

effectively consisted of 0 feedback loops as well. Since Rho was

slaved to Rac the inhibitory link does not act as a feedback, and

the circuit involving PIP3 is a positive feedback loop. In model 3,

the presence of 2 negative feedback loops led to the required

bistable behaviour as discussed in [13].

Model 3 exhibits the following minimal required features to

account for basic experimental observations on HeLa cells. (1) It

has regimes with bistable kinetics needed for polarizability (as well

as additional regimes of hypersensitivity in the Turing-instability

sense). (2) It exhibits complementary localization of Rac and Rho,

known to be related to protrusion and retraction respectively. This

allows us to account for both ‘‘frontness’’ and ‘‘backness’’ cell

attributes. (3) These behaviours occur both in presence and

absence of PI feedback with all other system parameters held fixed,

but can be ‘‘tuned’’ by the magnitude of that feedback.

Rac-Rho-Cdc42 model with phosphoinositide feedback
(Model 4)

In principle, Model 3 would comprise the minimal required

model. For completeness, we added Cdc42, as shown in Figure 1d,

given its importance as a master regulator [29]. However, results

of Model 4 (described further on) also hold for Model 3.

We introduce Cdc42 with four criteria in mind. First, we sought

interactions that lead to co-localization of Cdc42 and Rac that are

complementary to the Rho profile. Second, we preserved the

essential construction of two inhibitory connections of Model 3 to

retain its bistable character. Third, we added a minimal number of

overall GTPase interactions consistent with biological literature.

Fourth, none of the GTPases is enslaved to the others. The model

depicted in Figure 1d is the minimal possible model that satisfies

these criteria. Removal of any connection or reversal of any

feedback from positive to negative (or vice versa) destroys one or

another of the required features, or requires additional compen-

sating loops to avoid doing so. (Although a reversal of all three

GTPase connections restores the required behaviour, it is contrary

to biological literature showing positive feedback from Cdc42 to

Rac.) We coupled the GTPase equations to the PI equations (16)

with Eqs. (3), (7). The resulting model is described by (1) with

G~C,R,r and

IC~
ÎIC

1z r=a1ð Þn

 !
, IR~ ÎIR1zÎIR2f1

P3

P3b

zaCzS(x,t)

� �
,

Ir~
ÎIr

1z R=a2ð Þn :

ð8Þ

The parameter f1 in (8) represents the strength of the feedback from

PIP3 to Rac as shown in Figure 1d. The Rac-GEF parameters ÎIR1,

a, f1, along with signal S will be the target of further analysis with all

other parameters left fixed. A more complete discussion of the forms

of the GEF kinetic terms is given in [13] but it is important to note

that n§2 is required for bistability. Unless otherwise stated, this is

the model we refer to from here on.

The GTPase part of this model consisting of Eqs. (1), (8) exhibits

the bistability necessary for wave pinning to occur. To see this,

consider the case of no PI feedback (f1~0) and no signal (S~0)

with �cc~1, dG~1. Set Gi at its resting steady state value Giss and

define �GG~Giss=Gt. Now solve Eqs. (1), (8) for G with �GG fixed as a

parameter. Then it is straightforward to show that

C~
R{�RRÎIR1

�RRa
, R~a2

�rrÎIr

r
{1

 !1=n

,

and

�RR �CCaÎIC

1z r
a1

� �n ~a2 �rr
ÎIr

r
{1

 !1=n

{�RRÎIR1: ð9Þ

Define y1(r),y2(r) as the Rho-dependent expressions on the left

and right hand sides of Eqn. (9), respectively. Then by plotting

both together (with parameters in Table 1) in the y{r plane it can

be shown that two stable steady states separated by an unstable

repeller can exist for n§2. Furthermore, for suitable parameters,

this can be made true for a range of values of Gi. Thus the

necessary conditions for wave pinning [16] are satisfied.

Parameter values
The complete model contains numerous parameter values

(Table 1). Many of their values are based on previous literature.

Modelling Polarization Driven by Graded Stimuli
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We summarize the default values of basic rates and diffusion

coefficients below, and then explain the procedure used to find

interesting ranges of behaviour of the model when other key

parameters were varied.

Consistent with [13,14,18], we take Dm~0:1mm=s2,

Dmc(L0)~50mm2=s2. With assumed values of the necessary

parameters, koff can be computed using

koff ~
L0kon

V

(Dm{Dmc(L0))

(Dmc(L0){Dc)
, ð10Þ

completing the parameter set associated with membrane cycling.

Given the undetermined nature of many of these parameters, we

instead vary the composite parameter �cc described in Methods,

which represents the bulk effect of length variation in the model

cell as it polarizes. GTPase crosstalk parameters are modifications

of [14] to fit our system. PI parameters are a modification [18] by

Marée et al. [19].

To gain insight into how parameter variations affect model

behaviour, we utilized the ‘Local Perturbation Method’ described

briefly in the Methods. This considers the stability of a

homogeneous steady states against localized delta-function-like

perturbations. The idea of the method is to replace the system of

PDEs by approximating ordinary differential equations (ODEs) for

local versus global variables (according to slow versus fast-diffusing

intermediates). Then we can use bifurcation diagrams to explore

the transitions between different regimes of behaviour. The LPA

method allows us to detect both ultrasensitive and polarizable

behaviour, a distinction of particular interest here.

With the above preparation, we now explore how specific

aspects of the stimulus, the assumed feedback structure, and cell

geometry affect the dynamics of the model 1D cell behaviour.

Figure 3 maps out a typical parameter space structure for the

discussed models. In the coming sections we discuss the relevance

of each of these parameter regions and the bifurcations that occur

between them.

Stimulus magnitude and gradient
Consider a cell, initially at rest, characterized by a low

homogeneous steady state (HSS) of GTPase activity in Region II

of Figure 3. Let the applied stimulus gradient be represented by

S(x,t)~s0zs1x. Recall that such gradients could be formed and

maintained in experiments described in [5]. As in the experimental

stimulus, we assume that this produces an internal Rac-GEF

gradient. (A similar analysis can be performed with a Cdc42-GEF

signal.) To polarize the cell, at least part of the cell domain must be

elevated to Rac activity level above the threshold shown (dotted) in

Region II of Figure 3. When this happens, that part of the cell

evolves to a high Rac activity level (highest solid line, Region II),

and, by virtue of diffusive coupling, creates a wave of activity that

invades nearby portions of the cell. The wave stalls and leads to a

polarized cell for parameter values in Region II (Figure 4, left).

Both the signal strength (s0) and gradient (s1) contribute to the

ultimate response, but each plays a slightly distinct role. s1 serves

to produce an internal asymmetry in the GTPase profile and s0

augments the size of the gap that has to be breached to induce

polarization. In (8) the parameter s0 is directly added to ÎIR1, the

bifurcation parameter in Figure 3. Thus, increasing s0 is

equivalent to moving the state of the model cell to the right on

that bifurcation diagram. This reduces the gap between the stable

and unstable states and consequently the size of the perturbation

required to induce polarization. Thus, s0 effectively controls the

sensitivity of the cell to heterogeneous stimuli. s1, in contrast,

produces the actual asymmetry necessary for the system to

polarize. Numerical simulations of the full PDE system confirm

this prediction of the reduced system. This sensitivity relationship

and the functionally distinct roles of s0 and s1 recapitulate the

experimental observations in [5].

In the graded-stimulus experiments, a bifurcation occurred after

some time. Stimulated cells had a long nascent period followed by

an abrupt change to a much more active state. This suggests a

temporal build up of Rac-GEF which sensitizes the cell. The

resulting bifurcation would then lead to polarization. Other

experiments and irreversibility of the stimulus-induced GEF

activation [5] support this hypothesis.

Exploring the feedback from Cdc42
We asked next how the positive feedback from Cdc42 to the

Rac-GEF pathway affects model cell dynamics. This feedback is

controlled by the parameter a. Figure 5 summarizes changes in the

bifurcation structure of the reduced (LPA) model as this parameter

is varied. We first decreased a below 0.55 and noted that pattern

forming capabilities of the system are completely lost.

Next, we increased this parameter. As expected, an increase in

the strength of this positive feedback serves to sensitize the cell, i.e.,

increases the extent of the ultrasensitive Region III. For example,

while for a~0:55 this region spans roughly 0:8vÎIR1v1:1
(bounded by intersections of thinnest monotonic curve with

smallest ellipse in Figure 5), when a~0:75, Region III has

expanded to 0:5vÎIR1v1:2. As a is further increased, Region II is

Figure 3. Basic ‘‘default’’ Local Perturbation Analysis (LPA)
bifurcation diagram obtained using the LPA approximation of
the PDEs (1), (8) using the reduction (18) (described in the
Methods). Shown is steady state active (local) Cdc42 (Gl~Cl ) with IR1,
the basal Rac GEF activity level, as bifurcation parameter. Here f1~0 (no
PI feedback), a~0:55 and all other parameters as in Table 1. The
monotone increasing (blue) curve represents the HSS of the original
system and is stable to homogeneous perturbations. Elliptical (red) arcs
represent additional equilibria found in the LPA-system. Stability to
small heterogeneous perturbations is indicated by solid lines vs
instability shown by dotted lines. Region I is insensitive to perturba-
tions, II is polarizable with sufficiently large perturbations, III is
hypersensitive (Turing unstable), IV is insensitive but overstimulated.
Similar results are seen when plotting Rl or rl on the vertical axis.
doi:10.1371/journal.pcbi.1002366.g003
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squeezed into the negative ÎIR1 half plane, where it is no longer

biologically feasible. Thus, Turing instability characterized by

Region III takes over larger portions of the parameter plane. For

aw0:65 (for example when a~0:75 in Figure 5), a new regime

forms between the original Regions III and IV of Figure 3. Here

we find a new bistable region, with lower steady state (shown in

red), higher one (blue) and unstable repeller (dotted red) in the

approximate range 1:15vIR1v1:25. The size of this range grows

in size as a is increased. Unlike Region II of Figure 4 where a pulse

of activation is needed to polarize, this new bistable region requires

a pulse of inactivation (reducing the HSS below the dotted elliptical

arc) to obtain polarization. (This prediction was verified with the

full PDE system.)

PI-feedback
Experimental manipulations in [5] addressed the effect of a

PI3K inhibition on the cells’ response to graded stimuli. We used

the full (9 PDE) model to address these observations. Having

understood the behaviour of GTPase layer of signaling using the

above analysis and simulations, we now turn to the full GTPase-PI

feedback model. The parameter f1 is used to tune the level of that

feedback as shown in Figure 1. Recall that PIs are membrane-

bound lipids. Their rates of diffusion are neither as fast as cytosolic

GTPases, nor as slow as the membrane-bound GTPase forms. To

gain some intuition using the LPA method, we therefore

conducted two separate tests. We first treated the PI variables

P1,P2,P3 as fast (global) variables. The left panel of Figure 6 shows

the effect of increasing the PI feedback parameter f1 in this case.

As seen, this produces a direct linear shift of the entire bifurcation

plot to the left. This can be explained by the fact that in the

infinitely fast diffusion limit for PIs, the feedback term ÎIR2f1P3=P3b

is spatially homogeneous, and therefore simply increments the

bifurcation parameter ÎIR1. This can be interpreted as sensitizing

the cell: for a given set of parameters, as f1 increases, the critical

asymmetry required to produce polarization is reduced.

We next investigated the approximation that PIs are slow (local)

variables, as shown in the right panel of Figure 6. While features of

the two panels (global vs local) are not identical, qualitative aspects

and, surprisingly, the dominant feature of leftward linear shift is

preserved. This model prediction suggests that the primary role of

PIs is to act as a global mechanism for increasing sensitivity.

To check this prediction, we carried out simulations of the full 9

PDEs under systematic variation of the two parameters f1 and s0.

Results, shown in Figure 7 reveal a linear boundary separating

bistable behaviour (‘‘Region II’’, shaded grey) from ultrasensitive

behaviour (‘‘Region III’’, white). The linearity of this two-

parameter bifurcation plot is consistent with the observed linear

shift in Figures 6. Further, the total rate of shift in Figures 6 with

respect to f1 and the slope of the bifurcation line in Figure 7 are

close to ÎIR2, the parameter that controls the relative strength of this

feedback. The combination of these three facts strongly suggests

that the primary role of PI feedback is to provide global sensitivity.

This feature is consistent with recent experiments in [5], and

provides one of the strongest predictions of the model.

Hysteresis and the role of cell length
Experimental observations in [5] reveal that as a cell polarizes

and elongates in the confined channels, its overall height changes

inversely to its length. This feature was introduced into our models

through volume conservation. Recall that the composite inactive

form Gi was introduced under a QSS assumption as a weighted

sum of membrane bound and cytosolic inactive forms. These

weights are explicitly linked to the geometry of the cell (details in

the Methods) and can be explored consequently. As the model cell

lengthens and flattens, the surface area to volume ratio increases.

Given the form of c(L) in our equations, this leads to a larger

proportion of the inactive GTPase in the membrane bound form,

resulting in two changes: (i) the composite form diffuses more

slowly, and (ii) the GEF activation reaction can access a greater

portion of inactive GTPase. However, whereas (i) has little effect,

Figure 4. Kymographs (tx-plots) of active Cdc42 concentration for the full PDE system with no PI feedback (f1~0), and parameters

as in Figure 3. Left panel: ÎIR1~0:5mMs{1 (Region II in Figure 3). Patterning is induced by a large local perturbation applied to active Rac at x~0.

Identical behaviour is seen when this perturbation is applied to active Cdc42. Right panel: ÎIR1~0:9mMs{1 (Region III in Figure 3). Patterning is
induced by random noise of size 10{5 in the initial conditions. Similar (complementary) kymographs of Rac (Rho) are obtained (not shown).
doi:10.1371/journal.pcbi.1002366.g004

Figure 5. Effect of feedback from Cdc42 to Rac. LPA bifurcation
diagram of (1) as in Figure 3, showing the effect of increasing a values.
For larger a values, the model is more sensitive to heterogeneous
stimuli.
doi:10.1371/journal.pcbi.1002366.g005
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due to the relative insensitivity of the bistable and Turing unstable

regimes to diffusion in the PDE system, (ii) has a substantial effect.

As shown in Figure 8, increasing cell length tends to sensitize the

model cell. This effect is similar to the effect of increasing either

Cdc42 or PI feedback to the Rac-GEF pathway ( a, or f1). Meyers

et al. [33] similarly considered the role of cell depth/length in

polarization with a similar result that larger surface area to volume

ratios lead to larger proportions of GTPases being in the

phosphorylated active form. However they considered GEF’s to

be membrane bound and GAP’s to be cytosolic where we consider

both to be membrane bound. In either case, the end result is the

sensitization of a cell as it flattens.

An additional feature seen here is the reduction and subsequent

elimination of hysteresis as �cc is increased. This hysteresis is present

when the loop of steady states is entirely contained in the right half

plane and a stable region for low values of ÎIR1 is present as with

�cc~1. We refer to this as hysteresis for the following reason.

Consider, first, the following experiment with a resting cell of

some fixed length. If �cc~1, then the cell state is in the stable region

(e.g., point a on Figure 8), where no heterogeneous signal can lead

to polarization. Apply a signal of the form S(x,t)~s0(t)zs1x

where s0(t) is an increasing function of time. This would be the

case for a signal that cumulatively builds up over time. The

buildup will cause the model to become increasingly sensitive to

the applied asymmetry s1 until it becomes sufficiently sensitive to

respond/polarize. Graphically, the cell moves to point b and

subsequently c of Figure 8 upon polarization. Once polarized, the

asymmetric component of the signal can be turned off (s1~0) and

Figure 6. Effect of PI feedback to Rac. LPA bifurcation diagrams for (1) as in Figure 3, with a~0:75 and multiple values of f1 . Left panel: PI
variables treated as fast (global) LPA variables. Right panel: PI variables treated as slow (local) LPA variables. Note the simple linear leftwards shift as f1

increases in both panels.
doi:10.1371/journal.pcbi.1002366.g006

Figure 7. Two-parameter bifurcation plot for feedback from PIs
to Rac (f1) versus stimulus strength s0 obtained via batch
simulation of the full PDE system. a~0:75s{1 , and other
parameters as in Table 1. The grey region is bistable and the white is
Turing unstable. The linearity of this bifurcation curve is both
qualitatively and quantitatively consistent with the linear shift of the
bifurcation diagrams seen in Figure 6.
doi:10.1371/journal.pcbi.1002366.g007

Figure 8. Effect of cell length: LPA bifurcation diagram with
f1~0, a~0:55s{1, showing two values of �cc:c(L)=c(L0). As �cc is

increased, the stable Region I of Figure 3 at low ÎIR1 values vanishes,
eliminating the hysteresis associated with the stable to bistable
transition.
doi:10.1371/journal.pcbi.1002366.g008
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the cell will stay polarized. As the background signal is washed out

(s0 reduced and the state shifts leftwards on Figure 8), polarization

will be maintained until the cell falls off the �cc~1 ellipse at point d
and again takes on a stable HSS at point a. The state trajectory

would follow the path abcda on Figure 8.

Interestingly, in addition to sensitizing the model, increasing

length L also removes hysteresis by pushing part of the loop into

the left half plane and removing the stable region. A similar feature

is seen in Figure 5 for a (and for other parameters we explored, not

shown). However geometry/length is inherently a dynamic

quantity whereas other parameters could be considered static on

the time scales considered. So while genetic diversity in a host of

parameters could play a role in the variability of behaviours

among a population of cells or across cell lines, this length

dependent removal of hysteresis can temporally stabilize an

otherwise unstable polarization in a single cell.

Now consider the same experiment but with a cell capable of

length change. Begin with a stable cell in a resting state (point a)

with the same cumulative stimulus S(x,t). Again, after some point

the cell will polarize (moving through point b to point c as before).

As discussed previously, a static cell will lose polarization upon

removal of this stimulus. In a dynamic cell however, such length

change effectively shrinks or eliminates the stable region and

associated hysteresis. When the cell lengthens, its state moves from

c to e and, upon the removal of the stimulus, to f . Thus, if the

onset of polarization causes cell lengthening, the geometric effect

described here affects internal signaling to stabilize the polariza-

tion, as indicated by the path abcef on Figure 8.

Discussion

While the ultimate model we considered is a modification,

extension, and rederivation of previously published models, it

brings several new ideas and new results: first, all previous papers

were theoretical, whereas here we were able to reassess details of

the models in direct comparison with experimental data. Second,

while previous models could account for polarization via Cdc42

stimuli, they produced incorrect predictions - thus invalidated - in

view of that data, mandating a revision of the previously proposed

GTPase connectivity. Third, using the novel LPA analysis, we

have shown how the parametrization and analysis of behaviour

could be accomplished with a novel analytic tool. Fourth, we

provided here a hypothesis for how environmental factors can

influence the response threshold through the GEF pathway. Fifth,

and finally, we showed how the ratio of surface area to volume of

the cell can influence the signalling.

We found that Model 4 is capable of qualitatively capturing

many aspects of symmetry breaking and polarization in HeLa cells

observed in microfluidic gradient generation experiments. We

have included only features necessary to describe such observa-

tions. To aid the process of model development, model analysis,

and parametrization, a novel analytic approximation technique,

Local Perturbation Analysis, was introduced and applied. This

proved to be fruitful as the model helped interpret experimental

results and provided non-trivial insights into the behaviour of the

experimental system.

The experiments were designed so as to allow convenient

simplifications in modelling. The geometry of channels makes a

1D spatial representation both relevant and accurate. The tightly

controlled gradient stimulus makes the assumption of (linear)

signal shape appropriate. Finally, the stimulus bypasses a number

of upstream signalling components and directly targets the Rac-

GEF, making the input to the model clear and direct. Through

these simplifications, we have produced a model that is both a

reasonable representation of the system, and numerically and

analytically tractable. This allowed for qualitative comparisons

between model and experiment.

Because of the unique form of stimulation (via Rac, not Cdc42

activation), we could not directly use previously developed

GTPase-PI model that had been tuned to stimulus inputs via

Cdc42 GEFs. Rather than tinkering with that model we developed

the new version from the ground up, proceeding from the simplest

bistable GTPase module. A sequence of models involving one,

two, or three GTPases with and without PI feedback were

developed, allowing us to identify models with the minimal

required capabilities. We showed that although the simplest model

(with a single GTPase coupled to PIs driving polarization through

positive feedback) does reproduce polarization (via ‘‘wave-

pinning’’) it is less suitable than models based on mutual inhibition

since it does not incorporate the remaining GTPases, Cdc42 and

Rho in the polarization process. In terms of complexity, the final

variant (Model 4) consisting of three GTPases is a minimal

mutual-inhibition model that mimics the typically observed

GTPase localization behaviour, and accounts for the observed

response to PI feedback tuning.

We investigated the roles of stimulus mean and gradient,

feedback, as well as cell geometry using Model 4. Both full

simulations of the model PDEs as well as bifurcation analysis of the

LPA reduction provided insights. We found that signal mean could

affect overall cell sensitivity while signal gradient drives the

asymmetries needed to overcome a threshold for polarization.

Further temporal buildup of Rac-GEF that results from a

prolonged exposure to stimulus can account for bifurcations

observed experimentally. This leads to the idea that that cells

become increasingly sensitive with sustained stimulus, and is

consistent with experiments. As far as the role of feedback between

PIs and GTPases, we found that removal or reduction of PI

feedback reduces sensitivity of the model cell to applied stimulus

gradients. This, along with matching experimental results,

supports the idea of feedback between PIs and GTPases (as

opposed to PIs acting upstream of GTPases). Finally, we also

found a role for changing cell geometry. When the cell lengthens,

an increase in its surface area to volume ratio can remove

hysteresis. This suggests that such purely geometric effects could

stabilize otherwise unstable polarizations.

Limitations of the model include the absence of the cytoskeletal

network, and possible feedback to and from that layer. In [19], we

have shown that dynamic cell shape in 2D (top-down view of the

cell) can feed back onto the internal biochemistry. Probing the

multiple feedbacks and interactions in a similar 2D computational

platform could provide new insights. In order to extend this work

to other settings, it is important to similarly probe the Cdc42-GEF

and/or Rho-GEF pathways (both experimentally and with a

similar model) to more fully understand feedback to and from

other GTPases. While the model was developed in the context of a

specific cell type, many of its characteristics are observed in other

cell lines. The model reductions and LPA approximation are also

applicable to other settings. As more data regarding these types of

signalling networks becomes available, these approaches will speed

model development and aid in understanding the structure and

dynamics of such networks.

Methods

Experiments
Experiments were performed by methods described in [5].

Briefly, constructs were introduced into HeLa cells, (a cytoplasmic

YFP labeled TIAM1, a Rac GEF, conjugated to FKBP (YF-
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TIAM1) and Lyn11-FRB (LDR) that acts as membrane anchor) to

directly activate Rac independent of upstream effectors [34].

HeLa cells were introduced into microfluidic chambers and

allowed to settle (3–4 h). Linear gradients of rapamycin were

created and maintained by actuation of flow in the microfluidic

system. (The rapamycin dimerizes the constructs and leads to

membrane-associated Rac activation.) Cells were imaged and

observed over several hours, and classified according to initial and

final polarization states. The PI3K inhibitor LY294002 was used

to determine the effect of reducing feedback from PIPs to the

GTPases.

Model development and software
Models were formulated to describe the dynamic behaviour of

these cells in several stages, as described in the main text. Detailed

equations are provided in the following sections. Bifurcation

diagrams were produced using MatCont [35], a numerical

continuation package designed in MatLab (MathWorks). The full

set of partial differential equations (PDEs) for each model were

simulated using an implicit-diffusion explicit-reaction scheme with

100 grid values. Example PDE simulations are seen in Figure 4.

Derivation and reduction of the GTPase equations
In general, we consider up to three GTPases: Cdc42, Rac, and

Rho, each of which is assumed to have three forms. Rather than

writing all 9 PDEs, we here provide the form for a given GTPase,

using the notation G to represent any one of Cdc42, Rac, and

Rho. Let G (Gmi ) denote the level of active (inactive) membrane

bound GTPase and let Gc denote its cytosolic form. The total

amount of GTPase in all these forms, Gt, is assumed to be constant

over the domain on the timescale of the experiments. Based on the

schematic shown in Figure 2a), we write the set of equations

LG

Lt
~IG

Gmi

Gt

{dGGzDmDG,

LGc

Lt
~koff Gmi{konGczDcDGc,

LGmi

Lt
~{IG

Gmi

Gt

zdGG{koff GmizkonGczDmDGmi,

ð11Þ

where Dm,Dc are membrane and cyosolic rates of diffusion, dG is

GAP-mediated inactivation rate, koff is the membrane dissociation

rate, and kon the membrane association rate. IG is a GEF-

mediated activation rate and depends on crosstalk assumed in the

specific models discussed.

Based on the 1D experimental geometry and controlled

stimulus, it is reasonable to neglect gradients in all but the length

direction. Define a 1D projection of the variable Gc as

Gpc(x)~

ðw

0

ðd

0

Gc(x,y,z)dzdy&wdGc(x), ð12Þ

where Gc is approximated as nearly uniform across the width and

depth directions. Physically, GpcDx represents the number of

molecules in a slice of width Dx within the cell. It follows that

LGpc

Lt
~wdkoff Gmi{konGpczDcDGpc: ð13Þ

As L (but not d ) is directly observable experimentally, we rewrite

wd~V=L to eliminate the less readily measurable cell depth.

We now invoke the assumption that cycling between membrane

and cytosol is very fast to make a quasi steady state (QSS)

assumption. Then the fractions of the inactive form on the

membrane and in the cytosol are, respectively, c(L)~
kon=(konz(V=L)koff ) and 1{c(L). We now define a composite

inactive form Gi by

Gi~GmizGpc, Gmi~c(L)Gi, Gpc~(1{c(L))Gi ð14Þ

and an ‘‘effective diffusion constant’’

Dmc(L)~c(L)Dmz(1{c(L))Dc: ð15Þ

The parameter Dmc is a composite that weights the respective rates

of diffusion of Gmi and Gpc by the average time spent on the

membrane versus the cytosol. With this reduction, we reduce the

system of three equations (11) to a system of two equations in one

space dimension and obtain Eqs (1). The normalization factor

c(L0) has been introduced to simplify parameter identification. We

henceforth use the notation �cc:c(L)=c(L0).

Phosphoinositide equations
Let P1,P2,P3 represent the phosphoinositides PIP, PIP2 and

PIP3. The interconversions of these are shown in bottom layer of

each panel in Figure 1. We incorporate the feedbacks to

phosphorylation by PI5K, and PI3K, and dephosphorylation by

PTEN in the functions fPI5K (R,C,r),fPI3K (R,C,r),fPTEN (R,C,r).
The set of equations adopted for the PIs are similar to those in

[18,19],

LP1

Lt
~IP1{dP1P1zk21P2{fPI5K (R,C,r)P1zDPP1xx,

LP2

Lt
~{k21P2zfPI5K (R,C,r)P1{fPI3K (R,C,r)P2z

fPTEN (R,C,r)P3zDPP2xx,

LP3

Lt
~fPI3K (R,C,r)P2{fPTEN (R,C,r)P3zDPP3xx,

ð16Þ

IP1 is a constant source of PIP, and dP1 a constant rate of decay.

All PIs are assigned the same rate of diffusion, DP.

Local perturbation analysis (LPA)
We briefly outline the LPA method first introduced in [36]. The

method simplifies the system of PDEs by considering the limit of

infinitely fast diffusion of inactive GTPases (Dmc??) and

infinitely slow diffusion (Dm?0) of the active GTPases. Under

this limit, the full system of PDEs can be reduced to a system of

ODEs that provide information about the initial growth of

perturbations. This diffusion limit is particularly relevant to small

GTPases where rates of diffusion of cytosolic and membrane

bound forms vary by 2{3 orders of magnitude.

Now consider a small perturbation that leads to localized high

activation of the GTPase (square pulse in Figure 9). In the given

diffusion limit, the active form G will take on a local behaviour

near the pulse, and some uniform global behaviour far away. We

denote those levels by, respectively, Gl (local) and Gg (global) as

indicated in Figure 9. In the limit Dm?0 these two hardly interact.

In contrast, in the Dmc?? limit, the inactive form Gi will take on

a purely global behaviour Gig, distributing the effect of the
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perturbation instantly. The PDE system (1) can then be

approximated by the set of ODE’s

dGl

dt
~IG(Gl ,Gig){dGGl ,

dGg

dt
~IG(Gg,Gig){dGGg,

dGig

dt
~{IG(Gg,Gig)zdGGg,

ð17Þ

for some initial time period until the perturbation is no longer

localized. Applying the conservation of each GTPase and

assuming the perturbation to be small in size yields

GgzGig&GgzGlzGig~Gt=L. In this case Gig can be elimi-

nated, leading to

dGl

dt
~IG(Gl ,Gt=L{Gg){dGGl ,

dGg

dt
~IG(Gg,Gt=L{Gg){dGGg:

ð18Þ

A bifurcation analysis of the reduced ODE system provides clues

as to how a localized perturbation will evolve over time in the PDE

system. Even though the two mathematical structures are distinct,

the large disparity in the true diffusion rates makes the LPA

reduction a good approximation.

The bifurcation diagram in Figure 3 shows the results of this

method applied to the GTPase system with no PI feedback (f1~0).

In this case the system of 6 PDE’s reduces to 9 ODE’s (3 for each

GTPase) and, using conservation, further reduces to 6 ODE’s (2

for each GTPase). The blue curve represents the steady states of

the reduced system where Gl~Gg. This is a solution of the well

mixed system. It is also a homogeneous steady state (HSS) of the

original PDEs that corresponds to a spatially uniform ‘‘rest state’’

of a cell before a stimulus (local pulse) is applied. Red curves

represent additional states that can be reached by a highly

localized patch while the bulk of the cell remains at its HSS.

Dashed (solid) lines indicate that the state is unstable (stable) to

arbitrarily small localized perturbations. While the details of the

patterned states are not depicted in this type of bifurcation plot,

the qualitative behaviour of the rest state and its response to a

pulse can be seen.

Four distinct parameter regions are found: insensitive (I),

polarizable (bistable) (II), ultrasensitive (Turing unstable) (III),

and overstimulated (IV). Cells with states represented by Region

(I) do not respond to a pulse stimulus, and return to the rest state

rather than polarizing. Cells with state in Region (IV) have a

uniformly high level of active GTPase throughout, and cannot

polarize - they might typically flatten and protrude in all

directions, but retain their uniform GTPase distribution. Region

III represents cell states wherein polarization can occur

spontaneously, or in response to noise of arbitrarily small

magnitude. Finally, Region II represents cells that require a

heterogeneous stimulus with a sufficiently asymetric profile in

order to polarize. That is, the stimulus must be sufficient for part

of the cell to breach some threshold(depicted by the dotted red

elliptical arc).

Mathematically, these observations can be inferred from

Figure 3 as follows. In the insensitive regions, there is a single

HSS (single solid blue curve in Regions I, IV of Figure 3); this

means that local perturbations or arbitrarily large amplitude decay

back to that HSS and no spatial patterning can form. In the

ultrasensitive region, the HSS (dotted blue line in Region III) is

unstable to arbitrarily small heterogeneous perturbations, so that

any noise will lead to new attractor states (represented by two solid

red elliptical arcs in region III). In the polarizable region, the HSS

is locally stable: both homogeneous and small heterogeneous

perturbations decay back to this HSS. However, a sufficiently

large local perturbation that increases the local level of one of the

active GTPases beyond the threshold (dotted red elliptical arc in

Region II, representing a repeller state) can induce patterning.

The vertical distance between the HSS and repeller represents the

magnitude of perturbation required to produce the spatially

heterogeneous polarized state.

This analysis of the local-global LPA reduction provides

insights, but is not fully predictive of the behaviour of the PDE

system with finite rates of diffusion. The related collection of

ODEs provides an approximation of the PDEs only as long as the

perturbation is spatially localized. Once it spreads and a pattern

begins to emerge, an asymptotic assumption that the integrated

size of the perturbation be small fails and the approximation

breaks down. Further, the bifurcation points present in the

related ODEs are an approximation, rather than exact match, to

full PDE bifurcation points. Thus, numerical simulations are

necessary to provide a more complete understanding of the

system.

Figure 4 shows numerical solutions of the PDE system in the tx
(‘‘kymograph’’) plane. Two pattern-forming regimes predicted in

Figure 3 are ilustrated. In the bistable case (left), an initial local

perturbation induces a wave that propagates into the domain and

finally stalls, indicative of wave pinning. In the ultrasensitive

regime, which is representative of noise sensitive cells, standard

Turing patterning occurs where a wave with some dominant

wave-number destabilizes the HSS and grows. Note that

alternative techniques such as Turing stability analysis could be

used to detect this regime. However, for our simplest model of 6

nonlinear PDEs, such analysis is challenging, and less revealing.

LPA is a simpler alternative that provides an excellent numerical

approximation for the Turing regime as well as its relationship to

the WP regime. Finally, because our experimental cells have a

Figure 9. Schematic of the applied local perturbation in the
LPA method. G represents the slow diffusing active form which has a

local component Gl near the applied pertubation at xt and a global
behaviour Gg away from it. Since diffusion is slow, they do not directly
influence each other on a short time scale. Gi is fast diffusing and takes
on only a global behaviour away Gig . Solid curves qualitativly represent
this pulse in the idealized diffusion limit and dashed curves represent
the same situation with finite rates of diffusion.
doi:10.1371/journal.pcbi.1002366.g009
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stable rest state, the Turing regime is a less suitable regime to

explore.
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