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Giant cell tumor of bone (GCTB) is benign tumor that can cause significant osteolysis and
bone destruction at the epiphysis of long bones. Osteoclasts are thought to be highly
associated with osteolysis in GCTB. However, the migration of osteoclasts in GCTB
remains unclear. A deeper understanding of the complex tumor microenvironment is
required in order to delineate the migration of osteoclasts in GCTB. In this study, samples
were isolated from one patient diagnosed with GCTB. Single-cell RNA sequencing
(scRNA-seq) was used to detect the heterogeneity of GCTB. Multiplex immuno
fluorescence staining was used to evaluate the cell subtypes identified by scRNA-seq.
A total of 8,033 cells were obtained from one patient diagnosed with GCTB, which were
divided into eight major cell types as depicted by a single-cell transcriptional map. The
osteoclasts were divided into three subsets, and their differentiation trajectory and
migration status were further analyzed. Osteoclast migration may be regulated via a
series of genes associated with cell migration. Furthermore, four signaling pathways
(RANKL, PARs, CD137 and SMEA3 signaling pathway) were found to be highly
associated with osteoclast migration. This comprehensive single-cell transcriptome
analysis of GCTB identified a series of genes associated with cell migration as well as
four major signaling pathways that were highly related to the migration of osteoclasts in
GCTB. Our findings broaden the understanding of GCTB bionetworks and provides a
theoretical basis for anti-osteolysis therapy against GCTB in the future.
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INTRODUCTION

Giant cell tumor of bone (GCTB) is destructive osteolytic benign
tumor that often affect the epiphysis of long bones and can lead to
severemotor dysfunction (1). GCTBusually occurs in young adults
between the agesof 30 and40years (2). Themain pathologic feature
of GCTB is severe osteolysis that is thought to be caused by
osteoclasts, which are multinucleated cells derived from the
monocyte/macrophage lineage (3). Surgical resection is the main
treatment for GCTB. However, repetitive operations after the
primary surgery due to local recurrence can lead to serious
functional complications (4). The use of drugs designed to inhibit
the function of osteoclasts, such as denosumab or zoledronic acid,
can contribute to symptomatic relief but do not inhibit the
development of GCTB (5). An in-depth understanding of the
mechanism behind osteoclast-mediated osteolysis by GCTB is
therefore of critical importance.

The combination of receptor activator of nuclear factor-k B
(RANK) and its ligand (RANKL) regulates osteoclast activity, which
involves osteoclast attachment to the bone surface and digestion of
the bone matrix via the secretion of acid (H+ and Cl-) and
proteinases (cathepsin K) (6). These phenomena are not only
observed under normal physiologic conditions but also in the
setting of pathologic bone resorption, such as by bone tumors
such as GCTB (3). However, why osteoclasts migrate directly to the
lesion and why osteoclast-mediated osteolysis occurs remains
unknown. The answer may be related to the tumor micro
environment, in which cells directly communicate with each other
through cellular contact and interaction with the extracellular
matrix (7). Analysis of the unique types of GCTB tumor
microenvironments can reveal key factors involved in osteoclast
migration and osteoclast-mediated osteolysis that may serve as
future targets of novel therapeutic strategies. We hypothesized
that osteoclast migration is influenced by the complex and
dynamic features of the GCTB tumor microenvironment.

Given that conventional bulk RNA-sequencing (RNA-seq) is
based on the hypothesis that every gene is expressed equally by
every cell, it is therefore unable to accurately characterize the
heterogeneity of tumor microenvironments at the cell-type level
(8). With advancement in the scRNA-seq technique, heterogeneous
tissues can be delineated at the single-cell level (9). This technology
permits the massively parallel characterization of thousands of cells
at the transcriptome level and can better explain cell–cell
interactions. However, relatively few studies have been published
on the single-cell transcriptome of GCTB. Here we used scRNA-seq
to investigate the intratumoral heterogeneity of GCTB. A relative
comprehensive single-cell transcriptome profiling of GCTB was
performed, and gene features and cellular dynamics associated with
osteoclast migration were identified.
MATERIALS AND METHODS

Patient and Sample Collection
This work was approved by the First Affiliated Hospital of Guangxi
Medical University (No.2019KY-E-153) and complied with all
Frontiers in Oncology | www.frontiersin.org 2
relevant ethical regulations. The patient with GCTB whose
clinical and cellular data was used in this study provided
informed consent. The patient’s basic information, X-ray and
MRI imaging, and pathology slides are shown in Supplementary
Figure 1 and Supplementary Table 1. Fresh specimens acquired at
the time of surgical resectionwere collected in coldHank’s balanced
salt solution (cat. no. 311-512-CL;Wisent Bio Products) containing
1% antibiotic-antimycotic (cat. no. 15240062; Thermo Fisher) and
transported to the laboratory as soon as possible.

Preparation of the Single-Cell Suspension
Fresh tumor specimens were mechanically isolated and
enzymatically digested to produce single-cell suspensions. The
tumor was washed two times with Dulbecco’s phosphate-buffered
saline (DPBS; cat. no. 14190250; Gibco) and minced on ice. The
tumor was then subjected to enzymatic type II (cat. no. 17101015;
Thermo Fisher) digestion in a water bath at 37 ° to generate GCTB
cell suspensions. A 100-mm nylon cell strainer (cat. no. 352340;
Falcon) was used to filter impurities. Red blood cells (RBC) were
lysedwithRBC lysis buffer (cat. no. 1966634; Invitrogen) containing
DNase I (1 unit/ml) and removed via centrifugation. The cell
suspensions were refiltered with a 40 mm nylon cell strainer (cat.
no. 352340; Falcon) to capture the isolated cells. The dissociated
cells were stained with trypan blue (0.4%; cat. no. 420301; Thermo
Fisher) to calculate cell viability and diluted with DPBS containing
1% fetal bovine serum (FBS; cat. no. 10091148; ThermoFisher) into
appropriate concentrations for the next step.

Preparation of Single-Cell Suspensions
for Library Construction and
scRNA-Sequencing
Single-cell suspensions of GCTB were uploaded into an emulsion
droplet using 10× Genomics Chromium Controller (version 3) to
generate single-cell gel bead-in-emulsions (GEMs).mRNAindrops
was subjected to reverse-transcription reactions, and cDNA
amplification was performed according to the manufacturer’s
instructions. The 10× libraries were sequenced with the HiSeq
Xten (Illumina, San Diego, CA) sequencing platform.

Pre-Processing of
scRNA-Sequencing Data
CellRanger (version 4.0.0) was used to convert the preliminary
sequencing results (bcl files) generated from HiSeq Xten into fastq
files. The fastq files were then aligned to the human genome
reference sequence GRCh38. A Seurat package (version 3.1.1) in
R software (version 3.6.3, R-Foundation, Vienna, Austria) was used
togenerate a gene-barcodematrix containing thebarcodedcells and
gene expression counts. Low-quality cells (gene numbers < 200 or
> 4,000 and with a percentage of mitochondrial genes of > 10%)
were directly filtered. A total of 8,033 cells were ultimately included
for further bioinformatic analysis.

Cell Clustering Analysis, Visualization,
and Annotation
Cell-clustering and sub-clustering analyses were performed
with the FindClusters function of the Seurat package
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(resolution = 0.1). Identified cell clusters and sub-clusters were
presented with uniform manifold approximation and projection
(UMAP) analysis. The cell clusters were annotated based on
highly expressed genes and some canonical cellular markers
from the literature.

Pseudotime Trajectory Analysis
The evolutionary processes of osteoclasts and mononuclear
macrophages were analyzed using the Monocle 3 package
(version 0.2.3.0; https://coletrapnelllab.github.io/monocle3/).
Cells were organized into discontinuous trajectories. The
identified genes varied in their expression over these trajectories.
In the selection of cell sequencing parameters, the starting point of
the cell was selected based on the results of RNA velocity analysis.
Six genes (CD74, HLA-DRA, CD14, ACP5, CTSK, and
ATP6V0D2) that play an important role in the maturation of
osteoclasts were also subjected to pseudotime trajectory analysis.
The evolutionary process of CD8+T cells was analyzed using the
Monocle 2 package (version 2.14.0; http://cole-trapnell-lab.github.
io/monocle-release/) (10). The following parameters were set:
Mean expression >0.1, num_cells_expressed >=10. GZMK and
GZMA also underwent pseudotime trajectory analysis.

Cell–Cell Communication Analysis
CellPhoneDB analysis, which is based on the interaction
between ligands and receptors (11, 12), was performed using a
CellPhoneDB Python package (version 0.22; https://github.com/
Teichlab/cellphonedb). We also identified some relevant cell
type-specific interactions based on ligand–receptor pairs
(P value < 0.05).

CellChat Analysis
CellChat, an intercellular interaction analysis tool that studies
ligand receptor action in specific signaling pathways (13), was
performed using the CellChat R package (version 0.0.1; https://
github.com/sqjin/CellChat). A CellChat object was created using
the R package process. Cell information was added into the meta
slot of the object. The ligand–receptor interaction database was set,
and the matching receptor inference calculation was performed.
The graphic visualization parameter was nPatterns = 5.

Functional Enrichment Analysis
Gene set variation analysis (GSVA) was used to identify the gene
set that was significantly enriched in each subset of mononuclear
macrophages (14). We downloaded all gene sets from the
Molecular Signatures Database MSigDB (https://www.
gseamsigdb.org/gsea/downloads.jsp).

Single-Cell Regulatory Network Inference
and Clustering (SCENIC) Analysis
SCENIC is a suitable method for using transcription factors (TFs)
to guide the discovery of cellular states from scRNA-seq data (15).
The R package for SCENIC (version 1.2.4) was used as previously
described to perform a transcription factor network inference
analysis (16). Briefly, a read-count matrix from the Seruat S4
object was inputted. The matrix was filtered using default
parameters and used to establish a gene regulatory network.
Frontiers in Oncology | www.frontiersin.org 3
Differentially activated TFs in different cell types were identified
using the Wilcoxon rank sum test. TFs with an adjusted P-value
<0.05 and logFC >0.1 were considered significant.

RNA Velocity Analysis
RNA velocity predicts dynamic changes in transcription and the
future state of individual cells (17). We obtained.loom files
through velocyto.py (version 0.17.17). The.loom files were
uploaded to the velocyto.R package (version 0.6.0). The
following parameters were set: fit.quantile = 0.02; kCells = 25;
and DeltaT = 1. Arrows indicating velocity vector were projected
onto the UMAP plot.

Cellular Spatial Organization Mapper
(CSOmap) Analysis
CSOmap (version 1.0) is an analytical method for calculating the
spatial information of cells by using the interactions between
ligand receptors (18). We generated an affinity matrix between
cells by integrating thousands of ligand-receptor pairs. The
resulting high-dimensional affinity matrix is embedded in
three-dimensional space. The contribution of ligand receptor
genes to spatial information was then calculated. Finally, genes
highly expressed by C2_Mature osteoclasts were selected for
computer overexpression and knockdown to observe changes in
spatial structure.

Multiplex Immunohistochemistry
(IHC) Staining
Multiplex immunohistochemistry staining was performed
according to the manufacturer’s instructions using the PANO 7-
plex IHC kit (Panovue, Beijing, China) (19, 20). Sections with a
thickness of 3 mm were incubated overnight at 4°C with primary
antibodies: anti-ACP5 (cat. no. 11594-1-AP; Rabbit; 1:300;
Proteintech), anti-ATP6V0D2 (cat. no. bs-12548R; Rabbit; 1:300;
Bioss), and anti-CKLF (cat. no. ab250213; 1:300; Rabbit; Abcam).
Secondary antibodies were then used to incubate the sections at
room temperature for 15 min, after which the tyramide signal
amplification (TSA) plus working solution was applied. Other
primary antibodies were applied to the slides, and the steps
mentioned above were repeated until the last antibody was used.
Finally, 4-6-diamidino-2-phenylindole (DAPI; SigmaAldrich) was
used to stain thenuclei andmultispectral imageswere collectedwith
a confocal laser-scanning microscope (LSM880; Zeiss).

Statistical Analysis
All statistical analysis and figures were generated using R
software (version 3.6.3). A p-value < 0.05 was considered
statistically significant.
RESULTS

GCTB Cellular Contribution
scRNA-seq analysis was performed on samples obtained from a
patient diagnosed with GCTB during tumor resection
(Figure 1A). Following initial quality control assessment, the
single-cell transcriptomic data of 8,033 cells from the primary
August 2021 | Volume 11 | Article 715552
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GCTB lesion were used for further analysis. Eight main cell
clusters were identified (Figure 1B): mononuclear macrophages,
osteoblasts, NK/T cells, osteoclasts, pericytes, proliferating cells,
endothelial cells, and chondrocytes (Figure 1C). The canonical
markers of each cell cluster were as follows (Figure 1D): [1] LYZ,
CD163, CD14, MRC1, MSR1, C1QA, and C1QB for
mononuclear macrophages (20); [2] RUNX2 and IBSP for
osteoblasts (21, 22); [3] CD3D, CD3E, CD3G, and NKG7
for NK/T cells (23–25); [4] CTSK and ACP5 for osteoclasts
(26); [5] RGS5 and ACTA2 for pericytes (24); [6] MKI67 and
Frontiers in Oncology | www.frontiersin.org 4
TOP2A for proliferative cells (24, 27); [7] EGFL7 and PLVAP for
endothelial cells (28, 29); and [8] ACAN and COL10A1 for
chondrocytes (24, 30) (Figure 1E).

Heterogeneity of Mononuclear
Macrophages
Previous studies found that mononuclear macrophages are
critical abundant components of the tumor microenvironment
and have been widely implicated in tumor stimulating and
suppressing activities (31, 32). Two distinct subclusters comprised
A

B

D

E

C

FIGURE 1 | scRNA-seq clustering analysis of GCTB. (A) Workflow depicting the collection and processing of GCTB tumor specimens for scRNA-seq. (B) UMAP
plot of 8,033 cells demonstrating the eight main cell types in GCTB. (C) Cell number and percentage of the assigned cell types. (D) The heat-map shows and
highlights the differentially expressed genes of each cluster. (E) UMAP plots show the expression of representative well-known markers across cell types in GCTB.
scRNA-seq, single-cell RNA sequencing; GCTB, giant cell tumor of bone; UMAP, uniform manifold approximation and projection.
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of C1_Mononuclear macrophages and C2_Mononuclear
macrophages were identified in the UMAP analysis (Figure 2A).
C1_Mononuclear macrophages were 95.26% of all mononuclear
macrophages in the specimen, while 4.74% were C2_Mononuclear
macrophages (Figure 2B). C1_Mononuclear macrophages had a
high expression level of HLA-related genes, indicating that they
were antigen presenting (Figure 2C). C1_Mononuclear
macrophages were correlated with inflammation due to their
higher expression of anti- and pro-inflammatory genes, while
C2_Mononuclear macrophages were less correlated with
inflammation (Figure 2D). C1_Mononuclear macrophages were
enriched in gene sets associated with the inflammatory response,
including the inflammatory response pathway and the
inflammatory response to an antigen stimulus. C1_Mononuclear
macrophages may be highly involved in the GCTB inflammatory
microenvironment. C2_Mononuclear macrophages were enriched
in gene sets associated with an immune response, including
regulation of the innate immune response and the immune
response to tumor cells, suggesting that they may be immune
cells that have anti-GCTB properties (Figure 2E). The trajectory
and RNA velocity analysis of mononuclear macrophages showed
that the differentiation trajectory began with C1_Mononuclear
macrophages, which can differentiate into C2_Mononuclear
macrophages (Figures 2F–H).

Heterogeneity of Osteoclasts in GCTB
GCTB, also known as “osteoclastoma,” is thought to be highly
associated with osteoclasts, which play a critical role in the
osteolysis of GCTB (33). Three distinct subtypes of osteoclasts
were ident ified according to known marker genes
(Figures 3A–C). These subclusters were described as follows:
(1) C1_Progenitor osteoclasts, which accounted for most
osteoclasts (52.25%) and expressed high levels of myeloid cell
markers such as C1QA, C1QB, HLA-DRA, major
histocompatibility complex II (MHC-II; CD74), and CD14; (2)
C2_Mature osteoclasts, which accounted for 35.21% of
osteoclasts and demonstrated high levels of the osteoclast
markers tartrate acid phosphatase (ACP5), cathepsin K
(CTSK), and the D2 isoform of vacuolar (H+) ATPase H+

Transporting V0 Subunit D2 (ATP6V0D2), which are
necessary for the maturation of osteoclasts (34, 35); and (3)
C3_Dysfunctional osteoclasts, which accounted for 12.54% of all
osteoclasts and poorly expressed genes related to osteoclast
function. Osteoclasts followed a differentiation trajectory that
mainly started from the initial cluster of C1_Progenitor
osteoclasts, which differentiated into C2_Mature osteoclasts
and C3_Dysfunctional osteoclasts (Figures 3D–F). The cell
trajectory analysis of marker genes confirmed these results.
CD74, HLA-DRA, and CD14 were located at the initial
position of the pseudotime and the expression levels of CTSK,
ACP5, and ATP6V0D2 gradually increased along the
pseudotime trajectory (Figure 3G). The regulatory network
underlying each subset of osteoclasts was examined with
SCENIC, and specific TF regulons for each osteoclast subset
were identified. As shown in C2_Mature osteoclasts, four genes
of TFs (JDP2, NFATC1, MLX, and ESRRA) were significantly
up-regulated and four TFs were activated (Figures 3H, I). Jun
Frontiers in Oncology | www.frontiersin.org 5
dimerization protein 2 (JDP2) is a transcription factor of the AP-
1 family that regulates osteoclast differentiation by RANKL (36,
37). The nuclear factor of activated T cells, cytoplasmic 1
(NFATc1), which belongs to the NFAT family, plays a vital
role in osteoclast formation and function (38). MLX can promote
myogenesis by inducing the expression of several myokines,
including insulin-like growth factor 2 (IGF2) (39, 40). ESRRA
is a transcription factor that is involved in tumorigenesis, such as
oral squamous cell carcinoma (41).

Spatial information of osteoclasts and other cells
(mononuclear macrophages, osteoblasts, NK/T cells, pericytes,
proliferating cells, endothelial cells, and chondrocytes) was
obtained with CSOmap analysis (Figure 4A). Four pairs of
ligand receptors contributed more than 10% to the spatial
reconstruction of the cell (Figure 4B). Based on the analysis of
the expression levels of these ligand receptor pairs (MMP9-
CD44, MMP9-LRP1, TIMP1-CD63, RPS19-C5AR1), it was
found that CD63 and MMP9 were highly expressed in
C2_mature osteoclasts (Figure 4C). Through computer
simulation of CD63 overexpression osteoclasts were found to
have a closer spatial structure, suggesting that they were in a state
of aggregation at this time (Figure 4D). When CD63 was
knocked down, osteoclasts had a looser spatial structure
(Figure 4E), suggesting a state of dispersion. We quantified the
distance between the osteoclast cells and the pseudo-space center
to further confirm the visual features (Figure 4H). Similarly,
through computer simulation the overexpression of MMP9 led
to a closer osteoclast spatial structure (Figure 4F), while
knockdown of MMP9 led to a looser spatial structure
(Figure 4G). However, the change in the distance between
osteoclast cells and the pseudo-space center after MMP9
knock-down was not statistically significant (Figure 4I).

Heterogeneity of NK/T Cells
NK/T cells play an essential role in mediating response to
chemotherapy and improving clinical outcomes in various
cancers, including liver cancer (42), ovarian cancer (43), and
breast cancer (44). Five subclusters of cells were identified from
the GCTB lesion: C1_CD8+ T cells, C2_T cells, C3_T cells,
C4_NK cells and C5_ CD8+ T cells (Figures 5A, B). C1_CD8+

T cells, and C2_CD8+ T cells shared specific T-cell markers
genes, such as CD3D, CD3E, CD3G, CD8A, and CD8B (19, 45).
C2_T cells and C3_T cells expressed CD3D, CD3E, and CD3G.
C4_NK cells significantly expressed NKG7, GNLY, GZMA,
GZMB, and KLRD1, which are thought to be the canonical
marker genes of NK cells (23, 46) (Figure 5C). Natural killer cell
granule protein 7 (NKG7) is a marker of NK cells that is critical
for controlling cancer initiation, growth, and metastasis. NKG7
was highly expressed in C1_CD8+ T cells, suggesting the
abundant infiltration of NK/T cells in GCTB.

Three distinct subtypes of CD8+ T cells were identified
according to known marker genes (Figures 5D–F). These
subclusters were as follows: (1) subC1_CD8+ T cells accounted
for 44.14% of all CD8+ T cells and expressed low levels of
markers related to T cell function such as PDCD1, CTLA4,
LAG3, TIGIT, and HAVCR2. However, subC1_CD8+ T cells had
a relatively high expression levels of CD69, GZMM, GZMK,
August 2021 | Volume 11 | Article 715552
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GZMA, CST7, HLA-DPA1, HLA-DRB1 and HLA-DRA; (2)
subC2_CD8+ T cells, which accounted for 44.14% of all CD8+
T cells and expressed the same markers as subC1_CD8+ T cells,
but at lower levels; and (3) subC3_CD8+ T cells, which accounted
Frontiers in Oncology | www.frontiersin.org 6
for 11.72% of all CD8+ T cells and expressed high levels of FOSB,
a marker gene of early-stage CD8+ T cells. CD8+ T cells followed
a differentiation trajectory that mainly started from the initial
cluster of partial subC3_CD8+ T cells, which differentiated into
A

B

D

E F

G

H

C

FIGURE 2 | Heterogeneity of macrophage populations in GCTB. (A) C1_Mononuclear macrophages and C2_Mononuclear macrophages were identified by UMAP
analysis. (B) A pie chart depicting macrophage cell composition. (C) Heatmap of genes involved in antigen presenting by C1_Mononuclear macrophages and
C2_Mononuclear macrophages. (D) Heatmap of genes associated with anti- and pro-inflammation properties of C1_Mononuclear macrophages and
C2_Mononuclear macrophages. (E) GSVA analysis shows the function of C1_Mononuclear macrophages and C2_Mononuclear macrophages. (F, G) The
differentiation and developmental trajectory of C1_Mononuclear macrophages and C2_Mononuclear macrophages in GCTB. (H) Velocity field projected onto the
UMAP plot of C1_Mononuclear macrophages and C2_Mononuclear macrophages. Arrows indicate the direction of the differentiation and the average velocity.
GCTB, giant cell tumor of bone; UMAP, uniform manifold approximation and projection for dimension reduction.
August 2021 | Volume 11 | Article 715552

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Feng et al. scRNA-seq of GCTB
subC2_CD8+ T cells and subC1_CD8+ T cells (Figures 5G–I).
The expression levels of GZMK and GZMA gradually increased
along the pseudotime trajectory (Figurse 5J, K). Four TFs
(FOSB, JUN, KLF6, and JUND) were slightly up-regulated and
4 TFs were activated in subC1_CD8+ T cells, while three TFs
(POLR2A, ETS1 and JUNB) were slightly up-regulated and 3 TFs
were activated in subC3_CD8+ T cells (Figures 5L, M).
Frontiers in Oncology | www.frontiersin.org 7
FOSB, a member of the Fos transcription factor family and a
component of the AP-1 complex, has been implicated in diverse
biological processes including bone-forming tumors and a subset
of vascular tumors (47–49). JUN, an extensively studied protein
of the AP-1 complex, is involved in numerous cell activities such as
proliferation, apoptosis, survival, tumorigenesis, and tissue
morphogenesis (50). Kruppel like factor 6 (KLF6), a transcription
A

B

D E F

G

IH

C

FIGURE 3 | Heterogeneity of osteoclasts in GCTB lesions. (A) An UMAP plot shows three main subtypes of osteoclasts: C1_Progenitor osteoclasts, C2_Mature
osteoclasts, and C3_Dysfunctional osteoclasts. (B) A pie chart depicts the cell composition of the osteoclasts. (C) Violin plots showing relevant marker genes in the
osteoclast subtypes (**P < 0.01, ***P <0.001, NS: No statistical significance). (D, E) The dynamics of the osteoclast subclusters showed with a monocle 3 trajectory
plot. (F) Velocity field projected onto the UMAP plot of the osteoclasts. Arrows indicate the direction of the differentiation and its average velocity. (G) The expression
levels of marker genes (CD74, HLA-DRA, CD14, ACP5, CTSK, and ATP6V0D2) related to the differentiation of osteoclasts. (H) Heatmap of the AUC scores of
transcription factor expression regulation by SCENIC. (I) UMAP plot of osteoclasts color-coded for expression level (up) and the AUC of the estimated regulon
activity of these transcription factors (down). GCTB, giant cell tumor of bone; UMAP, uniform manifold approximation and projection for dimension reduction;
SCENIC, single-cell regulatory network inference and clustering; AUC, area under the curve.
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FIGURE 4 | CSOmap revealing osteoclast spatial information. (A) Global (left, lower right) and cross-sectional (upper right) views of the spatial information of
osteoclasts and other cells. (B) Contributions of all ligand-receptor genes to the interactions between osteoclasts. (C) Heatmap of the 4 pairs of ligand receptors:
(MMP9-CD44, MMP9-LRP1, TIMP1-CD63, RPS19-C5AR1). (D, E) Global (left, lower right) and cross-sectional (upper right) views of the spatial information on
osteoclasts and other cells after the overexpression and knockdown of CD63. (F, G) Global (left, lower right) and cross-sectional (upper right) views of the spatial
information of osteoclasts and other cells after the overexpression and knockdown of MMP9. (H) The distance of osteoclasts (normal control/CD63up/down) to the
center (*P < 0.05, ***P < 0.001). (I) The distance of osteoclasts (normal control/CD63up/down) to the center (***P < 0.001; NS, No statistical significance). CSOmap,
Cellular Spatial Organization mapper.
Frontiers in Oncology | www.frontiersin.org August 2021 | Volume 11 | Article 7155528

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Feng et al. scRNA-seq of GCTB
A B

D E

F

G

I

H

J

K

L

M

C

FIGURE 5 | Heterogeneity of NK/T cells in GCTB. (A) UMAP plot showing different subtypes of NK/T cells. (B) A pie chart depicting the subtypes composition of
NK/T cells. (C) Violin plots displaying the expression of representative, well-known markers across the NK/T cells types identified in GCTB (*P <0.05, **P <0.01,
***P <0.001, NS: No statistical significance). (D) UMAP plot showing different subtypes of CD8+ T cells. (E) A pie chart indicating the subtypes composition of CD8+

T cells. (F) Dot-plot of marker genes in subtypes of CD8+ T cells. Shades of red represent the expression level, and the dot sizes represent the relative abundance of
each gene. (G, H) The dynamics of CD8+ T cell subtype as shown by the monocle 2 trajectory plot. (I) An RNA velocity field projected onto the UMAP plot of the
subtype of CD8+ T cells. Arrows indicate the direction of the differentiation and its average velocity. (J, K) The expression levels of the marker genes GZMK and
GZMA, which are related to the differentiation of a subtype of CD8+ T cells. (L) Heatmap of the AUC scores of expression regulation by transcription factors as
estimated by SCENIC. (M) UMAP plot of CD8+ T cell subtype, the expression level (up) and for the AUC of the estimated regulon activity of these transcription
factors (down). GCTB, giant cell tumor of bone; UMAP, uniform manifold approximation and projection for dimension reduction; NK cells, natural killer cells; GZMK,
Granzyme K; GZMA, Granzyme A.
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factor of the zinc finger family, has been reported to play an
important role in lipid homeostasis regulation in clear cell renal
cell carcinoma (51). Jund proto-oncogene subunit (JunD), a
prominent AP-1 component, is a bone formation inhibitor that
contributes to low bone mass induced by estrogen depletion (52).
RNApolymerase II subunit A (POLR2A), one of the subunits of the
human RNA polymerase II complex, encodes the largest subunit
that is indispensable for polymerase activity duringmessengerRNA
synthesis. Prior work suggested that inhibiting POLR2A with a-
amanitin could lead to extensive cell death (53). ETS1 belongs to a
large family of the ETSdomain family of transcription factors and is
thought tobe linked topoor survival during cancer progression (54)
as well as transcription networks associated with CD8 T cell
differentiation (55). JUNB, an AP-1 transcription factor, is
expressed by eTreg cells and promotes an IRF4-dependent
transcription program (56).

Complex Intercellular and Molecular
Interaction Networks in GCTB
CellPhoneDB analysis was used to calculate the number of ligand–
receptor pairs among all of the cell types in our data (Figure 6A).
These ligand-receptor relationships are shown in Figures 6B, C.
Thirty-three migration-associated genes were expressed by
C2_Mature osteoclasts (Figure 6D, Supplementary Table 2).
Cells of interest were selected, and their ligand–receptor
relationships were identified (Figure 6E). All these ligand–
receptor pairs were expressed individually. All cells expressed
the ligandMIF, which is a macrophage migration inhibitory factor
that regulates the function of mononuclear macrophages in host
defense at sites of inflammation, while its receptor TNFRSF14 was
expressed in C2_Mature osteoclasts. Osteoblasts significantly
expressed TNFSF11 (RANKL), while the corresponding receptor
TNFRSF11A (RANK) was expressed by C2_Mature osteoclasts.
The TNFSF11/TNFRSF11A pathway regulates the activation of
osteoclasts and induces the migration of tumor cells, notably in
breast and lung cancer (57). CKLF (chemokine-like factor) is a
novel cloned chemotactic cytokine that regulates the migration of
immune cells (58) and was significantly expressed by C2_Mature
osteoclasts while its receptor LPR6 was expressed in chondrocytes,
endothelial cells, and osteoblasts. We also measured the
expression levels of migration-related genes in the different cells
(Supplementary Figure 2A, Supplementary Table 3). ACP5,
CTSK, and ATP6V0D2, which are associated with the function
of osteoclasts, were highly expressed in C2_Mature osteoclasts.
Further, genes associated with cell migration were mostly
expressed by C1_Progenitor osteoclasts (for instance, PTGER4,
HBEGF, VEGFA, CD44, and VSIR) and C2_Mature osteoclasts
(such as TNFRSF14, CD58, DPP4, EFNB1, SEMA7A, GRN,
TNFRSF11A, APP, and CKLF). CKLF was more highly
expressed by C2_Mature osteoclasts than by C1_Progenitor
osteoclasts and C2_Mononuclear macrophages. Multiplex
immunofluorescence experiments also revealed the presence of
C2_Mature osteoclasts (Supplementary Figure 2B).

We algorithmically divided all of the cells into five patterns
via CellChat analysis. C2_Mature osteoclasts mainly gathered in
Pattern3, which expressed the RANKL, PARs, CD137 RANKL,
Frontiers in Oncology | www.frontiersin.org 10
and SEMA3 signaling pathways (Figures 7A, B). The bubble
diagram shows the expression of these signaling pathways by
C2_Mature osteoclasts (Figure 7C). Signaling pathways of
interest were then selected, and their interaction networks are
shown (Figure 7D). The RANKL signaling pathway was found
to be highly associated with osteoclast formation and migration
(57). Proteinase-activated receptors (PARs), which are key
components of the PARs signaling pathway, are expressed in
various epithelial tumors and can regulate progression and
metastasis (59). The CD137 signaling pathway is critically
involved in the promotion of breast cancer bone metastasis via
enhancement of the migration and differentiation of monocytes/
macrophages into osteoclast (60). SEMA3, a subfamily of
signaling molecules in the SEMA3 signaling pathway, plays
diverse roles in the regulation of cell proliferation,
differentiation, and migration (61).

The interaction between NK/T cells and osteoclasts was
analyzed (Figures 8A–C). Cells of interest were selected, and
their ligand-receptor interactions were identified (Figure 8D).
All immune cells expressed ligand HLA-C, a type of human
leucocyte antigen that is correlated with the enhanced potent
cytotoxic response of T cells immunity (62). Its receptor FAM3C,
a member of the FAM3C gene family that is related to the
inflammatory response and bone remodeling (63), was expressed
in all subtypes of osteoclasts. C2_Mature osteoclasts expressed
higher levels of TNFRSF14, while its receptor MIF, which is
macrophage migration inhibitory factor that regulates the
function of mononuclear macrophages in host defense at sites
of inflammation, was expressed in C2_T cells, C3_T cells,
C4_NK cells, subC2_CD8+T cells, and subC3_CD8+T cells. In
addition to HLA-C_FAM3C, CD2_CD58 was also more highly
expressed by these immune cells than osteoclasts. CXCR6 was
significantly expressed by C2_T cells, C3_T cells and
subC2_CD8+ T cells, while its receptor CXCL16 was expressed
in all sub types of osteoclasts. CXCR6 has been shown to draw
CD8+ T cells to the liver in graft-versus-host disease and is
required for the maintenance of liver-resident CD8+ T cells
following infection (64, 65). CXCL16 is a chemokine that binds
to CXCR6 on Th1 and activated CD8 effector T cells and plays an
important role in their recruitment to sites of inflammation
(66, 67).
DISCUSSION

The existing literature on GCTB is mostly comprised of genetic
and genomic studies and clinical case reports (68, 69). These
studies provide a basis for understanding the current treatment
strategies for GCTB. However, accurate analysis of the cellular
heterogeneity of GCTB remains challenging. To address the
heterogeneity of GCTB, the present study evaluated a patient
who was diagnosed with GCTB. To the best of our knowledge,
this is the first comprehensive single-cell transcriptome study on
a patient with GCTB. Khazaei et al. (70) characterized the
transcriptomic of G34W GCTB and reported that a G34W
mutation is necessary for GCTB tumorigenesis. However, the
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FIGURE 6 | Cell–cell communication network of CellPhoneDB in the GCTB. (A) Heatmap showing the number of potential ligand–receptor pairs among the
predicted cell types. (B, C) Interaction network constructed by CellPhoneDB. Thicker lines indicate more interaction with other types of cells. (D) Venn diagram of
genes related to cells migration obtained from GSEA, and those that acted as receptors expressed in C2_Mature osteoclasts in our data. (E) Ligand–receptor pairs
detected with CellPhoneDB are shown in a bubble plot. GCTB, giant cell tumor of bone; UMAP, uniform manifold approximation and projection for dimension
reduction; GSEA, gene set enrichment analysis.
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number of GCTB subtypes, their distinctive properties, and their
heterogeneity remains unclear. In the present report, we
identified eight major cell clusters in GCTB with UMAP
clustering. The complexity of the GCTB cellular ecosystem and
the intratumor heterogeneity of GCTB were revealed by
scRNA-seq.

The main clinical manifestation of GCTB is osteolysis, which
can lead to significant motor dysfunction. Osteoclasts, the only
cells that are known to be involved in osteolysis in the human
body, are believed to be intensively involved with GCTB (71). An
increasingly large body of evidence has shown that key genes
such as ACP5, CTSK, and ATP6V0D2 (72) are involved in the
bone resorption function of osteoclasts. The directional
migration of osteoclasts at the lesion site also attracted our
Frontiers in Oncology | www.frontiersin.org 12
interest. C1_Progenitor osteoclasts and C2_Mature osteoclasts
have their own unique genes that regulate their migration and
their highly migratory state. Interestingly, our data showed the
CKLF, a newly cloned chemotactic cytokine, was relatively
increased in subtypes of C2_Mature osteoclasts, indicating
improved osteoclast mobility during maturation. In addition,
the key genes that affected the aggregation of osteoclasts in
GCTB were identified and may be key targets of future
therapies, although more experiments are needed to further
confirm this. As the high migration state of osteoclasts was
confirmed, analysis of key ligand–receptor pairs that regulate the
interactions of the cells within the tumor environment of GCTB
is important. Osteoclasts were regulated by several cells in GCTB.
We mainly focused on the key ligand-receptor pairs that
A B

D

C

FIGURE 7 | Cell–cell communication network of CellChat in GCTB. (A) Heatmap showing the enrichment of different cell types in different modules. The deeper red
the color is, the higher its degree of enrichment. (B) Heatmap showing the contribution of different signaling pathways in different expression modules. The deeper
the red color is, the higher the contribution of the signaling pathways. (C) A bubble plot showing the signaling pathways of interest in GCTB as detected by CellChat.
(D) An interaction network shows the ligand–receptor pairs that have a known biological significance. GCTB, giant cell tumor of bone.
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FIGURE 8 | Cell-cell communication network between NK/T cells and osteoclasts in GCTB. (A) Heatmap showing the number of potential ligand-receptor pairs
among the selected cell types. (B, C) Interaction network constructed by CellPhoneDB. Thicker lines mean more interaction with other types of cells. (D) Ligand-
receptor pairs are shown in the bubble plot. GCTB, giant cell tumor of bone.
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interacted with and regulated C2_Mature osteoclasts and other
cells in the GCTB tumor microenvironment. Previous reports
showed that TNFRSF11A_TNFSF11, a classical ligand-receptor
pair that regulates osteoclast maturation and function (73), was
also included in our data. These key ligand–receptor pairs
provide strong evidence of molecular crosstalk in the bone
microenvironment (74) and can serve as guidance for follow-
up studies on osteoclast migration and function. Moreover, four
key signaling pathways involved in the formation and migration
of C2_Mature osteoclasts were identified: the RANKL signaling
pathway network, the CD137 signaling pathway network, the
PARs signaling pathway network, and the SMEA3 signaling
pathway network. The results provide a theoretical basis for
future studies on the osteolytic effects of GCTB.

There are several limitations of this study: 1. scRNA-seq only
contains about 0.1 pg of mRNA per cell on average, so there are
too few materials available for sequencing (75); 2. the single-cell
suspension digestion scheme directly affects the composition
ratio of cells, resulting in the loss of rare cells, increasing cell
stress and affecting cell gene expression (9); 3. restrictions on the
depth of the sequencing, as at present, most scRNA-seq can only
detect 10%-20% of mRNA (76, 77); 4. the small number of GCTB
cases used in this work can only reflect the heterogeneity of the
cells rather than between patients, and the results may be biased
due to the small number of included cases.

Overall, this study characterized the heterogeneity of GCTB,
provided a valuable single-cell transcription atlas and novel
insights into GCTB, and identified a new mechanism and
target for clinical GCTB treatment.
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Supplementary Figure 1 | (A) 99mTc-MDP Bone Scan shows a clumpy
reflexive-concentrated focus in the lower right distal femur. (B, C) Plain radiographs
shows an osteolytic lesion in the distal femur. (D) A sagittal T1-weighted image
shows the tumor with heterogeneous signal intensity, and (E) cystic changes are
visible on a fat-suppressed T2-weighted image. (F) The pathologic images show
local tumor cell infiltration (100×). GCTB, giant cell tumor of bone.

Supplementary Figure 2 | (A) Expression levels of migration-related genes
between the different cells (*P < 0.05, **P < 0.01, ***P < 0.001; NS, No statistical
significance). (B) Multiplex IHC staining of GCTB tissue. Arrows represent the co-
expression positions of the relevant indicators (DAPI, ACP5, ATP6V0D2, CKLF) in
Multiplex IHC (scale bar=200 mm). GCTB, giant cell tumor of bone; IHC,
immunohistochemistry

Supplementary Table 1 | Characteristics of the patient with GCTB included in
this study.

Supplementary Table 2 | Migration-associated genes.

Supplementary Table 3 | Expression levels of migration-related genes.
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