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Abstract: Immune therapeutic exosomes, derived exogenously from dendritic cells (DCs), the ‘direc-
tors’ of the immune response, are receiving favorable safety and tolerance profiles in phase I and II
clinical trials for a growing number of inflammatory and neoplastic diseases. DC-derived exosomes
(EXO), the focus of this review, can be custom tailored with immunoregulatory or immunostimulatory
molecules for specific immune cell targeting. Moreover, the relative stability, small size and rapid
uptake of EXO by recipient immune cells offer intriguing options for therapeutic purposes. This
necessitates an in-depth understanding of mechanisms of EXO biogenesis, uptake and routing by
recipient immune cells, as well as their in vivo biodistribution. Against this backdrop is recognition
of endogenous exosomes, secreted by all cells, the molecular content of which is reflective of the
metabolic state of these cells. In this regard, exosome biogenesis and secretion is regulated by cell
stressors of chronic inflammation and tumorigenesis, including dysbiotic microbes, reactive oxygen
species and DNA damage. Such cell stressors can promote premature senescence in young cells
through the senescence associated secretory phenotype (SASP). Pathological exosomes of the SASP
amplify inflammatory signaling in stressed cells in an autocrine fashion or promote inflammatory
signaling to normal neighboring cells in paracrine, without the requirement of cell-to-cell contact. In
summary, we review relevant lessons learned from the use of exogenous DC exosomes for immune
therapy, as well as the pathogenic potential of endogenous DC exosomes.

Keywords: exosomes; dendritic cells; periodontitis; SASP; immune senescence; Porphyromonas
gingivalis

1. Introduction

The overall goal of immune therapy is to restore homeostasis or health. Depending on
the threat received, immune therapy can consist of various adjuvants or immune check-
point inhibitors to stimulate tumor destruction or eliminate intracellular pathogens. It
can also consist of immune suppressive factors for autoimmune disorders and unresolved
chronic inflammatory conditions. The principal antigen presenting cells in the body that
direct these pathways (and that are pliable for immune therapy), are dendritic cells (DCs).
DCs patrol the peripheral tissues for danger signals from foreign antigens (Ag) and mi-
crobes. Internalization that ensues stimulates DC maturation. This entails upregulation
chemokine receptors, accessory molecules and inflammatory cytokines needed to initiate
an adaptive immune response in the lymphoid organs [1]. For example, mature DCs under
the appropriate cytokine milieu direct Ag-specific cytotoxic T cell response for malignant
cell destruction [2]. Mature DCs can also direct a T-helper cell 17 (Th17) response to eradi-
cate invading bacteria, though these same effectors, when poorly regulated, can promote
degenerative bone diseases [3–5]. Immature DCs (iDCs) in contrast can promote immune
tolerance by induction of T cell anergy and regulatory T cell (Treg) responses to terminate
inflammation [3,6–10] and attenuate inflammatory bone loss [11,12]. The unique capability
of DCs to direct these responses has fueled immense interest in their use in immune therapy,
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for example, by using genetically modified DCs or DCs armed with immunosuppressive
cytokines to suppress inflammatory disease in animals. The limitations of such therapy
include the rarity of DCs and Treg in vivo and phenotypic instability of DCs [13]. Targeting
proinflammatory cytokines using inhibitors of TNF and IL1 has shown therapeutic efficacy
for treating inflammatory diseases. However, effects are short lived due to rapid clearance
and proteolytic degradation in challenging inflammatory environments [14].

Exosomes (EXO), nano-sized extracellular vesicles (EVs) that originate in the endocytic
pathway [15], were first discovered from sheep reticulocytes in 1987 [16]. Since then, the
ubiquity of exosomes in all tissues and body fluids, including saliva, have been recognized.
Intriguingly, EXO can retain sensitive cargo, including proteins, miRNA, mRNA, DNA and
lipids, and transfer that cargo to distant sites in the body, where functions of target cells
can be modified. This approach has garnered intense interest in the therapeutic potential
of EXO [17–23]. Other than cargo preservation, EXO have many other features of an ideal
delivery vehicle, including long circulation time, phenotypic stability and low levels of
clearance and degradation. Moreover, EXO released from cells are endowed with surface
adhesion molecules and other proteins that promote intercellular communication and
uptake by recipient cells. These features are lacking in synthetic agents such as liposomes
and other nanoparticles, which can also have toxicity issues [24–28]. EXO can be isolated
from DCs, and their small size (30–150 nm) can optimize the delivery of their cargo to
recipient cells. Moreover, DC EXO harbor unique proteins that shield them from attack
by the complement system [29] and promote binding to tissue integrins [30]. DC EXO
can also be loaded with cytokines or peptides using direct or indirect approaches [31–33].
EXO from immunostimulatory cargo-loaded mature DCs have been touted for anti-cancer
benefits [34], while tolerogenic DC-derived EXO equipped with immunoregulatory cargo
offer promise for treatment of autoimmune and inflammatory diseases [35]. The goal of
this review is to summarize lessons learned from the use of exogenous DC EXO as immune
therapy for chronic diseases, juxtaposed upon the pathogenic potential of endogenously
induced DC EXO in infectious/inflammatory diseases.

2. Dendritic Cells (DCs): Directors of the Immune Response

DCs consist of multiple subsets, endowed with distinct pattern recognition receptor
repertoires, that play distinct functions in the immune system. The phenotypic traits of
these subsets, with commonalities and distinctions between mouse and human DC subsets,
have been reviewed elsewhere [36]. This review will focus on conventional myeloid DCs,
the most numerous DCs in blood and tissues of mice and humans, and which are most
active in capture of bacteria. Commensal bacteria fail to activate DC maturation upon
phagocytosis [37–41], resulting in an immature phenotype that induces bone protective
T-regulatory cells (Tregs) to resolve inflammation [3,6–10]. However, prolonged exposure
to dysbiotic bacteria triggers inflammatory signals that drive phenotypic instability, and
loss of immune tolerance. DCs emerge in the periphery with hyperinflammatory or mature
phenotype, involved in bone damaging Th-17 effector T cells [1,3–5,42,43].

Immature DCs internalize and process pathogen-associated antigens, stimulating
upregulation of proteins needed for activation of efficient antigen presentation to T cells.
These signals include MHCI/II molecules (Signal 1), which present processed antigen to
T cell receptors (TCR), accessory molecules (e.g., CD86 and CD80) (Signal 2), which bind
with CD28 on T cells to amplify signaling needed for optimum T cell activation. Signal 3
consists of cytokines and other soluble proteins that support T cell expansion. Expression
of chemokine marker CCR7 by mature DCs guides them to lymph nodes for engagement
with naïve T cells [44,45]. A single DC can contact approximately ~5000 T cells within an
hour [46]. Free antigens may also travel to the lymph nodes and be presented to T cells by
specialized DCs. DCs have the unique capacity to migrate to regional lymph nodes, unlike
tissue resident macrophages and initiate clonal expansion of Ag-specific T cells [37].

Instructive in the design of immune therapeutic strategies is the capability of immature
or tolerogenic DCs to obtund activation of TCR and CD28 signaling in T cells, resulting
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in T cell apoptosis or anergy (unresponsiveness) while promoting Treg differentiation. Of
particular note is the minimal expression of signals 2 and 3, and high induction of TGFB1
and IL10 in tolerogenic DCs. TGFB1 promotes Treg differentiation while IL10 maintains
Treg expansion and phenotypic stability. These cytokines can also inhibit other T and B
effector cells and inhibit resident immune cells. In contrast, mature DCs secrete several
proinflammatory mediators to promote immunostimulatory T effector cells including Th1,
Th2 and Th17 while inhibiting Tregs [10,41]. TGFB1 and IL10 have autocrine functions
on DCs, helping to generate and maintain tolerogenic DCs [41,47]. TGFB1 is essential
for in vivo development of epidermal Langerhans DCs in mucosa, reported to maintain
immune tolerance and mitigate inflammatory bone loss in inflammatory diseases [38,41].
The remarkable plasticity of DCs and other immune cells in an inflammatory environment
has led to the development of strategies to reprogram these cells to resolve inflammation
through induction of tolerogenic DCs and Tregs [14].

3. Exosomes (EXO): The Key to Sustained and Stable Immune Reprogramming

The discovery of EXO in the late 1980s led to the initial notion that they were waste
products result from cellular damage [16]. EXO are derived from the internal vesicles of
multivesicular bodies (MVBs) and are released into the extracellular environment by nu-
merous cell types. EXO carry a variety of proteins [48–51], mRNAs, and small RNAs [51,52],
and lipids [51,53–56] that can influence the phenotype and functions of adjacent cells. EXO
can deliver this cargo to target recipient cells locally or at distant sites through release
into the bloodstream. The bioactive cargo of EXO, released by all eukaryotic cells, reflects
the function and phenotype of donor cells, with the advantage that direct cell-to-cell con-
tact is not necessary for intercellular communication. This has obvious implications for
therapeutics and has boosted EXO research in recent years [17–23].

4. General Characteristics of EXO
4.1. Size, Morphology and Physical Features

EXO are cup-shaped in scanning electron microscopy (SEM) images, which is an
artifact of the fixation/contrast step that induces shrinking of subcellular structures. EXO
prepared by Cryo-EM have a round shape. EXO are 30–150 nm in diameter and thus smaller
than plasma membrane vesicles (200–1000 nm) [57]. Nanoparticle tracking analysis is used
to confirm size distribution of isolated EVs, based on the Brownian motion of vesicles in
suspension. Conventional flow cytometry (FC) cannot distinguish between vesicles that
are <300 nm, though immunolabeled beads can be used to bind EV ligands, and label
them with fluorochrome conjugated antibody to allow visualization by FC [58]. EXO light
scatter is correlated to their size, geometry, and composition. EXO also can float in density
gradients and have an equilibrium at density of 1.13–1.19 g/mL in sucrose. A large range
of densities could reflect the heterogeneity of vesicles from small and large EVs. Subtypes
of small EVs could also display different densities [59].

4.2. Composition (Protiens, Lipids and Nuclic Acid)
4.2.1. Proteins

EXO contain a specific subset of cellular proteins, some of which depend on the cell
type that secretes them, whereas others are found in most EXO regardless of cell type. The
latter include proteins from endosomes, the PM, and the cytosol. Proteins from the nucleus,
mitochondria, endoplasmic reticulum, and golgi apparatus are deficient in EXO [51]. Two
major domains are recognized:

Extracellular Membrane Bound Domain. This domain contains adhesion molecules
tetraspanins, integrins, and MFGE8 (lactahedrin). Tetraspanins are highly expressed on
EXO membranes and include CD81, CD82, CD9, and CD63. CD63 is more commonly
associated in the smallest vesicles (<50 nm), while CD9 is more ubiquitous than other
tetraspanins. They facilitate anchoring of multiple proteins and are important for effi-
cient MHCII surface expression and antigen presentation on DCs. They mediate cell
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adhesion, motility, activation, and proliferation. Several integrins guide EXO biodistribu-
tion/trafficking and function. MFGE8 (lactahedrin) can act as an adhesion molecule that
binds to phosphatidylserine (PS) exposed on the surface of apoptotic cells and integrins
on phagocytic cells to facilitate phagocytosis and clearance of dead cells [48–51]. Antigen
presentation and costimulatory molecules MHCI, MHCII, and CD86 are also in this domain,
and commonly derived from antigen presenting cells [48–51]. Membrane transport/fusion
Annexins, flotillins, RABs and ARFs are found here. Annexins act as scaffolding proteins
to anchor other proteins to the cell membrane. They are involved in vesicle transport and
sorting of endocytic vesicles to early endosomes and fusion of secretory vesicles to plasma
membrane for export (endocytosis/exocytosis). Annexins can suppress phospholipases,
inhibit arachidonic acid inflammatory metabolites, promote neutrophil detachment, and
apoptosis for phagocytosis by macrophages and reduction in recruitment. Flotillins are
components of lipid rafts and have a role in endocytosis, trafficking, and cell adhesion.
RABs and ARFs are involved in vesicle formation, vesicle movement along actin, and tubu-
lin networks and membrane fusion [48–51]. Other transmembrane proteins (e.g., LAMPs,
TfR) are also described [51].

Intracellular Domain of EXO [48–51] contains ESCRT components (TSG101) and asso-
ciated proteins (ALIX). TSG101 and ALIX in EXO play roles in multivesicular body (MVB)
biogenesis, involving ubiquitin tagged proteins entering endosomes through the formation
of intraluminal vesicles. Heat shock protein 70 and 90 are involved in protein folding,
clearance of misfolded proteins and stabilization of proteosome and protect cell from stress,
while signal transduction molecules include G proteins, syndican, and syntenin. Other cy-
tosolic proteins have been described, such as histones, ribosomal proteins, and proteasome
and cytoskeletal proteins, including actin, cofilin, moesin, tubulin, which are expressed.
Enzymes such as elongation factors and glyceraldehyde 3-phosphate dehydrogenase are
expressed in EXO.

4.2.2. B-Lipids

EXO are enriched with sphingomyelin, phosphatidylserine (PS), cholesterol, and ce-
ramide. This specific lipid composition (e.g., sphingomyelin and cholesterol) resembles
detergent-resistant subdomains of the PM called lipid rafts. This is supported by the pres-
ence of lipid raft–associated proteins, GPI-anchored proteins and flotillins and resistance of
EXO to detergents. It is suggested that lipid rafts could be endocytosed from the plasma
membrane (PM) and segregated into intraluminal vesicles (ILVs) during their formation at
MVBs and eventually released in EXO [51,53–56].

4.2.3. Nucleic Acids

mRNAs, miRNAs, short noncoding RNAs and DNA have been identified in EXO
cargo. A specific sequence within miRNA has been found to guide sorting to EXO through
binding to sumoylated ribonucleoproteins. The protein, heterogeneous nuclear ribonucleo-
protein A2B1 (hnRNPA2B1), was shown to recognize and binds specific sequence motifs in
miRNAs to facilitate their loading into exosomes. In addition, hnRNPA2B1 sumoylation
regulate loading of EXO miRNAs [60]. Another study showed that the RNA binding
protein SYNCRIP (synaptotagmin-binding cytoplasmic RNA-interacting protein) directly
binds to specific EXO miRNAs sharing common motif [61]. ESCRT-II is an RNA binding
complex and may also function to select RNA for incorporation into EXO [51,52]. EXO
composition can be changed by modifications of in vitro culture conditions that mimic
different extracellular environments or by altering the physiologic, differentiation or mat-
uration state of the secreting cells. For instance, inflammatory signals (e.g., LPS, TNFα,
IFNγ) strongly affect the protein and/or RNA composition of EVs released by dendritic,
endothelial, or mesenchymal stem cells [51].
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5. EXO Biogenesis

MVBs and their ILVs can be formed by both ESCRT-dependent and -independent
mechanisms, which can lead to distinct EXO.

5.1. ESCRT-Dependent Mechanisms

Formation of MVBs and EXO is driven by the endosomal sorting complex required
for transport (ESCRT), which is composed of four protein complexes (ESCRT-0, -I, -II
and -III) with associated proteins (VPS4, VTA1, ALIX). The ESCRT-0 complex recognizes
and sequesters ubiquitinated proteins in the endosomal membrane. ESCRT-0 consists
of HRS (hepatocyte growth factor–regulated tyrosine kinase substrate) that recognizes
the monoubiquitinated proteins and associates with STAM (signal transducing adaptor
molecule). HRS recruits TSG101 of the ESCRT-I complex. ESCRT-I and -II is responsible
for endosomal membrane deformation and inward budding with the sorted cargo into
the endosomal lumen. ESCRT-I is involved in the recruitment of ESCRT-III via ESCRT-II
or ALIX. ESCRT-III induces vesicle scission. The dissociation and recycling of the ESCRT
machinery require interaction with the AAA-ATPase VPS4. ESCRT accessory protein
Alix is involved in exosome biogenesis and exosomal sorting of syndecans through an
interaction with syntenin, which is dependent on ESCRT-II, ESCRT-III, and VPS4 function.
ALIX also can bind to transferrin receptors (TfR) and promote TfR sorting onto ILVs of
MVBs. Some EV cargo proteins, which are not ubiquitinated, can be also selected. HSC70
chaperone can bind and allow sorting of soluble cytosolic proteins containing a KFERQ
sequence to PS on the MVB outer membrane and formation of ILVs in a TSG101- and
VPS4-dependent manner. HSC70 can also allow targeting of TfR to EXO. Ubiquitinated
and KFERQ-containing proteins are abundant in EXO [49,51].

5.2. ESCRT-Independent Mechanisms

Studies show that some cargo is still sorted in EXO after knocking down ESCRT
complex proteins through other mechanisms. Tetraspanins CD63, CD81, and CD9 are
highly enriched in MVEs and have recently shown to be instrumental in formation ILVs
and EXO independently of ESCRT [62–64]. Ubiquitinated MHCII (mutant form lacking
ubiquitination site that cannot be recognized by ESCRT) can still be sorted to EXO in ESCRT
independent manner. MHC class II molecules in EXO are associated with large protein
complexes containing tetraspanins, which support their role in EXO biogenesis [51,65],
including lipid metabolism enzymes. Neutral sphingomyelinase (nSMase) induces hy-
drolysis of sphingomyelin into ceramide in the limiting membrane of MVB and induce
inward budding and formation of ILVs in an ESCRT-independent manner. NSMase can
be inhibited by GW4869 to decrease EXO biogenesis. These observations are consistent
with the presence of high concentrations of ceramide in EXO. Phospholipase D2 is another
lipid enzyme that allows hydrolysis of phosphatidylcholine into phosphatidic acid and for-
mation of ILVs [55]. A small integral membrane protein of lysosomes and late endosomes
(SIMPLE) is secreted in association with EXO and has been shown to also regulate EXO
biogenesis [66].

6. Mechanisms of EXO Secretion
6.1. Role of Rab GTPases in EXO Secretion

Rabs can be involved in vesicle budding, MVB mobility through interaction with
the actin or tubulin cytoskeleton (with the help of motors such as myosins and kinesins),
tethering, docking, and fusion to the membrane of an acceptor compartment or plasma
membrane [67]. RAB11 mediate exocytosis of recycling endosomes [68]. RAB35 mediate
exocytosis of early endosomes [69]. RAB27A/B mediate exocytosis of late endosomes [70].
RAB7 also mediate exocytosis of another population of late endosomes. Recycling of early
endosomes fuse with the PM due to RAB11 or RAB35, respectively, to secret EXO mainly
containing Wnt-associated, Proteolipid protein PLP, TfR, and flotillin. Late endosomes
fuse with plasma membrane via RAB27 to release EXO rich in late endosomal proteins
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including CD63, ALIX, and TSG101. Late endosomes can also fuse with plasma membrane
via RAB7 to release EXO rich in ALIX, syntenin-and syndican. Thus, different subtypes of
endosomes can generate different population of EXO [51].

6.2. Potential Role for Other Molecules in Exosome Secretion

Activation of purinergic receptors by ATP, increases intracellular calcium and cy-
toskeleton remodeling, promoting EXO secretion. Neurotransmitters depolarize cells
promoting EXO exocytosis. Lipopolysaccharide stimulation of T cells, B cell receptor signal-
ing and DC maturation, as well as invasion of DCs by dysbiotic pathogen Porphyromonas
gingivalis [71] as discussed below, induces release of EXO. Platelets produce more EXO
when thrombin receptors are activated. EXO secretion is increased in peptide-loaded im-
mature dendritic upon interaction with T cells. Diacyl glycerol kinase α (DGKα) in T cells
has been shown to inhibit EXO secretion while citron kinase is involved in the exocytosis
of late endosomal compartments [51].

6.3. Role for SNAREs and Other Components of the Fusion Machinery

SNARE proteins form complexes with SNAPs between two membrane compartments
and mediate membrane docking and fusion. Ykt6, R SNARE, V0 subunit of V-ATPase,
VAMP7, VAMP8, and SNAP-23 are possible mediators of Ca regulated fusion of MVBs with
the PM. Different cell types may have distinct SNARE complexes that mediate the fusion
of different subpopulations of MVBs within a single cell type. Thus, the downregulation
of one SNARE protein might affect the secretion of only a particular subpopulation of
EXO [51,72–74].

6.4. Distinct Populations of MVBs That Modify EXO Secretion

Different subpopulations of morphologically distinct multivesicular bodies (MVBs)
based on the size and appearance of the ILVs are known. MVBs bearing early endosomal
markers like RAB4 and RAB5A fuse with the PM for EXO release, more commonly than
late endosomes. CD63 cholesterol-positive and CD63 lysobisphosphatidic acid (LBPA)
negative MVBs are more committed to fusion with the plasma membrane for EXO release,
while CD63 cholesterol-negative and CD63 LBPA- positive MVBs are fated for fusion with
lysosomes and degradation. In immature DCs, ubiquitinated MHC class II molecules
sorted into MVBs mainly are committed for lysosomal degradation. In the presence of
antigen-specific T cells, DCs express MHC class II–CD9 complex containing MVBs that fuse
with the PM to release EXO. Thus, some MVBs are destined for the degradation pathway,
whereas others are fated for exocytosis [51].

7. EXO Fate and Mechanism of Uptake in Recipient Cells

In order to understand how EXO may alter physiological and biological functions
in vivo, it is essential to study their biodistribution to target organs and cells, and how EXO
interact with recipient cells.

7.1. Planktonic EXO

Planktonic or free-floating EXO can bind to extracellular matrix and interact with
acceptor cells in situ, or they can redistribute through the lymphatics or blood stream and
interact with distant cells, tissues, and organs. Circulation of EXO in body fluids is short
lived, with ~30 min half-life in plasma after IV administration in lateral tail vein of mice.
EXO are typically recovered in lung, liver, and spleen up to 4 h later. EXO can be sequestered
by circulating monocyte/macrophages and DCs in the liver and spleen. Moreover, EXO
express a variety of integrin and chemokines that can guide in vivo trafficking and tissue
homing [75–77].
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7.2. Exosome Cellular Recognition and Target Cell Specificity

Tetraspanins CD63, CD9, and CD81 are instrumental in EXO adhesion, motility, signal
transduction and activation of acceptor cells. Differences in tetraspanin complexes influ-
ence target cell selection [78–82], spatial assembly of MHCII for antigen recognition and
presentation to T cells and may affect the induced TCR signaling [83]. The interaction of
ICAM-1 on mature DC-derived EXO with LFA-1 on T cells is critical for efficient naive T cell
activation [84]. In addition, several other exosomal integrins have demonstrated roles in
adhesion and EXO trafficking [51,75,85,86]. The level of MHC expression on isolated EXO
is reflective of their expression on the parent cell. MHC class I molecules on EXO interact
with ILT2, ILT4 inhibitory receptors on CD8 plus T cells and NK cells, which promote the
inhibition or activation of these cells. EXO from DCs and B lymphocytes express MHC
class II for antigen presentation and activation of CD4 T cells [87–90]. Moreover, EXO can
bind and fuse with the plasma membrane of recipient cells, to which they transfer their
cargo proteins and RNAs. The phenomenon is regulated by tetraspanin complexes and
integrins [86,91].

7.3. Soluble and Juxtacrine Signaling by Exosome Surface Ligands

Soluble signaling involves cleavage of ligands from the EXO surface by proteases in
the extracellular matrix while juxtracrine signaling requires the juxtaposition or interaction
of exosomal surface bound ligands and receptors on target cells. EXO membrane bound
FasL, TRAIL and TNF can be cleaved by metalloproteinases to form soluble cytokines.
Soluble FasL and TRAIL, TNF and TGFB1 have a reduced activity when compared to that
of the membrane-bound form of these ligands [86,92–94].

7.4. EXO Internalization

Several modes of EXO internalization have been proposed, depending on EXO size
and the acceptor cell type. Large EVs or aggregates of small EVs like EXO mostly induce
phagocytosis, whereas individual small EVs or EXO can be internalized by nonphagocytic
processes, such as pinocytosis [86].

7.4.1. Phagocytosis

Phagocytosis of EXO requires opsonin receptors (FcR and complement receptors),
scavenger receptors or Toll-like receptors. EXO can bind with opsonins and are internalized
by the cell where they fuse with limiting membrane of endocytic compartments. Most
EXO are sorted to endosomal rather than lysosomal pathways. Phagocytosis of EXO is
dependent on the actin cytoskeleton, PI3K, and dynamin2. Phagocytosis can be blocked by
using actin polymerization inhibitor as cytochalasin D [95].

7.4.2. Pinocytosis

Macropinocytosis. During macropinocytosis, plasma membrane protrusions are
driven by polymerization of actin filaments forming an invagination for non-specific
endocytosis of extracellular fluids and small particles. Phosphatidyl serine on the surface
of EXO activates macropinocytosis. Macropinocytosis of EXO is dependent on Na+/H
exchange, actin and PI3K, it can be inhibited using of Na+/H+ ion exchange inhibitors
such as amiloride [96,97].

Micropinocytosis includes clathrin dependent endocytosis (ligand/receptor-mediated
endocytosis) and clathrin independent endocytosis (lipid raft-mediated endocytosis). The
former involves EXO ligand engagement with specific receptors on the cellular plasma
membrane. It utilizes clathrin and adaptor protein 2 complexes which coat the membrane
and induce invagination of the membrane into a vesicle. It is also dynamin dependent
and can be inhibited by clathrin knock down using siRNAs [86,98]. The latter involves
dynamin dependent and dynamin independent mechanisms, requiring cholesterol and
sphingomyelin-rich microdomains in the plasma membrane. Dynamin dependent is me-
diated by caveolin 1) and/or RhoA kinase which can be inhibited by siRNA knock down
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of caveolin 1 or RhoA kinase respectively. Dynamin independent is divided into ARF6
or CDC42 GTPase and Flotilin-1 mediated. Studies showed knock down of flotillin as
well as inhibitors or silencing the associated GTPases inhibits endocytosis by this mecha-
nism [86,98].

8. Exogenously Produced DC EXO: Natural Nano-Delivery Systems for
Inflammatory Diseases

The therapeutic advantages of EXO nano-delivery systems have been previously
reviewed in detail [14,35,99–105]. DC-derived EXO mimic the biology of donor DCs gen-
erating considerable interest in their use as cell free therapeutic agents [106]. During
interaction with cognate T cells, DCs promote the biogenesis of MVPs with MHC and
CD9, carrying intraluminal vesicles to be exocytosed upon fusion with the plasma mem-
brane [65,107]. Mature immune-stimulatory (mDCs EXO) or immature immune regulatory
(imDCs EXO) can be isolated from mature or immature DCs, respectively. mDCs EXO
loaded with specific peptides can elicit potent specific immune activation, resulting in
tumor cell detection and eradication, and microbial elimination [22,108,109]. In clinical tri-
als, autologous mDCs EXO vaccinated into cancer patients showed additional therapeutic
effects without significant side effects [110,111]. EXO from DCs can be pulsed with bacterial
antigen peptides for bacteria-free vaccines [112,113] or with Toxoplasma gondii anti-parasite
immunity in mice [114].

On the opposite side of the immune spectrum, immune tolerance can be induced by
iDC EXO. DCs modified with anti-inflammatory molecules, including IL-10, IL4, TGFB,
FasL, IDO, and CTLA4 have generated various immunoregulatory EXO subtypes for treat-
ment of immune disorders [14,93,99,100,102–105]. DC lineage marker CD11c and low levels
of antigen presenting MHCII and costimulatory molecules CD80, CD86 are a feature of EXO
from immature or tolerogenic DCs. iDC EXO inhibit T cell activation and proliferation di-
rectly or indirectly by reprograming the biological function of acceptor DCs and promoting
a regulatory/suppressive subset [14,93,103]. Delivery of iDC EXO by an intradermal route
resulted in their interaction with acceptor CD11c+ cells in dermis and regional lymph nodes.
Macrophages and CD11c+ DCs in liver and spleen were found to take up EXO injected
intravenously [103]. iDCs EXO carrying tolerogenic molecules inhibit rheumatoid arthritis
and joint destruction in animal models [14,102–104]. In an inflammatory bowel disease
(IBD) model, TGF-β1 enriched iDCs EXO reversed the disease severity and clinical indices.
This occurred through repression of Th17 responses and enhancement of T-regulatory cells
(Tregs) [93]. Experimental autoimmune encephalomyelitis responded well to injection of
iDCs EXO with membrane bound TGF-β1 [115]. iDC EXO can prolong the survival times
of cardiac and liver transplantation [116,117] and improve cardiac function in mice post
MI [118]. Our team recently found that immune-regulatory EXO (regDCs EXO) subsets,
loaded with TGFb1 and IL10, were retained at the inflammatory sites of oral injection and
were efficient in reprogramming the immune function of local acceptor DCs and CD4+ T
cells, inducing tolerogenic DCs and Tregs in situ. Moreover, regDC EXO protected their
therapeutic cargo against proteolytic degradation and abrogated inflammatory bone loss in
experimental periodontitis [119] (Figure 1). The proteomic cargo and biodistribution char-
acteristics of DC EXO were further examined. The protein cargo of regDC EXO was indeed
complex, but dominated by tissue trafficking, cell binding, and immunoregulatory proteins
were dominant, consistent with their functions [120]. Interestingly intravenous injection of
regDCs EXO in mice led to predominant accumulation in the lungs. This generated interest
in possible therapeutic application of regDC EXO for COVID-19. We showed that regDCs
EXO inhibit the expression of ACE2, the SARS-CoV-2 target receptor, in respiratory tract
epithelial cells (PBTECs) by a TGFb1 dependent mechanism. This generated speculation
that regDC EXO may have efficacy in reversing harmful inflammatory lung responses in
COVID-19, as reported [119]. Another approach is to block the SARS-CoV-2 entry point us-
ing regDC EXO therapy, reducing the infection severity [121]. Other suggested approaches



Cells 2022, 11, 115 9 of 22

involve EXO enrichment with antiviral drugs [122], decoy ACE2 [123], or the S-protein of
the SARS-CoV-2, for COVID-19 infection [124].
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Figure 1. DC Exosome (Exo) Therapy for the Inflammatory Bone Disease Periodontitis. 1. TGFb-/IL-
10 enriched exo (regDC exo) are released. 2. Exo injected into palatal gingiva interproximal at site
of ligand induced PD. 3. Exo uptake by acceptor gingival DCs reduces DC maturation and alters
cytokine profile; 4 and 5. Modulation of osteoclastogenic Th17 response by regDCexo.

EXO have been isolated from other immune cells for immune reprogramming, includ-
ing Tregs [125–127] B lymphoblasts [128,129], natural killer cells [130] and mast cells [131].
EXO from macrophages were loaded with linezolid and vancomycin to inhibit intracellular
infection by methicillin-resistant Staphylococcus aureus (MRSA) [132,133]. Other groups
loaded EXO derived from muscle cells with various virus antigens to be used as a vaccine
and induce specific cytotoxic T lymphocyte immunity [134]. In summary, DC EXO are
preferable to whole immune cell-based therapy for inflammatory and infectious diseases
for many reasons [14,35,99–105].

9. Endogenously Produced DC EXO: Diagnostic and Pathogenic Potential, Role in
Immune Senescence
9.1. EXO Diagnostics

Endogenously produced EXO are found in the intracellular spaces, in tissues and
body fluids. The proteins, lipids, and nucleic acids [135] in EXO are being studied for
defining underlying diseases and conditions. Saliva EXO for example, are under intensive
study as a non-invasive diagnostic of premalignant cancer lesions [136]. Salivary EXO from
periodontitis patients is enriched in PDL-1 and miRNAs, hsa-miR-140-5p, hsa-miR-146a-5p,
and hsa-miR-628-5p) compared with healthy controls [137,138]. EXO and their biologically
active cargos offer diagnostic and prognostic information in chronic airway diseases [139],
craniofacial disorders [140], renal diseases [141–143], neurodegenerative diseases [144],
lipid metabolic diseases [145], and tumors [146].
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9.2. EXO Pathogenesis

The potential pathogenic role of endogenous DC EXO cannot be overlooked since it can
provide additional information about therapeutic applications. During HIV infection, DCs
release HIV-bearing EXO that serve as a shuttle carrying HIV viral particles and transmitting
infection to CD4T cells [147,148]. Fibronectin and galactin 3 may be instrumental in
transmission of HIV infection to bystander T cells by DC EXO [149]. These viral-bearing
DC EXO are more infectious and less efficiently eradicated than cell-free viral particles [150].

Involvement of DC EXO has been documented in chronic inflammatory diseases
and allergic reactions [119,151–153]. We have recently shown the role of EXO derived
from mature DCs in exacerbating an inflammatory response and alveolar bone loss in a
murine model of periodontitis [119]. Further, ongoing unpublished work from our labora-
tory has revealed that EXO derived from DCs infected with the keystone oral pathogen
P.gingivalis, aggravates inflammatory bone loss in mice. Mature DC EXO migrate to the
spleen via CCR7 and induce inflammation in vivo [154] and exacerbate atherosclerosis
through TNFa/Nf-KB-mediated stimulation of endothelial cells [155]. This study showed a
significant increase in atherosclerotic lesions in APOE−/− mice upon 12-week injection of
mature DC EXO [155]. Similarly, EXO secreted from atherogenic macrophages were found
to promote atherosclerosis. Transfer of specific EXO miRNAs to recipient macrophages
inhibits migration and promotes their entrapment in the blood vessel wall [156]. On
the other hand, DC EXO have demonstrated a protective effect in myocardial infarction
(MI) [157,158] and Ischemic reperfusion injury (IRI) [158], potentially through induction of
Tregs. DC EXO contribute to the production of leukotrienes LT and other inflammatory
mediators of arachidonic acid pathway [151,152]. Moreover, DC EXO can acquire and
present the aeroallergen, Fel d1 inducing a Th2 response with the production of IL4 in
PBMCs from individuals with cat allergy [153]. Additionally, donor DC EXO elicit an
immune reaction and promote allograft rejection in cardiac transplantation in mice [159].
Serum EXO from HCV-infected patients contains HCV RNA and induces transmission
of HCV to liver cells through viral receptor-independent mechanisms [160]. Serum EXO
isolated from patients with tuberculosis were found to carry mycobacterial antigens [161].
EXO of intestinal lumen aspirates of inflammatory bowel disease IBD patients carry pro-
inflammatory factors including TNF-α, IL6, and IL8 in levels higher than that of healthy
controls. These EXO activate epithelial cells and macrophages to secrete IL-8 [162]. EXO
purified from synovial fibroblast of rheumatoid arthritis patients contain TNF-α at the
transmembrane domain that induces NF-κB activation and MMP-1 release in acceptor
bystander cells [163]. DC EXO have been used as prognostic biomarkers for metastatic
melanoma treated with Ipilimumab reflected by the level of CD86 expression [164].

9.3. Alteration of Exosome Secretion and Cargo Content in Infection

Pathogenic invasion of the host cell changes its metabolic activity and endocytic
pathway utilization, which in turn affects EVs secretion [71,165]. An increase in the host
cell secretion of EXO and associated protein was observed in Plasmodium, Rota virus,
Chlamydia psittaci, and Mycobacterium bovis Bacille Calmette–Guerin (M.bovis BCG) infec-
tions [165–169]. Moreover, the concentration of secreted EVs in gingival crevicular fluid
(GCF) was reported to increase in periodontitis patients compared to healthy/gingivitis
subjects [170]. In line with these studies, our group has recently shown that P.gingivalis
infection of host DCs leads to an increase in the number of secreted EXO [71], which was
restored to base line levels with rapamycin treatment, a known inducer of autophagy [71],
thus suggesting a potential role of autophagy in EXO secretion during infection. Au-
tophagy inhibition promotes an increase in EXO secretion in response to accumulation
of damaged proteins or organelles, whereas activation of autophagy diminishes EXO
release due to the fusion of MVB and autophagosomes [71,171]. Other mechanisms for
enhanced release of infection-mediated EXO have been discussed [165]. Ebola and HIV
viral infections activate EXO biogenesis by increasing synthesis of CD63, apoptosis-linked-
gene-2 product-interacting protein X (Alix) and endosomal sorting complex required for



Cells 2022, 11, 115 11 of 22

transport machinery-II (ESCRT) proteins [165,172–174]. In addition to an increase in the
number of released EXO during infection, the host cell-derived EXO exhibit a distinct
proteomic, lipid and nucleic acid profile. In this context, the microRNA (miRNA) content
of DC EXO, is worth mentioning, as it results from a complex sorting process during
cellular biogenesis and export [60]. MiRNAs are especially active in post transcriptional
regulation of genes [175]. Recently, we have shown a change in miRNA content of EXO
from DCs infected with P. gingivalis [71], contributing to inhibition of beclin-mediated
autophagy [176], suppression of ULK1 and LC3I/II [177] (miR17-5p), and impediment of
autophagy-dependent clearance of intracellular bacteria [178] (miR106B). Further, our study
showed upregulation of miRNA 132-3p in Pg-induced DC EXO, consistent with aged bone-
marrow derived DCs (BMDC). Infection-induced DC EXO often contain pathogen-related
proteins [71,108,109] and virulence factors [71,179–181] that can affect the physiologic host
response in multiple ways [165]. EXO can transmit infections to bystander cells [147,172],
can evade the immune response [147,150], induce cell apoptosis [165,180,182] or promote
immune suppression [113,165]. On the contrary, antigen-bearing EXO can activate the
immune response and illicit an antigen specific T cells response [165,183]. Moreover, the
efficacy of DC EXO, pulsed with Toxoplasma Gondii, Chlamydia psittaci, sporozoites-extracted-
or tumor antigens to elicit an immune response has highlighted DC EXO as a strong candi-
date for cell free vaccines [108,109,169]. Worthy of note, is the ability of DC EXO to activate
a humoral antibody response when challenged with Diphtheria Toxoid, or streptococcus
pneumoniae [179,184]. The immunogenicity of EXO from other antigen presenting cells
have been reported. For example, Mycobacterium tuberculosis or Mycobacterium bovis-infected
macrophages secrete EXO bearing bacterial antigens to stimulate antigen specific immune
responses [112,185].

9.4. Role of DC EXO in Immune Senescence and Inflammaging

A well-established feature of physiological ageing is diminished immune function, or
immune senescence, coupled with a low-grade chronic inflammation [186,187]. Senescence is
regulated by several signaling pathways, most notably, Akt1 [188,189] and mTOR [190,191],
with the latter inhibited by rapamycin [191]. Functional deficits are reported in senescent
monocytes, macrophages (reviewed in [192]), and T cells (reviewed in [193]). Vulnerability of
DCs to senescence was attributed to cellular stressors such as microbial infection [71]. The
senescence associated secretory phenotype (SASP), a distinctive feature of senescence (Fig-
ure 2), consists of secreted exosomes (EXO) and inflammatory cytokines [194–197]. Mounting
evidence indicates a critical role of EXO in immune senescence, inflammaging and age-related
diseases (ARDs) [198]. Reports have shown that senescence leads to an increase in EXO
secretion [199] (Figure 2). Recently, we have shown that exosomes derived from P.gingivalis-
infected DC are increased in number, transmit immune senescence to bystander immune
cells in vitro [71], and accelerate alveolar bone loss in a PD model in vivo (unpublished data).
Further, P. gingivalis-induced DC EXO comprised SASP-related molecules, TNFa, IL1B and IL6,
and Mfa1 fimbrial protein [71]. Prior published work from our group using human monocyte
derived DCs (MoDCs) [200–206] has identified an important role for Pg minor Mfa1 fimbriae
in invasion of MoDCs, activating mTOR (inhibiting autophagy) and hyper-phosphorylating
Akt1 (inhibiting apoptosis), suggesting a role in premature immune senescence [189]. An
increased role for Mfa1 fimbriae in vivo is suggested by its upregulation in Pg from dental
plaques and blood DCs of humans with PD [207]. Activation of the inflammasome, implicated
in periodontal inflammaging [208] reportedly orchestrates the SASP [194]. Microbial activation
of host DCs triggers inflammasome activation [209] and secretion of pathogenic exosomes
that contain mature IL-1B [71]. These pathogenic EXO transmit immune senescence to normal
bystander cells, amplifying senescence in paracrine [71]. A study of immune senescence has
yielded a wealth of knowledge about ARDs [193]. However, much work is required to better
understand the role of EVs in senescence and age-related diseases.
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Figure 2. Cellular Senescence due to Advanced Age and Cell Stressors: Role of Exosomes. Advanced
age and canonical (e.g., doxorubicin) and non-canonical (e.g., P.gingivalis) cell stressors can provoke
cellular senescence (CS). Premature CS can occur by exposure to X irradiation, doxorubicin, reactive
oxygen species (ROS), and microbial CS stressors. Senolytic agents (e.g., rapamycin, metformin)
can remove senescence cells. CS profiling identifies elevated SA-β-Gal, p16 INK4A, pAkt-1, p53,
p21Waf1/Clip1, and soluble and exosomal SASP. Exosomes (exo, green circles) can transmit senes-
cence to young cells in paracrine. CS is implicated in many age-related diseases such as periodontitis,
type II diabetes and COVID-19.

10. Extracellular vesicles (EV), DC EXO and Cancer

Several studies have shown the role of EVs in tumorigenesis. Tumor cells were
found to secrete EVs that bear immunosuppressive molecules and disrupt differentiation,
maturation, and function of DC [210]. Moreover, tumor EVs inactivate T lymphocytes or
natural killer cells to suppress immune responses, promoting tumor progression [211]. At
the site of the primary tumor, tumor cells secrete fibronectin-coated EXO at the leading
edge of the cell that bind collagen fibrils extracellularly while interacting with integrins
on cell membrane. This enhances cancer cell motility and migration by stabilizing cellular
protrusions and facilitates amoeboid movement [212]. EXO-carrying multivesicular bodies
are docked at cellular protrusion called invadopodia and secrete growth factors and matrix
metalloproteinases containing EXO that enhance invadopodia stability, extracellular matrix
(ECM) degradation, and invasion. [213,214]. On the other hand, tumor-derived EXO harbor
tumor antigens that can activate DCs, stimulating antitumor specific cytotoxic immune
response. This is more effective than that achieved by tumor cell lysates or soluble-free
antigens when used as vaccines [215]. In addition, DCs EXO have been employed as a
subcellular vaccine for cancer therapy in clinical trials [110,111,216] (Table 1). These include
two phase I [110,111] and one phase II [216] clinical trials in end-stage cancer patients.
The first phase I clinical trial utilized EXO isolated from autologous immature monocyte
derived DCs (MoDCs). These DC EXO were loaded with both MHCI and MHCII melanoma
associated antigen (MAGE) peptides. Four DC EXO vaccinations were administered at
weekly intervals into 13 advanced non-small cell lung cancer (NSCLC) patients. Nine of
these patients completed the therapy. Limited DTH reactivity against MAGE peptides,
MAGE-specific T cell responses with increased natural killer cell (NK) lytic activity were
observed. In addition, DC EXO therapy was found to be safe and well-tolerated [111].
These DCs EXO were also employed in the second phase I clinical trial once weekly for
4 weeks in 15 metastatic melanoma patients. NK cell functions were augmented and
only grade 1 toxicity was observed [110]. Phase II clinical trial utilized EXO derived from
IFN—stimulated autologous MoDCs. The EXO were loaded with both MHCI and MHCII
restricted tumor antigens and administrated in non-small cell lung cancer in one-, two- and
three- week intervals in a maintenance immunotherapy protocol. NK cell activity was also
promoted in phase II clinical trial with limited T cell activity. Twenty two of the twenty-six
patients completed the study. Grade 3 hepatotoxicity was found in one of the cases [216].
These phase I and II clinical trials showed the feasibility of DC EXO as anticancer vaccines,
suggesting the safety and potentiality for other systemic diseases.
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Table 1. DC EXO Clinical Trials.

Disease Type Phase n DCs EXO Doses Outcome Ref

Advanced
Non-small cell

lung cancer
I 13 (9 completed

the study)

Autologous MoDCs
derived EXO

were loaded with
MAGE peptides.

4 vaccinations
at weekly
intervals.

Limited T cell reactivity
and DTH against MAGE
peptides. Increased NK
lytic activity. Safe, well

tolerated
activity.

[186]

Metastatic
Melanoma I 15

Autologous MoDCs
derived EXO

were loaded with
MAGE peptides.

4 vaccinations
at weekly
intervals.

No MAGE-specific T cell
response. No DTH

response.
NK cell activation. Safe,

well tolerated.

[187]

Advanced
Non-small
cell lung
cancer

II
26 (22

completed the
study)

EXO were isolated
from IFN-stimulated

autologous
MoDCs

and loaded with
MHCI and

MHCII
restricted cancer

antigens.

Vaccination in
1, 2 and 3 week

intervals in a
maintenance

immunotherapy
protocol.

Limited T cell activity.
increased

NK cell function.
One patient

had a grade-3
hepatotoxicity.

[188]

11. Conclusions

Exogenously produced exosomes from dendritic cells, custom tailored to activate,
suppress or reprogram the immune system are under intensive study for a variety of
infectious or inflammatory diseases, including periodontitis. The efficacy and safety of
these therapeutic nanoparticles are predicated on further in-depth study of their biogenesis,
biodistribution, and modes of cell-to-cell communication. Careful consideration must also
be given to the diagnostic and pathologic significance of endogenously produced exosomes,
secreted at inflammatory sites, into tissues and body fluids. The molecular cargo of such
endogenous exosomes, including infectious agents, proteins, lipids, and nucleic acids,
must be thoroughly studied to understand their role in disease, but also their potential for
transmitting such cargo, in paracrine, to neighboring cells. This is particularly relevant
to transmission and amplification of immune senescence between immune cells with or
without cell-to-cell contact.
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