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Abstract: Based on the behavior of living beings, which react mostly to external stimuli, we in-
troduce a neural-network model that uses external patterns as a fundamental tool for the process
of recognition. In this proposal, external stimuli appear as an additional field, and basins of at-
traction, representing memories, arise in accordance with this new field. This is in contrast to the
more-common attractor neural networks, where memories are attractors inside well-defined basins
of attraction. We show that this procedure considerably increases the storage capabilities of the
neural network; this property is illustrated by the standard Hopfield model, which reveals that the
recognition capacity of our model may be enlarged, typically, by a factor 102. The primary challenge
here consists in calibrating the influence of the external stimulus, in order to attenuate the noise
generated by memories that are not correlated with the external pattern. The system is analyzed
primarily through numerical simulations. However, since there is the possibility of performing
analytical calculations for the Hopfield model, the agreement between these two approaches can be
tested—matching results are indicated in some cases. We also show that the present proposal exhibits
a crucial attribute of living beings, which concerns their ability to react promptly to changes in the
external environment. Additionally, we illustrate that this new approach may significantly enlarge
the recognition capacity of neural networks in various situations; with correlated and non-correlated
memories, as well as diluted, symmetric, or asymmetric interactions (synapses). This demonstrates
that it can be implemented easily on a wide diversity of models.

Keywords: neural networks; models of single neurons; artificial intelligence; nonlinear dynamical
systems

PACS: 07.05.Mh, 87.85.dq, 87.19.ll, 87.18.Sn, 05.90.+m

1. Introduction

Although the area of neural networks (NNs) has experienced impressive develop-
ments in the last few decades [1–4], essential characteristics and reactions of the brain are
still far from being satisfactorily replicated in these models. This is an essential direction
to pursue, since NNs were initially introduced in order to reproduce some of the primary
functions of the brain [5], and their first main practical application was pattern recogni-
tion [6]. So far, NNs have been more successful in artificial intelligence applications, such
as information and image processing, than in emulating the reactions of living beings in
nature.

The remarkable works of Darwin and Wallace on evolutionary theory [7–9] were
fiercely debated throughout the 19th century, but are now considered fundamental to our
understanding the world. They are accepted by all scientists as a starting point for studying
everything related to living beings, and all organs of living creatures were, of course,
molded by evolution. In particular, the brain itself grew and developed under the action of
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natural selection; it works in accordance with its evolutionary history. But what is signified
by the evolutionary history of the brain? It means the development, from generation to
generation, from species to species, of a complex system with fast responses to external
stimuli—a fundamental condition of survival. A living being needs to react, in many cases
instantaneously, to escape from a predator, to catch prey, to avoid an accident, and many
other situations. This implies that the nervous systems of animals were developed as
fundamental tools, able to react promptly to changes in the environment.

After millions of years of the development of nervous systems, which generally
increased in size and complexity, a concentrated region of nervous cells appeared—the
primitive brain—which quickly enlarged its size; this was a breakthrough in the evolution
of living beings. However, a further duty was yet to be fully developed. Living beings
had to react quickly and more efficiently to changes in the environment—this task was
at the origin of the brain and is recorded “au fer et au feu” in the way that it works. This
stimuli-dependence of the brain is behind all of its assignments, the old ones (essentially
instinctive reactions), as well as the biologically newer ones (e.g., those related to cognition).
During the whole of its evolutionary history, pattern recognition was a basic attribute of
the brain, allowing living beings to react appropriately. NN models should, therefore,
incorporate some of the main features related to this; below we outline, briefly, the main
procedure for pattern recognition in living beings.

(a) Living beings accumulate memories (past input patterns), that are stored in some way,
e.g., using Hebb’s rule [10,11].

(b) Without external stimuli, they do not recognize any pattern, and remain in a noisy
state.

(c) In the presence of an external stimulus that is associated with some stored pattern,
they recognize that pattern; if the external stimulus has no relation to any stored
pattern, nothing is recognized.

(d) If the external stimulus associated with some memory disappears, the effectivity of
the recognized pattern decreases, becoming essentially null after some time delay.
This induces a return to a noisy state.

(e) In line with a common feature in nature, whenever an external stimulus abruptly
changes its pattern, the living being quickly adjusts to the new recognized pattern
and away from the old one.

(f) These steps are followed repeatedly in the presence of each new stimulus, or sequences
of stimuli.

Biologically realistic pattern-recognition NN models should reproduce the actions
sketched above (at least, most of them), by following the route of new concepts in complex
systems [12–15]. These systems essentially live at the chaos–order or ordered–disordered
borderlines, and effective NN models should be defined at these borderlines; chaotic,
ordered, or disordered regimes can never yield appropriate proposals for NNs.

Along these lines, we will introduce a stimuli-dependent neural-network model, and
its effectiveness in pattern recognition will be demonstrated; certainly, similar scenarios can
be constructed for other brain process. Stimuli will be defined in the form of an external
local field, which has already shown its effectiveness in the suppression of chaos in a
recurrent fully connected NN model [16]. Here, we will illustrate how this works using the
standard Hopfield model. In the next section we briefly review the paradigmatic Hopfield
model, define the class of attractor neural networks (ANNs), and analyze some of their
limitations. In Section 3, we present our model, which incorporates several of the points
sketched above; the procedure will be applied to the Hopfield model, for which analytical
calculations are feasible. We also discuss the new concepts embodied in this approach,
emphasizing its pattern storage capacity and showing this is substantially larger than the
capacity of ANN models. Analytical calculations within a mean-field approximation, with
special attention given to its zero-temperature (T = 0) limit, are carried out in Section 4. In
Section 5, we present results from numerical simulations of uncorrelated patterns at T = 0,
comparing some of these with the analytical results. The significant increase in pattern
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storage capacity, as compared to ANN models, is indicated by these numerical simulations.
The ability of the model to react promptly to changes in the external stimuli—particularly in
replicating actions (b)–(e) described above, which are crucial for living beings—is verified
in Section 6. The good performance of the present proposal in the case of previously
stored correlated patterns is reported in Section 7. In Section 8, we introduce site dilution
into the model, revealing that it also functions well for asymmetric diluted synapses. In
Section 9, we discuss our main results, emphasizing some of the advantages with respect to
previous NN models, and propose potential applications; finally, in Section 10, we present
our conclusions.

2. The Hopfield Model and Attractor Neural Networks

A breakthrough in the NN area occurred in the beginning of the 1980s, with the
proposal of a model due to Hopfield [17] (known in the literature as the Hopfield model),
which has attracted the attention of many during the last few decades [1–3]. Imitating ideas
from random magnetic models, particularly those from the Ising spin-glass model [4,18,19],
one makes the analogies, neurons ↔ spins and synapse intensities ↔ coupling constants.
In this way, the Hopfield model is defined by means of a Hamiltonian,

H(t) = −∑
(i,j)

Jijσi(t)σj(t) , (1)

with σi(t) = ±1 (i = 1, 2, . . . , N) representing the state of the i-th neuron at time t [5],
activated or at rest. Moreover, Jij stands for the intensity of the synapses between neurons
i and j (considered as symmetric), whereas ∑(i,j) denotes a sum over all distinct pairs of
neurons, corresponding to a fully connected neural network. The intensity of the synapses
Jij is expressed in terms of p stored memories {ξµ

i }, according to Hebb’s rule [10,11],

Jij =
1
N

p

∑
µ=1

ξ
µ
i ξ

µ
j (i 6= j). (2)

These memories should remain fixed along the whole time evolution (i.e., are quenched
variables) and are assumed to be orthogonal on average [for finite N there may occur over-
laps between memories of O(1/

√
N)]. The obey the equation

P(ξµ
i ) =

1
2

δ(ξ
µ
i − 1) +

1
2

δ(ξ
µ
i + 1) . (3)

The definition of the Hamiltonian above has attracted the interest of many physicists,
particularly because statistical-mechanics techniques could be applied [20–23]. However,
an immediate question concerns the assumption of symmetric couplings {Jij}, which is a
serious obstacle to an appropriate emulation of the brain, since it is well-known that real
synapses violate this symmetry, i.e., Jij 6= Jji. In this case no Hamiltonian can be defined.

The Hopfield model has helped to create the class of ANNs; systems where the
fundamental states become stored memories. Each such memory defines a nontrivial phase
space and possesses its own basin of attraction. In ANNs, an initial pattern that has a
significant overlap with one stored memory—that is, belonging to its basin of attraction—
evolves by means of an appropriate dynamics (stochastic or not) to a lower energy state,
i.e., to the stored memory. This leads to the recognition of the pattern [1–4,20–40]. However,
once a pattern is recognized, the system stays in its resultant state forever, even if the input
pattern has acted only at the beginning of the process. Due to this aspect, it is easy to see
that, of the items listed in the previous section, few are consistently fulfilled.

Three basic limitations that are common for ANNs are listed and discussed below.
(i) They do not operate at the chaos–order border, as any complex system should [12–15],
but rather on the ordered side; (ii) They present a maximum limit in their storage capacity;
and (iii) They are inefficient when reacting to changes in the external environment.
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The ordered side, where a multiplicity of low-energy states appears, is the main
ingredient of an ANN; as a proposal for modeling one of the most complex systems in
nature, restriction (i) means that the ANNs are very far from achieving an appropriate
approach to the brain. The constraint (ii) comes from the fact that the memories correspond
to ground states, each one having its own basin of attraction, so that the size of the basins
reduces as the number of stored memories increases. This severely limits their number,
even if these memories are not correlated. In general, the storage capacity of ANNs, with
N neuronal units, may be expressed as p = αN, with α characterized by threshold values
(αc); in most cases αc is much smaller than one. In the standard Hopfield model, it is
well-known that αc ' 0.14 [22], so that the system becomes unable to recognize any further
pattern for α > 0.14. The limitation (iii) is related to the above-mentioned fact that, once
a pattern is recognized, the system stays in its corresponding state; this feature prevents
quick reactions to external changes. In order to consider such reactions in the standard
Hopfield model, for α < αc, one should change the initial state {σi(0)}, which may lead
to a jump in phase space to a different basin of attraction. As will be shown later, for the
model we define next, reactions that follow changes in the external environment occur
naturally and smoothly.

Modifications to the Hopfield model, such as modifying coupling constants to be
asymmetric (in which case there is no Hamiltonian) [41–43], correlating or coupling pairs
of memories [44–51], and introducing dilution into the synapses [3,43,52–62], yield minor
changes, but largely fail to satisfy the requirements for an appropriate description of the
brain [steps (b)–(e) of the previous section], and do not overcome the drawbacks described
in items (i)–(iii) above. Asymmetric coupling constants, correlations among memories,
and dilution may lead to fixed points or cycles in the dynamics, which appear on the
ordered side of the chaos–order dichotomy. These ingredients could also lead to a chaotic
state [63,64]; in both situations (ordered or disordered states) one is not at the border of
chaos and order, and thus the situation is inappropriate for emulating a complex system
such as the brain.

3. Biologically Motivated Model: The Relevance of External Stimuli

Reacting quickly to changes in the neighboring environment is so important to life
that many reactions are written into our DNA. Being the most primitive ones; they are
commonly called instinctive reactions. The new-born mammal, which sucks anything that
enters its mouth, illustrates an instinctive reaction, fundamental to the first weeks of any
mammals’ life. Rapid and involuntary movements to escape from predators represent
provide additional examples, among many other instinctive reactions in animals. Clearly,
the brain was forged by evolution for the task of quickly analyzing any external stimulus
and triggering a muscle reaction if necessary. With evolution, further types of reactions
to external stimuli, non-instinctive reactions, were developed in the nervous systems of
many animals. These animals can take some time to analyze the stimulus, recognize it, and
then, react.

Prompt reactions to external stimuli should be ubiquitous for any brain activity;
besides, of course, the important task of pattern recognition. During pattern recognition, in
short, the system is able to store a certain number of patterns (memories), which come from
previous experiences. If an external stimulus related to one of these patterns is presented,
the system should be able to recognize it as one of the stored patterns.

The typical framework of using ANNs for pattern recognition generates a topography,
in an appropriate mathematical space, where memories are at the bottom of the valleys and
external stimuli are (initially) located on the mountain slopes, giving birth to the recognition
process. An appropriate choice of dynamics should lead the external stimulus from the
mountain slopes to the bottom of the valley, associating it with the corresponding memory.

In these types of ANN models, the influence of an external stimulus on a specific
neuron belonging to the NN can be essentially split into two contributions; namely, a signal,
connected with the external stimulus and correlated to a stored pattern (memory), as well
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as noise, produced by all stored memories that are not related to the external stimulus. This
external stimulus yields the initial state of neuronal activity that, by evolving according to
some internal process, leads the system to recognize the memory associated with the initial
stimulus. As the number of stored patterns (memories) increases, the width of the noise
distribution also increases, so that when the system attains a sufficiently large number of
stored memories, this width becomes of the order of the signal; once this occurs, the NN is
not able to recognize any further stored pattern. The ability of an ANN to recognize stored
memories fails because the width of the noise distribution (roughly) cancels out the signal
from the external initial stimulus.

In this paper, our main assumption is that the long-term evolution of living beings has
allowed them to calibrate the external-stimulus influence, so that the noise produced by
memories that are not correlated with the external stimulus is canceled as much as possible.
Roughly, we can express the influence (hi) due to other neurons (j 6= i) on a particular
neuron i, in the presence of an external stimulus correlated with some stored memory, in
terms of the following contributions [65],

hi = signal + noise + external stimulus. (4)

If the external stimulus succeeds in canceling the noise contribution, the signal should
remain, allowing the recognition of the stimulus whenever it is associated to some stored
pattern. The external stimulus does not merely correspond to an initial state, which is
responsible for starting the process of recognition as happens in standard NNs [1–4], but
it will rather be present during the whole process of recognition. In this framework,
the initial state {σi(0)} becomes irrelevant; the fundamental point concerns the process
of tuning the external-stimulus intensity in order to cancel precisely (or approximately)
the noise term. Operationally, in a given computational NN, the first two contributions
on the right-hand-side of Equation (4) result from the model construction [e.g., from the
definition of the intensity of synapses in Equations (1) and (2)], whereas the last contribution
corresponds to an extra term acting on each neuron i, introduced in order to attenuate the
noise contribution. From now on, we refer to this scheme as a stimulus-dependent neural
network (SDNN).

In principle, this framework may be implemented in many NN models, but here it
will be illustrated for the Hopfield model, due to its simplicity and potential for producing
analytical results. In this case, the local field hi at time t becomes

hi(t) =
N

∑
j 6=i

Jij σj(t) + κ ηi , (5)

where, in the first term on the r.h.s., we have the usual contribution due to (N− 1) neurons,
whereas the second term corresponds to the external stimulus acting on neuron i. This
later contribution should remain fixed during the whole time evolution, with ηi = ±1 and
κ (κ ≥ 0) depicting its intensity, to be considered in the recognition process. The main idea
is to maintain the influence of the external pattern during the whole process, and not only
as an initial state, as happens in typical ANNs.

We will consider two typical situations concerning this external stimulus: (i) It should
present an overlap with one specific stored memory (e.g., memory ρ, 1 ≤ ρ ≤ p). It should
be orthogonal to all other memories and should lead to an external pattern being correlated
with a specific memory; (ii) It should be orthogonal to all stored memories, possess no
overlap with any memory, and correspond to an external pattern not correlated with
any stored memory. Case (i) can be expressed by assuming that the set {ηi} obeys the
probability distribution

P(ηi) = γδ(ηi − ξ
µ
i ) + (1− γ)δ(ηi + ξ

µ
i ) , (6)
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where 1/2 < γ ≤ 1 for µ = ρ and γ = 1/2 for µ 6= ρ. The particular case γ = 1 means that
the set of external-stimulus signs {ηi} yields the same pattern as the memory ρ, covering
common real situations where one should recognize an external pattern that coincides
precisely with the stored one. On the other hand, case (ii) is characterized by

P(ηi) =
1
2

δ(ηi − ξ
µ
i ) +

1
2

δ(ηi + ξ
µ
i ), (1 ≤ µ ≤ p). (7)

Let us investigate the local field of Equation (5), by separating the contribution of
memory ρ from those of other memories (µ 6= ρ) in Equation (2); one obtains,

hi(t) =
1
N

N

∑
j 6=i

ξ
ρ
i ξ

ρ
j σj(t) +

1
N

N

∑
j 6=i

p

∑
µ 6=ρ

ξ
µ
i ξ

µ
j σj(t) + κ ηi . (8)

Comparing the equation above with Equation (4), one immediately identifies each
of the contributions on its r.h.s.: the first one is the signal activated when the neuron
configuration {σi(t)} is roughly the same as the stored memory {ξρ

i }; the second one
represents the noise, induced by other memories distinct from ρ; and the third contribution
corresponds to the external stimulus. In the case γ = 1, if we choose σi(t) = ηi = ξ

ρ
i , then

hi(t) =
N − 1

N
ξ

ρ
i +

1
N

N

∑
j 6=i

p

∑
µ 6=ρ

ξ
µ
i ξ

µ
j ξ

ρ
j + κξ

ρ
i , (9)

which shows that one may calibrate κ appropriately, allowing the external stimulus to
roughly cancel the noise term, in order to favor the signal contribution. This would
allow the system to recognize the submitted external pattern. Therefore, κ must not be
so small, since it will not be able to cancel the noise term, nor very large, in which case it
may dominate the local field, forcing an alignment with the external stimulus, whether
correlated with a particular memory or not. Finding an optimal value for κ is a fundamental
point of this framework.

Next, we estimate, approximately, the optimal value of κ, by focusing on the noise
contribution in Equation (9),

hnoise
i (t) =

1
N

N

∑
j 6=i

p

∑
µ 6=ρ

ξ
µ
i ξ

µ
j ξ

ρ
j . (10)

Considering that there are no correlations between patterns µ and ρ, and that patterns
associated with different sites (j 6= i) are independent, each of these contributions take the
values ±1 with equal probability. For large enough values of N and p the average over the
variables {ξ} is,

〈hnoise
i (t)〉ξ ' 0, (11)

whereas its associated variance yields

〈(hnoise
i (t))2〉ξ =

〈
1

N2

N

∑
j 6=i

p

∑
µ 6=ρ

N

∑
k 6=i

p

∑
ν 6=ρ

ξ
µ
i ξ

µ
j ξ

ρ
j ξν

i ξν
k ξ

ρ
k

〉
ξ

' p
N

= α . (12)

Hence, the width of the noise distribution is approximately 〈(hnoise
i (t))2〉1/2

ξ ∼
√

α,
so that for independent patterns, a good choice for κ should roughly be

√
α; the numer-

ical simulations to be presented later on display good agreement with this choice. This
procedure could indicate pattern recognition for values of p that are much higher than
those restricted by the upper limit of the Hopfield model. However, in those models where
analytical calculations for the optimal value of κ are not feasible, it should still be possible
to estimate this value numerically; in fact, this is an easy task, as will be shown later on.
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From Equation (8), with the reminder that the couplings {Jij} are symmetric in the
Hopfield model, one can define a Hamiltonian at time t,

H(t) = −
N

∑
i=1

hi(t)σi(t) = −
1
N ∑

(i,j)
ξ

ρ
i ξ

ρ
j σi(t)σj(t)

− 1
N ∑

(i,j)

p

∑
µ 6=ρ

ξ
µ
i ξ

µ
j σi(t)σj(t)− κ

N

∑
i=1

ηi σi(t) , (13)

where ∑(i,j) denotes sums over all distinct pairs of neurons, corresponding to a fully
connected NN.

In the simulations to be presented later, we essentially focused on two parameters,
namely, the macroscopic superposition (or overlap) of a neuron state {σi(t)} with a given
pattern {ξµ

i } at time t,

mµ(t) =
1
N

N

∑
i=1

ξ
µ
i σi(t) (µ = 1, 2, . . . , p), (14)

as well as the overlap of this neuron state with the special case where the external-stimuli
signs {ηi} are orthogonal to all stored memories [i.e., case (ii) in Equation (7) with γ = 1/2
for all memories], defined as

m⊥(t) =
1
N

N

∑
i=1

ηiσi(t). (15)

The quantity above represents a macroscopic superposition with an external pattern,
not stored and orthogonal to all stored patterns, for which ηi = ±1 with equal probability.
Frequently, the set {mµ(t)} is considered to contain the components of a p-dimensional
vector, ~m(t) = (m1(t), m2(t), . . . , mρ(t), . . . , mp(t)), and we will give a special emphasis to
mρ(t), as associated with a single condensed pattern and identified in the first term of the
Hamiltonian in Equation (13). All other components mµ(t) (µ 6= ρ) appear in the noise
contribution of the Hamiltonian.

4. Analytic Calculations

In this section we perform analytical calculations, which essentially correspond to a
mean-field approach, along the lines of Refs. [21,22]. We assume that the system defined by
the Hamiltonian in Equation (13) attains, after a sufficiently long time, well-defined thermal
equilibrium states (for finite temperatures, T > 0), together with its zero-temperature limit
(T → 0). For a given realization of the quenched disorder ({ξµ

i }, {ηi}), one may define a
partition function Z ≡ Z({ξµ

i }, {ηi}), so that the free energy per neuron becomes

− β f = lim
N→∞

1
N

〈
lnZ({ξµ

i }, {ηi})
〉

η,ξ
, (16)

where β = 1/T (we work in units kB = 1). Above, 〈. . .〉η,ξ indicates quenched averages on

{ηi} and {ξµ
i }, which, according to Equations (3) and (6), should be carried out with the

average over the {ηi} taken before the one over {ξµ
i }. Following standard procedure, we

apply the replica method to calculate the free energy [1–4],

− β f = lim
N→∞

lim
n→0

1
Nn

(〈
Zn({ξµ

i }, {ηi})
〉

η,ξ
− 1
)

, (17)

where Zn({ξµ
i }, {ηi}) corresponds to the partition function of n independent replicas, for

a given realization of the disorder.
Then, one assumes that the total number of stored patterns is an extensive quantity,

expressed as p = αN; in the standard Hopfield model, this holds up αc ' 0.14 [22], so that
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pattern recognition does not work for α > 0.14. At the above-mentioned equilibrium, one
may perform the usual averages, so the quantity of Equation (14) leads to

mµ =

〈
1
N

N

∑
i=1

ξ
µ
i 〈σi〉

〉
η,ξ

(µ = 1, 2, . . . , p), (18)

whereas, for the case where the external stimulus is orthogonal to all stored memories, the
superposition in Equation (15) yields

m⊥ =

〈
1
N

N

∑
i=1

ηi〈σi〉
〉

η,ξ

, (19)

with 〈σi〉 corresponding to local magnetizations.
Lengthy (but well-established) calculations for the free energy of Equation (17) are

outlined in the Appendix A, where we have split the patterns {ξµ
i } into two sets; namely, s

condensed patterns and (p− s) non-condensed ones. From now on, we will investigate
the recognition of a single pattern µ = ρ (i.e., s = 1), meaning that the external stimulus
presents a superposition with memory ρ, corresponding to case (i) of Equation (6), for
which one has the overlapping

mρ =

〈
1
N

N

∑
i=1

ξ
ρ
i 〈σi〉

〉
η,ξ

. (20)

Moreover, the free energy at the end of the Appendix A [cf. Equation (A7)] becomes

f =
α

2
+

1
2

m2
ρ +

αβ

2
r(1− q) +

α

2β

[
ln(1− β + βq)− βq

1− β + βq

]
− 1

β

∫
Dz
〈
ln
[
2 cosh β

(
z
√

αr + mρξρ + κη
)]〉

η,ξ , (21)

where ∫
Dz . . . ≡

∫ ∞

−∞

dz√
2π

exp
(
− z2

2

)
. . . , (22)

and the averages 〈. . .〉η,ξ should be considered over the single condensed pattern ξρ only.
Two further parameters appear in the above free energy, namely, the Edwards–Anderson
one (which becomes relevant only for very low temperatures),

q =

〈
1
N

N

∑
i=1
〈σi〉2

〉
η,ξ

, (23)

and a parameter that measures the noise produced by (p− 1) non-condensed patterns,

r =
1

αN2 ∑
µ 6=ρ

〈(
N

∑
i=1

ξ
µ
i 〈σi〉

)2〉
η,ξ

. (24)

In deriving the free energy in Equation (21), as well as the parameters in
Equations (23) and (24), we have assumed the replica-symmetry ansatz: in full replica
space, both parameters depend on two replica indices, representing matrix elements, as
can be seen in the Appendix A. In this ansatz, one assumes that all off-diagonal matrix
elements are equal, given by Equations (23) and (24) [1–4,18].

The equilibrium solution comes from the derivatives of the free-energy with respect
to the parameters above, leading to the saddle-point equations,
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mρ =
∫
Dz
〈
ξρ tanh[β

(
z
√

αr + mρξρ + κη
)
]
〉

η,ξ , (25)

q =
∫
Dz
〈

tanh2[β
(
z
√

αr + mρξρ + κη
)
]
〉

η,ξ
, (26)

r =
q

(1− β + βq)2 . (27)

For case (ii) in Equation (7), where the external stimulus is orthogonal to all mem-
ories, there is no condensed pattern, and the parameter m⊥ of Equation (19) may be
calculated from

m⊥ =
1

βN

〈
∂

∂κ
lnZ({ξµ

i }, {ηi})
〉

η,ξ
=

1
βN

∂

∂κ

〈
lnZ({ξµ

i }, {ηi})
〉

η,ξ
= −∂ f

∂κ
, (28)

where we have assumed, as usual, that the derivative comutes with the average operations,
since these latter are essentially expressed by sums and integrals. It is important to stress
that the averages above should be considered over the orthogonal patterns, for which
mρ = 0 and ηi = ±1 with equal probability. In this way,

m⊥ =
∫
Dz
〈
η tanh[β

(
z
√

αr + κη
)
]
〉

η
. (29)

Limit T → 0

Throughout this work, a special emphasis will be given to limit T → 0 (or β→ ∞); in
this case, q = 1 + O(T), so that the internal energy per neuron becomes

u =
1
2

α(1− r)− 1
2

m2
ρ − κm⊥. (30)

Additionally, Equations (25)–(29) lead to

mρ = γ erf
(

mρ + κ
√

2αr

)
+ (1− γ)erf

(
mρ − κ
√

2αr

)
, (31)

r =
1

(1− C)2 ; C =

√
2

παr

{
γ exp

[
−
(
mρ + κ

)2

2αr

]
+ (1− γ) exp

[
−
(
mρ − κ

)2

2αr

]}
, (32)

with the case where the external stimulus is orthogonal to all stored memories yielding

m⊥ = erf
(

κ√
2αr

)
, (33)

where erf(x) denotes the error function. Notice that in the particular limit γ = 1, Equations (31)
and (32) become

mρ = erf
(

mρ + κ
√

2αr

)
, (34)

and

r =
1

(1− C)2 ; C =

√
2

παr
exp

[
−
(
mρ + κ

)2

2αr

]
, (35)

which, for κ = 0, recover the zero-temperature equations of Ref. [22].
The above zero-temperature equations may be solved numerically for given values

of γ, α and κ; in Figure 1 we illustrate the particular case γ = 1, with curves for the
overlaps mρ and m⊥ resulting from the solution of Equations (33)–(35). The overlaps mρ

and m⊥ versus α (typical values of κ), or versus κ (typical values of α), are presented in
Figure 1a,b and Figure 1c,d, respectively. Here, we again emphasize that two different
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situations for the external stimulus are being considered, i.e., a fully correlated external
stimulus (plots for mρ) and an external stimulus orthogonal to all memories (plots for
m⊥). One notices certain ranges of κ and α where multiple solutions for these quantities
appear, characterizing first-order phase transitions. Some typical cases are illustrated in the
corresponding insets, showing the coexistence of more than one solution; in these cases, the
precise locations of the discontinuities may be computed through Maxwell constructions,
where one equates the internal energy of Equation (30) for both solutions. For the purpose
of pattern recognition, the quantities mρ and m⊥ are expected to vary smoothly, so that
discontinuities, where one may have large variations on either one of these overlaps, for
infinitesimal changes of given parameters, do not correspond to common situations in
natural systems. Hence, for the rest of this work we will concentrate on solutions where
the parameters mρ and m⊥, associated with two different types of external stimuli, vary
smoothly on either one of the parameters κ or α; more particularly, we will focus on the role
played by κ in the non-retrieval region of the standard Hopfield model, i.e., α > 0.14, along
which one has mρ = m⊥ = 0 for κ = 0. We call the attention to those plots for higher values
of κ (or α) in Figure 1, focusing on the relevant regions for pattern recognition (κ '

√
α),

around which one notices significant values for the overlapping mρ (typically, mρ > 0.8).

Figure 1. (Color online) Results from mean-field approximation in the zero-temperature limit, for
the overlaps mρ [Equation (34)] and m⊥ [Equation (33)], are exhibited for the case γ = 1: mρ and
m⊥ are shown versus α (typical values of κ) in panels (a,b), and represented versus κ (typical values
of α) in panels (c,d), respectively. In (a,b) one has κ = 0.1, 0.3, 0.5, 0.7, and 1.0 (from bottom to top),
whereas in (c,d) one has α = 0.1, 0.3, 0.5, 0.7, and 1.0 (from top to bottom). For smaller values of κ and
α, one notices multiple solutions for both mρ and m⊥, typical of first-order phase transitions. Insets
illustrate some cases where two solutions coexist for certain intervals of these parameters: (b) κ = 0.3
and 0.7; (c) α = 0.3; (d) α = 0.1.

5. Numerical Simulations: Recognition of Uncorrelated Patterns

We studied the SDNN, defined by the local field hi(t) of Equations (5)–(8), through
zero-temperature numerical simulations, for N = 104 neurons and p = αN stored memo-
ries, considering several choices for the parameters α and γ. At first, we set couplings and
external stimuli according to Equations (2), (3) and (6); being quenched variables, these
quantities were kept fixed along each time evolution. The initial neuron configuration was
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chosen at random, i.e., σi(0) = ±1 with equal probability; then, these dynamical variables
were updated in a sequential way, through the zero-temperature dynamics,

σi(t + 1) = sign[hi(t)]; (∀i), (36)

and each time unit corresponded to the operation above on a single neuron. Following
this procedure, the nearest local minimum of energy is attained after a sufficiently long
time t∗ (t∗ ' 102N, i.e., each neuron is visited 102 times), with macroscopic quantities
presenting slight fluctuations for t > t∗. In our analysis, we have emphasized the overlaps
of Equations (19) and (20); at a given local minimum of energy, i.e., for t > t∗, these
quantities can be calculated, and according to Equations (3) and (6), the average over {ηi}
should be taken before the one over {ξµ

i }; for these averaging procedures, each simulation
was repeated 103 times.

Throughout this section, we restrict ourselves to the recognition of uncorrelated
patterns; the satisfying performance of the present proposal in the case of correlated
patterns will be shown later. In what follows, we will be particularly interested in the role
played by κ in the non-retrieval region of the standard Hopfield model, where mρ = m⊥ = 0
for κ = 0. The intensity of the external stimulus κ > 0 yields two distinct situations
concerning the external pattern; namely, 1/2 < γ ≤ 1 for mρ(κ) and γ = 1/2 for m⊥(κ).
According to this, sufficiently large values of κ lead to mρ → 2γ− 1 and m⊥ → 1. However,
these two particular limits (κ small or large) are not appropriate for pattern recognition;
on the other hand, a well-calibrated value of κ, to be called hereafter κc, chosen in such
a way to cancel (or diminish as much as possible) the effects of the noise contribution in
Equation (8), as discussed in Section 3, represents the crucial point of this new framework.
Values κ � κc will not be sufficient to cancel the noise term, whereas for κ � κc, the
external field will dominate the total local field and there will be no pattern recognition at
all; in this later case, the local field will simply reproduce the external stimulus, whether
associated with a memory or not. Here, we propose to monitor the absolute value of
the difference between the overlaps of Equations (19) and (20), which correspond to two
different types of external stimuli,

∆m = |mρ −m⊥| =
〈

1
N

N

∑
i=1
|ξρ

i − ηi|〈σi〉
〉

η,ξ

, (37)

in order to identify the optimal value κ = κc. One notices that only the orthogonal (i.e.,
non-stored) memories will contribute to ∆m, so that the appropriate choice of κc should
correspond to its maximum value, max(∆m).

Results from numerical simulations are shown in Figure 2, where the quantities
defined in Equations (19), (20) and (37) are plotted versus κ, for γ = 1.0 and typical
values of α. In all cases, κc is clearly identified by means of max(∆m), and since the
storage capacity p grows with α, the variance of the noise contribution also increases. The
analytical approximate result κc '

√
α [cf. Equation (12)] shows good agreement with

the numerical estimates of Figure 2. As another consequence of this increase, one finds a
tendency towards diminishing the difference ∆m, as well as the magnitude of the values
max(∆m). In general, computing extremely accurate estimates for κc is not a central aim in
the present scheme, since slight variations around the values of max(∆m) provide equally
good results. This is directly related to fluctuations in the noise contribution, shown in
Section 3. It should be stressed that all values of α considered in Figure 2 are greater (or
much greater) than the critical value αc ' 0.14, above which the standard Hopfield NN
does not recognize any pattern. Moreover, one can observe the limits mρ = m⊥ = 0 (κ = 0),
as well as mρ → 2γ− 1 and m⊥ → 1 (κ � κc).
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Figure 2. (Color online) Results from numerical simulations for the overlaps mρ (black squares)
[cf. Equation (20)], m⊥ (green circles) [cf. Equation (19)], and the modulus of their difference, ∆m
(red triangles) [cf. Equation (37)], are plotted versus κ, for γ = 1.0, and typical values of α: (a) α = 0.4;
(b) α = 0.6; (c) α = 0.8; (d) α = 1.0. In each case, the maximum value of ∆m yields the best choice for
κ, denoted by κc. The two overlaps shown represent, respectively, macroscopic superpositions of a
neuron state with a stored pattern ρ (mρ), and with non-stored patterns orthogonal to the stored one
(m⊥). The lines interpolating the symbols are guides for the eye.

An interesting effect appears in Figure 3, where we present results from numerical
simulations for the quantities defined in Equations (19), (20) and (37) for γ = 0.9, and the
same values of α used in Figure 2. For κ < κc, all plots are qualitatively similar to those of
Figure 2 and, in particular, very close estimates for κc (or even equal in some cases) were
obtained; one should notice that although the analytical result κc '

√
α of Equation (12)

was derived for the case γ = 1, it holds for γ = 0.9 as a good approximation. Nevertheless,
the limits mρ → 2γ− 1 = 0.8 and m⊥ → 1 are fulfilled for κ � κc, so that their plots cross
(mρ = m⊥) at some value of κ, yielding ∆m = 0. To the right of this crossing point one has
that m⊥ > mρ, signaling that the external stimulus starts dominating the total local field,
as one approaches a non-relevant limit for the SDNN. In this region, pattern recognition
begins deteriorating, and for κ � κc the local field will simply reproduce the external
stimululs, whether associated with a memory or not. The optimal value κc, associated with
the maximum difference between overlaps mρ and m⊥, represents the appropriate one,
allowing the recognition of a stored pattern, for α > 0.14; it cannot be too large, otherwise
it prevents the external stimulus from dominating the other terms of the local field in
Equation (8). This subtle balance is the heart of this approach.

One of the main virtues of the SDNN, illustrated in Figures 2 and 3, concerns the
range of α values, above the critical value of the standard Hopfield model, that still allow
significant pattern recognition capabilities. Considering, as an illustrative example, the case
α = 1 [cf. Figures 2d and 3d], one finds κc ' 0.95 in both cases γ = 1.0 and γ = 0.9, and the
macroscopic superposition with a given pattern ρ presents the values mρ ' 0.9 [Figure 2d]
and mρ ' 0.7 [Figure 3d]. It should be noted that superpositions with memories µ 6= ρ are
still present, being of order 1/

√
N. This enlargement in the pattern recognition capacity

is directly related to the fact that the SDNN expresses no basins of attraction, although it
creates a huge and single basin of attraction when κ ' κc. However, by setting κ = 0, this
basin of attraction disappears and the memories do not occupy any volume in phase space,
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for any α > αc. As will be shown later, within this framework recognition works well, even
for values of α� 1.
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Figure 3. (Color online) Results from numerical simulations for the overlaps mρ (black squares)
[cf. Equation (20)], m⊥ (green circles) [cf. Equation (19)], and the modulus of their difference,
∆m (red triangles) [cf. Equation (37)], are plotted versus κ, for γ = 0.9, and typical values of α:
(a) α = 0.4; (b) α = 0.6; (c) α = 0.8; (d) α = 1.0. In each case, the maximum value of ∆m yields
the best choice for κ, denoted by κc. The two overlaps shown represent, respectively, macroscopic
superpositions of a neuron state with a stored pattern ρ (mρ), and with non-stored patterns orthogonal
to the stored one (m⊥). The lines interpolating the symbols are guides for the eye.

As defined in Equation (6), the parameter γ measures the disturbance associated with
recognition of a given stored pattern ρ. Therefore, as γ decreases from the value of one, we
should find dissimilarities between the external stimulus and the stored pattern, so that
pattern recognition fails for some γ < 1. We illustrate this aspect in Figure 4, where we
present a situation close to the limit of disturbance for the recognition of the stored pattern,
γ ' 0.74. One notices that there is not a clear optimal choice for κ in this case, so that one
can not distinguish a stored pattern from a new pattern that is not stored and is orthogonal
to other stored patterns. This feature of the model was investigated in Ref. [65], where this
limit was verified, and it was shown that it is not possible to find an optimal choice of κ
for γ . 0.74. Hence, in this approach, we can deform the stored pattern close to 25% and
the SDNN will still recognize it, even for values of α greater than the critical limit of the
Hopfield model. This peculiarity demonstrates an impressive performance compared with
other NN models that are studied in the literature.
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Figure 4. (Color online) Results from numerical simulations for the overlaps mρ (black squares)
[cf. Equation (20)], m⊥ (green circles) [cf. Equation (19)], and the modulus of their difference,
∆m (red triangles) [cf. Equation (37)], are plotted versus κ, for γ = 0.74, and typical values of
α: (a) α = 0.4; (b) α = 0.6; (c) α = 0.8; (d) α = 1.0. The two overlaps shown represent, respectively,
macroscopic superpositions of a neuron state with a stored pattern ρ (mρ), and with non-stored
patterns orthogonal to the stored one (m⊥). The lines interpolating the symbols are guides for the eye.

We have also carried out simulations that consider much higher values of α, with the
external pattern corresponding to ρ, i.e., γ = 1, as shown in Figure 5. One sees that there
is no well-defined limit for the storage capacity, showing that the procedure described
above holds for considerably large values of α. Particularly, as presented in Figure 5c,
this technique was easily implemented for α = 16; in this case we acquire κc ' 3.3,
together with mρ ' 0.7, whereas the difference ∆m remains quite significant (revealing
a maximum value ∆m ' 0.1), and still allowing recognition. One should notice that the
value of α used in Figure 5c is more than 102 times larger than the threshold of the standard
Hopfield model (αc ' 0.14) [22]. Analyzing together the results of Figures 1 and 5 (all
of them for γ = 1), two characteristics deserve discussion, as follows. (i) The analytical
approximate result (derived for γ = 1 and N → ∞), κc '

√
α [cf. Equation (12)], shows a

good agreement with most numerical estimates (typically within 10% error), although the
discrepancies increase for the larger α values. One sees that the analytical calculation yields
overestimates for κc, with respect to the numerical results. These discrepancies are mostly
due to the approximations leading to Equation (12), as well as to the finite sizes used in the
simulations. (ii) Considering even larger values for α, a saturation effect occurs, in the sense
that m⊥ → mρ from below, yielding ∆m→ 0. This characteristic is illustrated in Figure 5d,
where we consider α = 32, which shows that the curves for mρ and m⊥ become very close,
leading to a flat behavior in ∆m. In this regime, clear identification of κc becomes difficult,
explaining the increase in the discrepancy between analytical and numerical results. We
verified that such a saturation occurs, typically, for α & 40. Nevertheless, we can state that
for relatively high values of α, as illustrated in Figure 5b,c, the SDNN is able to achieve
pattern recognition with no difficulties.
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Figure 5. (Color online) Results from numerical simulations for the overlaps mρ (black squares)
[cf. Equation (20)], m⊥ (green circles) [cf. Equation (19)], and the modulus of their difference, ∆m (red
triangles) [cf. Equation (37)], are plotted versus κ, for γ = 1.0, and typical high values of α: (a) α = 4;
(b) α = 8; (c) α = 16; (d) α = 32. In each case, the maximum value of ∆m yields the best choice for
κ, denoted by κc. The two overlaps shown represent, respectively, macroscopic superpositions of a
neuron state with a stored pattern ρ (mρ), and with non-stored patterns orthogonal to the stored one
(m⊥). The lines interpolating the symbols are guides for the eye.

In Figure 6, we compare data from numerical simulations of N = 104 neurons
(symbols) with results from analytical calculations in the zero-temperature limit (full
lines), considering typical choices for α and γ. The analytical results for m⊥ follow from
Equations (33) and (32), whereas those for mρ were obtained from Equations (31) and (32);
the corresponding numerical estimates were computed from Equations (19) and (20), re-
spectively, with ∆m = |mρ −m⊥| given by Equation (37). In all cases one notices a good
agreement between the two approaches, with small discrepancies between them (at most of
the order 0.05), which become more significant for small values of κ, as well as around the
best choice κc, as expected, signaling the most relevant region for pattern recognition. How-
ever, the results from the two approaches essentially coincide when the external stimulus
becomes very large, since in this limit the fluctuations in pattern recognition disappear. In
Figure 6a, we present results for γ = 0.74—i.e., very close to the limit of disturbance for the
recognition of a stored pattern, as illustrated in Figure 5—so that there is not a well-defined
value for κc. However, κc may be obtained clearly from Figure 6b–d, and one notices
in these cases that the analytical estimates (given by the maximum of ∆m) are always
overestimates with respect to the numerical ones [even in the cases γ = 0.9 of Figure 6b,c].
This is in agreement with previous discussions referring to the approximations that led to
Equation (12). The above-mentioned discrepancies are essentially due to finite-size effects,
since analytical and numerical results are expected to coincide for N → ∞, in which limit
the mean-field approximation becomes exact for a fully connected network [1–4].
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Figure 6. (Color online) Zero-temperature results from analytical calculations (full lines) are plotted
versus κ and compared with those from numerical simulations (symbols) for typical values of α and γ:
(a) α = 0.4 and γ = 0.74; (b) α = 0.4 and γ = 0.9; (c) α = 0.8 and γ = 0.9; (d) α = 1.0 and γ = 1.0. To
distinguish from the numerical data, in each case the upper index T stands for theoretical results. The
theoretical overlaps of Equation (33) (blue full line) and Equation (31) (brown full line) are compared
with the numerical estimates for m⊥ (green circles) [cf. Equation (19)] and mρ (black squares)
[cf. Equation (20)], respectively, whereas the theoretical modulus of the difference between these
quantities (purple full line) is compared with the numerical ∆m (red triangles) [cf. Equation (37)].

6. Time Evolution of the Macroscopic Superposition under Changes in the External Pattern

One well-known characteristic of living beings, fundamental to their survival, consists
in their ability to react to changes in the environment. In this section, we show how the
SDNN adjusts itself, being capable of replacing a previously recognized pattern with a
new one, according to changes in the external stimulus. Let us consider a typical real
situation where at a time t0 we present a pattern associated with one stored memory, say
memory ρ; then, at a later time t1, we withdraw it and present a different pattern associated
with memory ν. In order to illustrate the effectiveness of the SDNN in responding to
these changes, we now allow the set of external-stimulus signs to change in time, i.e.,
{ηi} ≡ {ηi(t)}. Furthermore, we assume abrupt changes in these variables at two given
times, t = t0 and t = t1, so that the probability distribution in Equation (6) is replaced by
the time-dependent set

P(ηi(t)) = γ1δ(ηi(t)− ξ
ρ
i ) + (1− γ1)δ(ηi(t) + ξ

ρ
i ); (t0 ≤ t ≤ t1), (38)

and
P(ηi(t)) = γ2δ(ηi(t)− ξν

i ) + (1− γ2)δ(ηi(t) + ξν
i ); (t > t1), (39)

with 1/2 ≤ γ1, γ2 ≤ 1. The actions at times t0 and t1 correspond, respectively, to the
presentation of pattern ρ, and to its replacement by the new pattern ν, giving rise to the
question of whether the SDNN will respond adequately to these modifications.

In Figure 7, we illustrate how the SDNN reacts to the above-mentioned changes, by
plotting the time-dependent macroscopic superpositions [cf. Equation (14)] mρ(t) (black
circles) and mν(t) (dashed green line) versus time, for α = 0.8, while considering four
different intensities of the external stimulus, in increasing order, as shown in Figure 7a–d.
Up to t0 = 5.0× 104, no external pattern is presented (κ = 0), and no memory is recognized,
as expected. Then, a pattern with 80% (γ1 = 0.8) superposition with the stored pattern {ξρ}
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is presented, leading to the onset of the macroscopic superposition mρ(t) (0 ≤ mρ(t) ≤
2γ1 − 1). Similarly, up to t1 = 105, the macroscopic superposition mν(t) remains zero.
It becomes nonzero only for t > t1, due to the abrupt change in the stimulus at t = t1,
where pattern ρ is replaced by the new pattern, presenting a superposition γ2 = 1.0 with
stored pattern {ξν}. Accordingly, Figure 7 presents another important attribute of the
SDNN—that is, its reactions to this change at t = t1, resulting in a decrease in mρ(t),
together with a growth in mν(t) (0 ≤ mν(t) ≤ 2γ2 − 1) for t > t1.
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Figure 7. (Color online) Results from numerical simulations showing the time evolution of two
different macroscopic superpositions of states of neurons with memories ρ and ν [mρ(t) and mν(t),
defined according to Equation (14)], for α = 0.8. The external stimulus changes in time, following
Equations (38) and (39), where the two relevant times are t0 = 5.0× 104 and t1 = 105. Hence, for
t < t0 there is no stimulus, i.e., κ = 0.0, and at t = t0 a stimulus with an intensity κ appears with a
superposition γ1 = 0.8 with stored pattern {ξρ}; then, at t = t1 it changes abruptly, presenting a
superposition γ2 = 1.0 with stored pattern {ξν}. Four different intensities of the external stimulus are
considered for t > t0: (a) κ = 0.6; (b) κ = 0.9; (c) κ = 1.2; (d) κ = 1.5. The macroscopic superposition
mν(t) (dashed green line) remains zero for t < t1, whereas mρ(t) (black circles) becomes nonzero
for t0 < t < t1.

Some interesting effects are shown in Figure 7, as discussed next. (i) The overlaps mρ(t)
and mν(t) approach a plateau whose height increases for larger values of κ, in agreement
with the results presented in Figures 2–6. (ii) The response time to the changes considered,
either in the growth or reduction in the overlaps, is directly related to the intensity of the
external stimulus κ: larger (smaller) values of κ lead to smaller (larger) response times. This
type of behavior is also in agreement with reactions of living beings. In this way, one notices
that for κ = 0.6 the long-time limits for the overlaps have not been fully attained, as one
can see by comparing the plot of mν(t) of Figure 7a with the long-time result of Figure 2c
at κ = 0.6 (both for α = 0.8 and γ = 1.0). One should note that the time interval for the
action of the external stimulus in all panels of Figure 7 is 5.0× 104 (for both patterns ρ and
ν), which is smaller than the time used in the simulations of Figures 2–6, t∗ ' 102N (i.e.,
t∗ ' 106), and thus sufficient for the SDNN to reach its nearest local minimum of energy.
Due to this, for the smaller values of κ [cf., e.g., Figure 7a], both overlaps mρ(t) and mν(t)
have not yet reached their long-time limits. However, for larger values of κ, much smaller
times are required for the overlaps mρ(t) and mν(t) to approach their long-time limits;
particularly, in Figure 7d, one notices that these overlaps have attained their maximum
values; namely, mρ(t) → 2γ1 − 1 and mν(t) → 2γ2 − 1. (iii) All panels of Figure 7 are
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illustrative, and exhibit the ability of the SDNN to react under changes in the environment.
However, the most relevant interval for pattern recognition should be close to κ = 0.9, as
considered in Figure 7b, according to the values of κc estimated in Figures 2c and 3c.

One should note that reactions can also be studied in ANNs, as in the standard
Hopfield model for α < αc. In these cases, this may be achieved by changing the initial state
{σi(0)}, which may lead to jumps in phase space among different basins of attraction. The
results presented above show, clearly, that the SDNN modifies the recognized pattern, in a
smooth way, according to changes in the external pattern, which is a common characteristic
of living beings. In many real situations, living beings need to react to any new external
pattern presented; this model behaves precisely in this way.

7. Recognition of Correlated Patterns

It is also interesting to investigate the performance of this framework when correlated
patterns are stored. Let us suppose an external stimulus that presents a maximum overlap
with one particular stored memory, let us say memory ρ, i.e., γ = 1 in Equation (6). Then,
we consider another pattern, θ, that presents a correlation b (0 ≤ b ≤ 1) with pattern ρ; this
means that ξ

ρ
i = ξθ

i for a fraction b of indices i, leading to

1
N

N

∑
i=1

ξ
ρ
i ξθ

i = b− (1− b) = 2b− 1 (ρ 6= θ). (40)

Above, the limits b = 0 and b = 1 correspond to anti-correlated and fully correlated
patterns, respectively, whereas the most interesting situations occur for 0 < b < 1.

In Figure 8, we present results from the simulations of two patterns, {ξρ
i } and {ξθ

i },
with a correlation parameter b = 0.8 between them; all other patterns are uncorrelated
among themselves, as well as with these two. One may notice that the macroscopic
superpositions, mρ and mθ , attain the expected saturation limits for sufficiently large values
of κ, i.e., mρ → 1 (due to its maximum overlap with the external stimulus) and mθ →
0.6 [following cf. Equation (40)]. Similarly to the previous situations investigated with
uncorrelated patterns, the optimal value κc increases for increasing values of α. Around
their corresponding optimal values κc, the system recognizes both patterns, with mρ & 0.8
and mθ already close to its saturation limit, mθ ' 0.6, for all values of α considered, whereas
all memories µ 6= ρ, θ present overlaps that are essentially zero (in fact, of order 1/

√
N). It

is important to stress that even for α = 1.0 one finds recognition of both stored patterns,
indicating that pattern θ presents a significant overlap with the external stimulus, as a direct
consequence of its correlation with the stored pattern ρ, demonstrating an appropriate
feature of the SDNN model when dealing with correlated patterns. As another interesting
result, one should call attention to the reduction of the estimates of κc, as a consequence
of correlations; this aspect is revealed by comparing Figure 2d (κc = 0.95) and Figure 8d
(κc = 0.70), both for γ = 1 and α = 1, for which one typically notices a 25% decrease on the
value of κc.
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Figure 8. (Color online) Results from numerical simulations of two correlated patterns ({ξρ
i } and

{ξθ
i }), with between them present a correlation parameter b = 0.8 [cf. Equation (40)], are plotted ver-

sus κ. The pattern ρ is fully correlated with the external stimulus (γ = 1), and data for typical values
of α are shown: (a) α = 0.5; (b) α = 0.7; (c) α = 0.9; (d) α = 1.0. The macroscopic superpositions with
memories ρ and θ (mρ and mθ) are represented by black squares and brown pentagons, respectively;
the green circles are data for the macroscopic superposition m⊥ [cf. Equation (19)], computed with a
different external stimulus, orthogonal to all stored memories, whereas the red triangles stand for the
modulus of the difference, ∆m = |mρ −m⊥|. In each case, the maximum value of ∆m yields the best
choice for κ, denoted by κc. The lines interpolating the symbols are guides for the eye.

Results from the numerical simulations of several patterns—more precisely, {ξρ
i }, and

three other patterns correlated with {ξρ
i }—are exhibited in Figure 9. The remaining (p− 4)

patterns are uncorrelated with these four and among themselves. Pattern {ξρ
i } presents a

maximum overlap with the external stimulus (γ = 1), whereas the three correlated ones
follow Equation (40) with b = 0.7, 0.8, and 0.9. All macroscopic superpositions attain
the expected saturation limits for sufficiently large values of κ, i.e., mρ → 1, whereas
the three correlated patterns approach their corresponding (2b− 1) values, according to
Equation (40). Notice that κc ' 0.2 is sufficient to recover all four patterns, with mρ & 0.9
and the other three macroscopic superpositions already very close to their saturation limits,
for all values of α considered; such significant values appear as direct consequences of
the correlations with pattern {ξρ

i }. A curious aspect of Figure 9 concerns the fact that
the optimal value κc increases much slower with α, when compared with previous cases
investigated, for both uncorrelated patterns (see, e.g., Figures 2 and 3) and two correlated
patterns (cf. Figure 8). Besides small variations in κc, the magnitude of κc is diminished by
increasing the number of correlated patterns, as can be seen by comparing, e.g., Figure 2d
(κc = 0.95), Figure 8d (κc = 0.70), and Figure 9d (κc = 0.21), all of them for γ = 1 and α = 1.
The present simulations suggest that, for a sufficiently large number of correlated patterns,
κc should converge to a small finite value κc & 0, for α fixed; by increasing α, a slow increase
in the values of κc should occur. This later result is in agreement with the recognition of
similar patterns that is performed by living beings, where once one constituent of a given
group is recognized, all similar members of the group are also recognized immediately,
requiring little external stimulus for this task. The results of Figures 8 and 9 illustrate
additional important features of the SDNN model, presenting characteristics very similar
to those of living beings in the recognition of correlated patterns.
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Figure 9. (Color online) Results from numerical simulations for three patterns, correlated with
pattern {ξρ

i }, are plotted versus κ. The pattern ρ is fully correlated with the external stimulus (γ = 1)
and data for typical values of α are shown: (a) α = 0.5; (b) α = 0.7; (c) α = 0.9; (d) α = 1.0. The macro-
scopic superposition with memory ρ, mρ, is represented by black squares, whereas those for the three
correlated patterns, for values b = 0.7, 0.8, and 0.9, with respect to pattern {ξρ

i } [cf. Equation (40)],
are depicted by brown pentagons, open blue diamonds, and open green pentagons, respectively
(increasing values of b from bottom to top). The green circles are data for the macroscopic superpo-
sition m⊥ [cf. Equation (19)], computed with a different external stimulus, orthogonal to all stored
memories, whereas the red triangles stand for the modulus of the difference, ∆m = |mρ −m⊥|. In
each case, the maximum value of ∆m yields the best choice for κ, denoted by κc; one notices that κc

still increases with α, although much slower than in Figure 8. The lines interpolating the symbols are
guides for the eye.

We have also tested how the SDNN behaves by considering several correlated patterns
in the regime of large α values, as shown in Figure 10. Similarly to the experiments for
Figures 8 and 9, the estimates of κc decrease for correlated patterns. This effect may be
verified by comparing the results of Figure 10 (four correlated patterns) with those of
Figure 5 (uncorrelated patterns), e.g., in the case α = 4 [Figure 10b (κc = 1.0) and Figure 5a
(κc = 1.8)], as well as α = 16 [Figure 10d (κc = 2.6) and Figure 5c (κc = 3.3)], all for
γ = 1. This aspect is directly related to the gaps between the curves for mρ and m⊥, as
can be seen from the corresponding above-mentioned plots. In these cases, one notices
that the maximum value of ∆m is typically doubled in Figure 10b,d, when contrasted to
those of Figure 5a,c, respectively, making it easier to compute the values of κc. Such an
increase in the maximum of ∆m, together with the reduction in the values of κc, should
yield an enlargement in the total number of memories, since the range of α values for
pattern recognition is expanded; these results indicate that the saturation effect observed in
Figure 5 should occur for even larger values of α, when one introduces correlations among
patterns. Consequently, the introduction of such an important ingredient for real systems,
i.e., correlations among patterns, is expected to improve, even further, the storage capacity
of the SDNN.
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Figure 10. (Color online) Results from numerical simulations for three patterns, correlated with
pattern {ξρ

i }, are plotted versus κ. The pattern ρ is fully correlated with the external stimulus (γ = 1)
and data for typical values of α are shown: (a) α = 2; (b) α = 4; (c) α = 8; (d) α = 16. The macroscopic
superposition with memory ρ, mρ, is represented by black squares, whereas those for the three
correlated patterns, for values b = 0.7, 0.8, and 0.9, with respect to pattern {ξρ

i } [cf. Equation (40)],
are depicted by brown pentagons, open blue diamonds, and open green pentagons, respectively
(increasing values of b from bottom to top). The green circles are data for the macroscopic superpo-
sition m⊥ [cf. Equation (19)], computed with a different external stimulus, orthogonal to all stored
memories, whereas the red triangles stand for the modulus of the difference, ∆m = |mρ −m⊥|. In
each case, the maximum value of ∆m yields the best choice for κ, denoted by κc; one notices that κc

still increases with α. The lines interpolating the symbols are guides for the eye.

8. Pattern Recognition in a Diluted Neural Network

In this section we show that the SDNN also performs well for diluted models; we
illustrate this by analyzing its performance on the Hopfield model with non-symmetric
synapse dilution. Let us then consider synaptic couplings in the modified form [52,53],

Jij =
Cij

N(1− d)

p

∑
µ=1

ξ
µ
i ξ

µ
j , (41)

where {Cij} are independent random variables following the probability distribution,

P
(
Cij
)
= (1− d) δ

(
Cij − 1

)
+ d δ

(
Cij
)

(Cij 6= Cji). (42)

The variables {Cij} represent the asymmetric dilution of the couplings and d ∈ [0, 1[
is a dilution parameter, defined as the fraction of the total number of connections that
have been eliminated, i.e., a macroscopic dilution. Notice that the interactions Jij are not
symmetric now, since for each neuron pair [σi(t) and σj(t)], Cij and Cji are independent
variables with Cij 6= Cji; consequently, no Hamiltonian can be defined. The two extremum
values for the parameter d correspond to d = 0 (undiluted limit), whereas its maximum
value comes from Equation (41), leading to (1− d) ∼ 1/N.

Next, to understand better the effects on κc due to the dilution of synapses, let us
estimate its value within the molecular-field approach; the procedure is similar to the one
carried out in Section 3, through an analysis of the noise contribution. Therefore, the local
field on neuron i is given by
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hi(t) =
N

∑
j 6=i

Jijσj(t) + κηi , (43)

with {Jij} now given by Equation (41). Then, we assume that at a time t the neuron states
{σi(t)}, as well as the external stimulus {ηi}, coincide with pattern {ξρ

i }, leading to,

hi(t) =
N

∑
j 6=i

p

∑
µ=1

Cij

N(1− d)
ξ

µ
i ξ

µ
j ξ

ρ
j + κξ

ρ
i ,

=
N

∑
j 6=i

Cij

N(1− d)
ξ

ρ
i +

N

∑
j 6=i

p

∑
µ 6=ρ

Cij

N(1− d)
ξ

µ
i ξ

µ
j ξ

ρ
j + κξ

ρ
i . (44)

As before, the sum over memories µ was split into two contributions; namely, a signal
produced by pattern µ = ρ, and a noise due to memories µ 6= ρ,

hnoise
i (t) =

N

∑
j 6=i

p

∑
µ 6=ρ

Cij

N(1− d)
ξ

µ
i ξ

µ
j ξ

ρ
j . (45)

Assuming that there are no correlations between patterns µ and ρ, and that patterns
associated with different sites (j 6= i) are independent, each memory contribution takes the
values ±1 with equal probability. Noting that {Cij} are also independent variables, the
noise random variables {hnoise

i (t)} do not yield a Gaussian for a finite N, but they should
become Gaussian distributed for N → ∞. Hence, considering large enough values of N
and p, one acquires for the average over the variables {ξ},

〈hnoise
i (t)〉ξ ' 0, (46)

whereas

(hnoise
i (t))2 =

1
[N(1− d)]2

N

∑
j 6=i

p

∑
µ 6=ρ

N

∑
k 6=i

p

∑
ν 6=ρ

CijCikξ
µ
i ξ

µ
j ξ

ρ
j ξν

i ξν
k ξ

ρ
k . (47)

Since
〈

C2
ij

〉
=
〈
Cij
〉
= 1− d, the associated variance with respect to the variables

{ξ} becomes

〈(hnoise
i (t))2〉ξ '

(N − 1)(p− 1)
N2(1− d)

' p
N(1− d)

=
α

1− d
. (48)

Similarly to the discussion carried out in Section 3, one should choose κc equal to the
width of the noise distribution,

κc = 〈(hnoise
i (t))2〉1/2

ξ '
√

α

1− d
, (49)

in order to cancel (approximately) the noise contribution. According to this, a dilution
parameter 0 < d < 1 yields an increase in the analytical approximate value for κc, as com-
pared to the undiluted case d = 0; this effect is in agreement with numerical simulations,
as will be shown below. The limit d→ 1− N−1, i.e., a fully diluted system, is not relevant
for living beings and will not be investigated here; in this case one should have κc → ∞.

In what follows, for simplicity, we illustrate the effects of synapse dilution for un-
correlated patterns, considering γ = 1.0 in Equation (6), i.e., an external pattern coin-
ciding precisely with the stored one. Results from numerical simulations are shown in
Figures 11 and 12, with the quantities defined in Equations (19), (20) and (37) being plot-
ted versus κ, for decreasing values of the dilution parameter d, and two typical choices
of α, namely, α = 0.5 [Figure 11] and α = 1.0 [Figure 12]. One notices that the limits
mρ = m⊥ = 0 (κ = 0) still hold; furthermore, for sufficiently high values of κ, the saturation
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limits mρ → 2γ − 1 and m⊥ → 1 should be approached, even for high dilutions. One
important aspect in these figures concerns the fact that κc is clearly identified by means
of max(∆m), even for the largest value of d considered [d = 0.7 in Figures 11a and 12a].
Moreover, for fixed choices of the dilution parameter d, κc increases with α, as already
observed for the undiluted case, whereas for fixed α, one notices that κc decreases by
decreasing d; these results are in agreement with the theoretical estimate of Equation (49).
However, the discrepancies between the numerical and analytical estimates for κc are
larger for 0 < d < 1, when compared to those for the undiluted limit (d = 0); whereas
the relative discrepancies in the undiluted limit are typically of the order 10%, for larger
dilutions, e.g., d = 0.7, one may have relative discrepancies slightly larger than 20%.
Similarly to the large α limit of the undiluted case [see, e.g., Figure 5] the curves for ∆m
become flatter for high dilutions, leading to such larger discrepancies. Furthermore, as
before, the analytical result of Equation (49) represents overestimates with respect to the
numerical ones, for all cases shown in Figures 11 and 12. Increasing values of κc with
dilution is qualitatively expected, since synapse dilution diminishes the possible paths for
transmitting given information, and so, larger intensities of the external field should be
necessary in the pattern-recognition process.
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Figure 11. (Color online) Results from numerical simulations for the overlaps mρ (black squares)
[cf. Equation (20)], m⊥ (green circles) [cf. Equation (19)], and the modulus of their difference, ∆m
(red triangles) [cf. Equation (37)], are plotted versus κ, for γ = 1.0, α = 0.5, and typical values
of the dilution parameter d: (a) d = 0.7; (b) d = 0.4; (c) d = 0.1; (d) d = 0.0. In each case, the
maximum value of ∆m yields the best choice for κ, denoted by κc. The two overlaps shown represent,
respectively, macroscopic superpositions of a neuron state with a stored pattern ρ (mρ), and with
non-stored patterns orthogonal to the stored one (m⊥). The lines interpolating the symbols are guides
for the eye.
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Figure 12. (Color online) Results from numerical simulations for the overlaps mρ (black squares)
[cf. Equation (20)], m⊥ (green circles) [cf. Equation (19)], and the modulus of their difference, ∆m
(red triangles) [cf. Equation (37)], are plotted versus κ, for γ = 1.0, α = 1.0, and typical values
of the dilution parameter d: (a) d = 0.7; (b) d = 0.4; (c) d = 0.1; (d) d = 0.0. In each case, the
maximum value of ∆m yields the best choice for κ, denoted by κc. The two overlaps shown represent,
respectively, macroscopic superpositions of a neuron state with a stored pattern ρ (mρ), and with
non-stored patterns orthogonal to the stored one (m⊥). The lines interpolating the symbols are guides
for the eye.

9. General Discussion and Potential Applications

In contrast to standard ANNs, where memories are associated with minima in a
metaphorical energy landscape, in the present SDNN model a given minimum appears
only after a stimulus correlated with a stored pattern is presented. Such a stimulus is
inspired by the form of a random magnetic field, commonly used on models of magnetism,
acting independently on each neuron; it is expressed as κηi [ηi = ±1; κ ≥ 0] and kept
active during the entirety of the recognition process.

The crucial part of the scheme is to calibrate the intensity of the external stimulus κ
in order to cancel out, as much as possible, the noise contribution due to other patterns,
which are not correlated with the external pattern presented. We developed a technique for
calculating this optimal value (referred to as κc), which consists in estimating the maximum
gap between: i) the macroscopic superpositions of a neuron state with a stored pattern
ρ (mρ), and ii) those with non-stored patterns orthogonal to the stored one (m⊥). More
specifically, the maximum of ∆m = |mρ −m⊥| yields κc, and it was shown that, around
this value, the overlap mρ attained significant values, making the model appropriate for
pattern recognition.

We showed that the SDNN considerably increases the capability of the NN to recognize
previously stored patterns. The proposal was illustrated through the inclusion of the
additional contribution κηi to the standard Hopfield model, for which the number of stored
patterns is expressed as p = αN (N representing the total number of neurons), and is known
to be unable to recognizing any further patterns for α & 0.14. Taking into account that
analytical calculations may be performed for the Hopfield model, we compared analytical
and numerical results, showing good agreement between the two approaches. In contrast
to the standard Hopfield case, we found no threshold value for α. Rather, a saturation
effect for sufficiently large α was observed, in the sense that the two overlaps, mρ and m⊥,
become very close, resulting in ∆m→ 0. In spite of this, we verified a significant increase
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in the recognition capacity of the neural network, so that for this specific application,
considering no correlations between stored patterns, the range of possible values of α is
enlarged, typically, by a factor 102.

The impressive performance of the present proposal was also demonstrated in sit-
uations designed to mimic the common daily tasks of living beings, as described next.
(i) Its ability to react promptly to changes in the external environment, reproducing a
fundamental characteristic of living beings which need to react quickly to newly presented
external patterns. (ii) Its recognition of correlated patterns, showing that correlations lead
to a decrease in the optimal values of κc, together with an increase in the maxima of ∆m; as
a direct consequence, the numerical simulations indicate that the range of α values become
enlarged, due to these correlations. These results are in agreement with the recognition of
groups of patterns performed by living beings; once one constituent of a given group is
recognized, all similar members of this group are identified immediately, and this process
requires only a small external stimulus. (iii) Its correct functioning for both asymmetric and
diluted synapses, showing that when dilution is included, higher values of the external
stimulus are necessary.

It is important to stress that the features of the present SDNN can be implemented
both computationally (i.e., in software), as well as on devices. Computationally, there
are many modern algorithms that use various gates (such as AND or XOR), and which
implement Hebb-like rules (see, e.g., Refs. [66–69]). In line with these algorithms, the
synapse values {Jij}may be updated whenever new memories are added to the network.
In the present proposal, synapses are responsible for the first two terms in the right-hand-
side of Equations (8) and (9), so that by changing their values, these two contributions
are modified. To introduce the external-pattern contribution [third term of Equations (8)
and (9)], one should add the signal of the external stimulus κηi to each neuron i. Hence,
neurons will be updated in a sequential way, through the zero-temperature dynamics,
σi(t + 1) = sign[hi(t)]. In a given device, Hebb’s rule can be implemented in several ways
by means of neuromorphic engineering, which is a recently developed area of research
(see, e.g., Refs. [70,71]).

10. Conclusions

Based on the common behavior of living beings, we proposed a new neural-network
framework, in which an external stimulus exerts a strong influence on the pattern-recognition
process. This external stimulus, introduced in the form of a random field, remains active
during the whole recognition process, considerably increasing the capability of the neural
network to recognize previously stored patterns. In contrast to more-common attractor
neural networks in the absence of an external field, memories are not attractors inside
basins of attraction, and basins can be generated for external stimuli that present significant
macroscopic superpositions with stored memories.

Finally, it is important to mention that this procedure may be implemented upon
a large diversity of neural-network models, utilizing both analytical and numerical in-
vestigations. Moreover, its potential application in other processes, distinct from pattern
recognition, is very appealing. The present proposal should help to shorten the wide gap
between the performance of many of these NN models and the common characteristics of
real living beings, improving their performance and, in particular, leading to a considerable
increase in their recognition and reaction capabilities. Furthermore, the application of
the presented theoretical concepts, both computationally (i.e., in software), as well as on
physical devices, is a very promising prospect, and we hope that this task is taken up in
the near future.
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Appendix A. Mean-Field Equations

In this Appendix A, we detail some of the analytic calculations of Section 4; in particu-
lar, those leading to the free energy of Equation (21). We follow the lines of Refs. [21,22],
where one assumes that the total number of memories p increases linearly with N, by intro-
ducing α = p/N as a finite number. In order to calculate the average over the quenched
disorder, one applies the replica method, as defined in Equation (17), where Zn({ξµ

i }, {ηi})
corresponds to the partition function of n independent replicas for a given realization of
the disorder [1–4]. One has that

〈Zn〉η, ξ =

〈
Tr
{σa}

 n

∏
a=1

exp β

 1
N ∑

(i,j)

p

∑
µ=1

ξ
µ
i ξ

µ
j σa

i σa
j + ∑

i
κηiσ

a
i

〉
η, ξ

, (A1)

where ∑(i,j) denotes a sum over all distinct pairs of neurons, corresponding to a fully
connected neural network; in this case, the mean-field approach becomes exact in the
thermodynamic limit. Moreover, a tags the n replicas (a = 1, 2, . . . , n) and Tr{σa} stands for
a trace over the neuron states, for each of the n replicas.

Now, using the Gaussian integral

exp
(

λa2
)
=

1√
2π

∫ ∞

−∞
dx exp

[
−x2/2 +

√
2λax

]
, (A2)

one transforms the neuron-pair contributions (i, j) into single-neuron ones, by introduc-
ing integration variables ma

µ. Splitting the p patterns into two sets, namely, condensed
(µ = 1, 2, . . . , s), and non-condensed (µ = s + 1, s + 2, . . . , p) patterns, one may calculate
the averages over the non-condensed patterns (µ > s),

〈Zn〉η, ξ = e−βpn/2

〈
Tr
{σa}

∫
∏
a, µ
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µ√

2π
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i σa

i + βκ ∑
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ηiσ
a
i



〉

η, ξ

. (A3)

Assuming that for non-condensed patters ma
µ = O(1), one uses the approximation

ln[cosh x] ≈ 1
2 x2 and integrates over ma

µ for µ > s, leading to

〈Zn〉 = e−βpn/2 Tr
{σa}

exp
{
− p

2
Tr ln[(1− β)I− βq]

}
×
〈∫
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− 1
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κ
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i, a

ηiσ
a
i

)]〉
η, ξ

(A4)

where the change ma
µ → (Nβ)1/2ma

µ was used. The matrix q is defined by the elements
qab = 1

N ∑i σa
i σb

i − δab, and from now on, the index µ applies to condensed states
(µ = 1, 2, . . . , s). The integrals over the set {ma

µ} are evaluated by means of the steepest-
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descent method; introducing rab as Lagrange multipliers for the non-diagonal elements
{qab}, one has

f =
α

2
+ lim

n→0

1
n

gn({ma
µ}, {qab}, {rab}), (A5)

with the functional (in full replica space) gn({ma
µ}, {qab}, {rab}) given by

gn({ma
µ}, {qab}, {rab}) =

1
2 ∑
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α

2β
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ησa

)]〉
η, ξ

. (A6)

Now, one assumes the replica-symmetry ansatz [4], by imposing all off-diagonal
elements of the matrix q (as well as their corresponding Lagrange multipliers) to be
equal, i.e., qab = q and rab = r (a 6= b). Considering the limit n → 0, the free energy in
Equation (A5) may be written as
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α

2
+

1
2
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µ=1
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2
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2π

exp
(
− z2

2

)
. . . . (A8)
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