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Structured RNA elements within messenger RNA often direct or modulate the cellular production of
active proteins. As reviewed here, RNA structures have been discovered that govern nearly every
step in protein production: mRNA production and stability; translation initiation, elongation, and
termination; protein folding; and cellular localization. Regulatory RNA elements are common
within RNAs from every domain of life. This growing body of RNA-mediated mechanisms continues
to reveal new ways in which mRNA structure regulates translation. We integrate examples from sev-
eral different classes of RNA structure-mediated regulation to present a global perspective that sug-
gests that the secondary and tertiary structure of RNA ultimately constitutes an additional level of
the genetic code that both guides and regulates protein biosynthesis.

� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V.
1. Introduction

RNA was long assumed to be a simple courier of the information
contained within a DNA genome. This tidy, linear view of biology is
quickly being replaced with models that emphasize the complex
landscape of interactions between these macromolecules. At the
center lies RNA. It is now well established that complex RNA struc-
tures are capable of functions previously thought to be the purview
of proteins, including ligand binding and catalysis. These RNA
structure-mediated functions also include regulation of nearly
every step of cellular protein production. Some of the regulatory
mechanisms discussed below have been thoughtfully reviewed
previously. Our goal in this review is not to duplicate these reviews
but to present the argument that the three-dimensional structure
of messenger RNA (mRNA) constitutes an additional layer of genet-
ic information that both guides and regulates the production of en-
coded proteins.

The primary sequence of an mRNA encodes the amino acid se-
quence of a protein, whereas structural features within mRNA mol-
ecules can determine the biological activity of the encoded protein
by regulating the isoform produced, expression level, folding, local-
ization, or stability. RNA structures that regulate biological func-
tion during translation have been identified in every kingdom of
life. Consequently, developing a better understanding of how
RNA structure governs protein expression and function has
broad-ranging implications. These include guiding the develop-
ment of novel therapeutics for combating bacterial [1] and viral
pathogens [2,3] and extend to understanding and mitigating di-
verse human genetic diseases such as Huntington’s disease [4],
myotonic dystrophy type 1 [5], and cystic fibrosis [6].

2. mRNA as a sensor

An mRNA can govern its own translation and transcription
using ligand-binding structural elements called riboswitches. The
best characterized riboswitches are located in the 50 untranslated
regions (UTRs) of bacterial mRNAs. Upon ligand binding, the RNA
undergoes allosteric rearrangement that regulates transcription
or translation initiation, elongation efficiency, mRNA stability, or
splicing [7–9]. Riboswitches contain two domains: a metabolite-
binding region known as the ‘‘aptamer domain’’ and an allosteric
domain termed the ‘‘expression platform’’ (Fig. 1A). The expression
platform enacts the regulatory function signaled by the aptamer
domain. Typically one structure of the riboswitch occludes an
important regulatory element such as the ribosome-binding
Shine–Dalgarno sequence. Riboswitch aptamer domains have
evolved to bind diverse small molecules, and those domains that
bind the same ligand tend to be highly conserved. In contrast,
the expression domains vary in both sequence and function in dif-
ferent organisms. Thus, riboswitches are modular; a given aptamer
domain has a specific target metabolite but the ultimate function
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Fig. 1. Mechanisms of riboswitch regulation. (A) Schematic example of transcrip-
tion termination resulting from ligand binding to the aptamer domain of a
riboswitch and subsequent stabilization of a terminator stem-loop and exposure of
a poly-uracil stretch (red box). (B) Splicing regulation by a TPP riboswitch in the N.
crassa NMT1 gene [19]. The favored 50 splice site (SS2) is obscured in the absence of
ligand. Ligand binding attenuates ORF protein expression by allowing use of SS2. (C)
Combined translational and stability control by a lysine riboswitch. Ligand binding
sequesters the RBS (green) and exposes two RNase E cleavage sites (red), leading to
mRNA degradation.
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depends on the linked expression platform. Riboswitches that bind
ions (Mg2+, F�), carbohydrates, metabolites, proteins, and co-en-
zymes have been characterized. Protein expression requires mRNA
to be (i) transcribed, (ii) processed (for example, 50 capped, spliced,
polyadenylated), and (iii) translated by the ribosome. Interfering
with any of these processes reduces the number of available mRNA
transcripts or decreases protein production. Examples of ligand-
sensing riboswitches that influence each of these steps are dis-
cussed below.

2.1. Control of transcription elongation

In an mRNA with a riboswitch, RNA polymerase synthesizes the
aptamer domain before the expression domain. This allows the
nascent aptamer domain to sample the cellular environment and
potentially bind a cognate ligand before the expression domain is
transcribed and folded, as recently observed in a co-transcriptional
folding study of the adenine riboswitch [10]. Critically, this timing
allows folding of one of the mutually exclusive structures that can
be adopted by the riboswitch. For example, in many strains of bac-
teria, ligand binding to an aptamer domain causes an expression
platform to form an intrinsic terminator stem, an RNA hairpin fol-
lowed by a stretch of six or more uracil (U) residues, that inhibits
RNA polymerase extension (Fig. 1A) [11,12]. In the absence of
ligand, the unbound aptamer domain structure allows the anti-
terminator stem-loop to form, sequestering the poly-U stretch
and allowing mRNA synthesis to proceed. This type of regulation
is exemplified by the T-box mechanism: if an uncharged tRNA binds
to an element in the mRNA encoding the synthetase responsible for
charging the particular tRNA, an anti-terminator helix forms that
permits transcription of the message encoding the aminoacyl-tRNA
synthetase [13]. In contrast, the charged tRNA does not bind strongly
to the terminator helix. In most cases, as in this example, the ribo-
switch mechanisms are negative feedback loops wherein a given
ligand down regulates enzymes involved in ligand production.
Although uncommon, there are examples of riboswitches that turn
protein expression on rather than off. For example, ligand binding
to the adenine riboswitch in Bacillus subtilis results in increased
expression of proteins involved in adenine export [14].

2.2. Regulation of splicing

Although most riboswitches identified to date exist in simple
prokaryotes, a thiamine pyrophosphate (TPP) sensing riboswitch
is a widely distributed element [15,16] found in bacteria, archaea
[17], and eukaryotes [16,18,19] including both simple [20] and
complex plants [19,21]. While bacterial TTP riboswitches typically
exert control at the level of transcription [22], these elements reg-
ulate alternative splicing in eukaryotes. Eukaryotic TPP riboswitch-
es are typically located in intronic regions of genes associated with
thiamine metabolism. Differences in secondary structure between
ligand-bound and unbound forms of the precursor mRNA (pre-
mRNA) sequester, expose, or relocate splice sites resulting in alter-
natively spliced mRNAs. Inclusion or exclusion of upstream open
reading frames (ORFs) in mRNAs affects the identity of the synthe-
sized protein. Neurospora crassa contains several TPP riboswitches
and provides the best understood examples of eukaryotic ribos-
witches. In the NMT1 riboswitch, ligand binding causes formation
of a structure that exposes an alternative splice site that prevents
production of the major ORF product (Fig. 1B) [19]. A recent study,
also in N. crassa, suggests that a TPP riboswitch in the NCU01977
gene controls formation of long-distance base pairs [23]. These
base pairs do not cover or reveal splice sites, but rather place a 50

splice donor and 30 acceptor in favorable proximity [23]. These dif-
ferent forms of splicing control within a single organism highlight
the functional diversity of riboswitch elements.
2.3. Regulation of mRNA stability

The glmS ribozyme, a self-cleaving RNA that requires ligand
binding for activation, is an example of an RNA structure that reg-
ulates mRNA stability. The ribozyme is located in the 50 UTR of the
mRNA encoding the glucosamine-6-phosphate synthetase (GlmS)
enzyme, which is widely distributed in Gram positive bacteria
[24]. When glucosamine-6-phosphate levels are high, the molecule
binds to the aptamer domain, activating the ribozyme. When the
glmS ribozyme self-cleaves, a terminus recognized by RNase J1 is
produced, and RNase J degrades the remaining mRNA. Another
example of riboswitch modulation of mRNA stability is found in
the p27 tumor suppressor mRNA [25]. A riboswitch in this mRNA
binds the Pumilio RNA-binding protein (PUM1) and causes an allo-
steric RNA rearrangement that reveals an miRNA target. Subse-
quent miRNA binding results in miRNA-mediated gene silencing.
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2.4. Translation

The initiation of translation can also be regulated by riboswitch-
es. Two mutually exclusive RNA structures are used in this control,
one of which sequesters the ribosome binding site (RBS) and
diminishes translation efficiency. The second structure leaves the
RBS site accessible. One example is a lysine-responsive riboswitch
in Escherichia coli (Fig. 1C) [26]. Upon ligand binding, a structure
forms that inhibits translation by sequestering the RBS and that
also exposes two RNase E cleavage sites, leading to subsequent
mRNA degradation (Fig. 1C).

Regulation of translation by riboswitches can function in con-
cert with other forms of riboswitch regulation to allow precise con-
trol of protein expression. For example, cellular tryptophan levels
control expression of the trp operon in B. subtilis at the levels of
transcription and translation through binding of a protein complex
called tryptophan-activated RNA-binding attenuation protein
(TRAP) [27,28]. The combination of these two strategies highlights
the highly sensitive regulation of gene expression achievable via
RNA-based mechanisms. In the event that metabolite concentra-
tions do not exceed the threshold required to halt mRNA transcrip-
tion, these same concentrations may trigger translational
inhibition. Such dual control may also allow rapid responses to
changes in metabolite concentrations.

2.5. Other mechanisms

Although most riboswitches function in cis, a trans-acting SAM
riboswitch was discovered in Listeria monocytogenes [29]. Two of
the seven SAM riboswitches in L. monocytogenes (SreA and B)
[29] act in trans: These RNAs bind to the 50 UTR of the prfA viru-
lence factor mRNA and sequester the Shine–Dalgarno sequence
to inhibit prfA translation. This trans activity does not require
SAM binding and therefore can be considered similar to antisense
mechanisms employed by other non-coding RNAs.

Other unique and varied riboswitch mechanisms have been
characterized. For example, some riboswitches function in a coop-
erative manner [30]. These include the glycine and tetrahydrofo-
late riboswitches that contain tandem aptamer domains or bind
multiple ligand molecules, respectively. These coupled binding
strategies provide organisms a means to tune the degree of ribo-
switch response to ligand concentration. Cooperative binding of
two glycine molecules, for example, likely evolved to allow precise
response to cellular concentrations of glycine [31]. Another unique
example found in L. monocytogenes is an RNA thermosensor. A 50

UTR structure that inhibits translation of prfA virulence factor at
temperatures below 37 �C [32]. Infection of warm host cells results
in an RNA rearrangement that allows translation. This use of tem-
perature as a ‘ligand’ demonstrates the wide range of regulation
mechanisms achievable by RNA structure.
3. Hijacking the ribosome: IRES elements

3.1. Cap-dependent translation

Under most conditions, translation initiation in eukaryotes is
dependent on a 50 7-methylguanylate cap on a mRNA. Initiation is
mediated by eukaryotic initiation factors (eIFs) that are recruited
through a series of recognition events (reviewed in [33]). This process
begins with recognition and binding of the 50 cap by the eIF4 cap-
binding complex. This event leads to formation of the 48S initiation
complex, a ribonucleoprotein complex containing the 40S ribosomal
subunit and several eIFs. This initiation complex scans the mRNA
from 50 to 30 for an AUG start codon [34,35]. At the start codon, the
complex stalls, the eIFs dissociate, and the remainder of the ribosome
is recruited to form an 80S unit. It is only at this point that the elonga-
tion stage of translation begins. Initiation is the rate-limiting step of
translation and regulation of this event allows tight control of protein
expression. RNA structures play regulatory roles in canonical transla-
tion initiation; for example, extensive, stable mRNA structure can
interfere with a scanning ribosomal complex [36].

3.2. Cap-independent translation

Canonical translation initiation is attenuated by cellular mech-
anisms in response to environmental stimuli such as nutrient
stress, mitosis, apoptosis, and viral infection. Even during times
of stress, however, synthesis of certain proteins is required, and
specific eukaryotic mRNAs use a structure-based strategy to ‘hi-
jack’ the ribosome and initiate translation through an internal ribo-
somal entry site (IRES). Viral mRNAs also co-opt host protein
synthesis machinery through cap-independent binding. At these
internal entry sites, typically in the 50 UTR of a message, RNA struc-
ture replaces many or all of the eIF proteins required to recruit the
ribosome (Fig. 2).

Eukaryotic and viral RNAs use IRES elements in strategically dif-
ferent ways. Eukaryotic mRNAs with IRES elements encode proteins
required for apoptosis, cell development, oncogenesis and for sur-
vival of nutrient stress, hypoxia, heat shock, and viral infection
(reviewed in [37]). These conditions coincide with a decline in
cap-dependent translation initiation, and IRES mechanisms allow
the cell to respond with synthesis of appropriate proteins. For exam-
ple, during apoptosis, the mRNA encoding c-myc, a transcription
enhancer important to apoptosis and cancer mechanisms, switches
from canonical to IRES-mediated translation initiation and is
actively produced despite inactivation of cap-dependent translation
[38]. This may be a widespread cellular strategy. In silico analyses
estimate that nearly 10% of cellular mRNAs have IRES activity [39].
In addition, viruses often contain highly structured 50 regions incom-
patible with traditional translation initiation, and may lack the 50

cap or poly(A) tail required for canonical translation [40]. RNA
viruses use IRES elements to proliferate in the cellular environment.

3.3. IRES structures

The first IRES elements were discovered in the positive sense
RNAs of picornaviruses and encephalomyocarditis viruses
[41,42]. IRES elements in closely-related viral species exhibit a high
degree of structural conservation, despite large differences in pri-
mary sequence, emphasizing an important role for RNA structure
in directing protein expression. In contrast, cellular IRES elements
show much less sequence and structural conservation, suggesting
these elements are more highly specialized.

IRES elements may require eIFs and/or RNA-binding proteins
called IRES trans-acting factors (ITAFs), whereas others directly bind
the ribosome to initiate translation. The number of eIF and ITAF fac-
tors required to initiate translation is roughly inversely related to
the amount of compactly folded RNA structure in an IRES [43]. Viral
IRES elements tend to be more structured than their cellular coun-
terparts and bind fewer co-factors [44]. Four classes of IRES elements
have been defined for Picornaviridae (Fig. 2A). Class I viral IRES ele-
ments are self-sufficient, RNA-driven systems that do not require
any factors for initiation. At the opposite end of the spectrum, Class
IV elements require canonical eIFs as well as ITAFs [45].

Perhaps the best characterized Class I viral IRES is from a
Dicistroviridae intergenic region. An RNA pseudoknot in this IRES
occupies the ribosomal P-site and mimics the structure of a bound
peptidyl tRNA, allowing complete ribosomal assembly [46,47]. A
Class I IRES in Israeli acute bee paralysis virus controls levels of
two proteins, one expressed from a +1 reading frame by forming
an extra GU base pair in the pseudoknot occupying the P-site,
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thereby shifting the frame of the codon:anticodon mimic by one
nucleotide [40].

Class II viral IRES domains are less structured. The Class II HCV
IRES binds directly to the ribosome [48] but requires canonical ele-
ments such as initiator tRNAMet, eIF2, and GTP for translation initi-
ation [49]. The HCV IRES contains several major domains (II, III, and
IV) that are conserved among related flaviviruses and some picor-
naviruses (Fig. 2B). Domain III binds eIF3 and contains a distinct
40S binding site (reviewed in [50]). A pseudoknotted element at
the base of domain III is located near the AUG start codon in do-
main IV (Fig. 2B), and computational modeling suggests that it
forms a three-dimensional structure similar to that of tRNA [51].
This tRNA-like structure likely interacts with the ribosome, ulti-
mately aligning the start codon in the ribosomal P-site
[48,49,51–54]. The use of mimicry, especially of tRNAs, appears
to be a general strategy in IRES function [55].

Class III and Class IV viral IRES elements require more initiation
factors than do Class II IRESs and do not directly bind the 40S ribo-
some. Examples of Group III IRESs are found in foot and mouth dis-
ease virus and encephalomyocarditis virus RNAs. Group IV IRES
elements include those from poliovirus and hepatitis A virus. An
important distinction between these two IRES classes is in their
proximity to an AUG start codon. Class III IRESs immediately pre-
cede the AUG, whereas Class IV IRESs can be located at significant
distance from their target ORFs.

The mRNA encoding the transcription factor c-myc contains
perhaps the best characterized cellular IRES element. Normally,
proteins from the myc family control cell proliferation and apopto-
sis; however, a mutant form is associated with carcinogenesis
[56,57]. As discussed, c-myc mRNA can use either canonical or
IRES-mediated translation initiation [58]. Use of the IRES element
occurs under specific cellular conditions when one of four possible
promoter sequences is used to produce a long carcinogenic mRNA
[58] (Fig. 2C). RNA pseudoknots, similar to those important to tRNA
mimicry in HCV and Dicistroviridae Class I IRESs, may form near the
c-myc ribosome landing sites in the IRES elements [59]. Under-
standing these RNA structures will be key to determining how
these complex protein regulatory pathways function.

4. Derailing translation with programed ribosomal
frameshifting

Numerous cellular and viral RNAs undergo non-canonical trans-
lation where the genetic information within the message is
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‘‘recoded’’ [60] by signals within the RNA (reviewed [40,61]). We
will highlight the role that RNA structure plays in inducing and
regulating one example of non-canonical translation: programed
ribosomal frameshifting.

Ribosomal frameshifting occurs when elements within the RNA
cause the ribosome to switch registers to either the �1 or +1 read-
ing frame. Additionally, some studies suggest that �2 and +2
frameshifting events are possible [62,63]. Frameshifting sites are
minimally composed of two distinct parts: a ‘‘slippery sequence’’
and a cis-acting element. Various cis-acting elements, such as
Shine–Dalgarno-like sequences and stop codons [64,65], are capa-
ble of inducing frameshifting, but most frameshifting events are
mediated by highly structured RNA elements [66–68]. The cis-
element within the mRNA pauses a translating ribosome’s active
site over the slippery sequence (Fig. 3A). The codon–anticodon
interactions are momentarily disrupted, and the ribosome
advances two or four nucleotides in the case of �1 and +1 frame-
shifting, respectively, before translation continues. The efficiencies
of frameshifting sites vary depending on the features of the ele-
ments involved [66,69,70]. Even low levels of programmed frame-
shifting, less than 10%, can have large functional consequences.

RNA pseudoknots are structural motifs that are often found at
both �1 and +1 ribosomal frameshifting sites, presumably due to
their ability to resist the helicase activity of the ribosome [71].
Pseudoknots contain a minimum of two base-paired helices;
nucleotides within the loop of one helix base pair with nucleo-
tides outside the stem region to form the ‘‘pseudoknotted’’ struc-
ture [72]. An example of pseudoknot within a �1 frameshifting
element in mammalian cells is found in the mouse embryonal
carcinoma differentiation regulated (Edr) gene [73] (Fig. 3B). Edr
and the human ortholog PEG10 are highly expressed during
development and encode proteins with two overlapping reading
frames [74,75]. A pseudoknot structure also can be found in the
+1 frameshifting sites within eukaryotic antizyme genes [76,77],
which encode inhibitors of ornithine decarboxylase [78]. Transla-
tion of functional proteins from these genes requires a +1 frame-
shift [79]. The AZ1 frameshifting site is complex and is
composed of a (UGC UCC UGA) slippery sequence flanked by a
50 regulatory element and pseudoknot (Fig. 3C) [76,79]. The slip-
pery sequence contains a UGA stop-codon that will terminate
protein translation unless a frameshift occurs. Increased levels
of polyamines, the downstream products of ornithine decarbox-
ylase, up regulate levels of frameshifting through action of the
50 regulatory element [80].

One of the first �1 frameshifting elements identified occurs at
the end of the Gag reading frame in HIV-1 [70] (Fig. 3D). This
frameshifting element induces a �1 frameshift for 5–10% of trans-
lating ribosomes, allowing for the translation of a gag-pol fusion
protein that contains gag protein fused to the viral protease and re-
verse transcriptase enzymes [70]. The frameshifting element was
initially suggested to consist of the slippery sequence (UUUUUUA)
and a simple stem-loop structure [70]; however, this simple model
has been revised as studies of this element suggested that addi-
tional sequences are required for biological activity [81]. Studies
of the frameshifting element in the context of the intact HIV-1
genomic RNA suggest that the stem-loop is part of a larger struc-
tured RNA domain (Fig. 3D) [82]. The surrounding structural do-
main functions to attenuate the frameshifting efficiency [83].

A complex �1 frameshifting element exists within the genome
of the SARS corona-virus (SARS-CoV) at the end of the first ORF.
Frameshifting results in the translation of the SARS-CoV the repli-
case-transcriptase peptide, which is cleaved by proteases to gener-
ate up to 16 individual proteins [68]. The programed frameshift in
SARS-CoV appears to regulate the ratios of SARS viral proteins. The
frameshifting element in SARS-CoV contains a stem-loop in one of
the pseudoknot loops (Fig. 3E) [84]. The end of this internal stem-
loop structure contains a palindromic sequence that allows the ele-
ment to dimerize (Fig. 3E) [85]. Mutations that interfered with
dimerization of this domain, both reduced frameshifting efficiency
and inhibited viral replication [85]. These data suggest that the
frameshifting efficiency within SARS-CoV is regulated by the abil-
ity of the genome to dimerize, connecting two critical steps in
the replication cycle of the virus.

The frameshifting elements described here are just a few exam-
ples of a rapidly expanding list of frameshifting elements that func-
tion in diverse organisms and viruses. RNA structures within these
frameshifting elements often have modular properties, and stable
stem-loop structures can substitute for pseudoknots in some ele-
ments [86]. The frameshifting efficiency of the core elements can
be regulated by the surrounding RNA sequence and structure
[83], tertiary interactions [85], and ligands [80] that ultimately cre-
ate dynamic elements capable of both precisely controlling frame-
shifting efficiency and responding to conditions within the cellular
environment.

5. RNA structure and setting ribosomal speed limits

Folding of a nascent chain of amino acids into functional protein
domains begins immediately after the peptide emerges from the
ribosome (reviewed in [87,88]). The rate of translation can signifi-
cantly impact protein folding [89]. The most extensively studied
examples of regulated translational pausing in cells are at rare co-
dons. Rare codons, those codons with low abundance tRNA part-
ners, often occur at the junctions between independently folding
protein domains [90]. Ribosomal pausing at these rare codons is
thought to facilitate the folding of native proteins in cells [91].
The correlation between translational pausing and rare codon fre-
quency is imperfect, and there is also evidence that mRNA struc-
ture modulates translation rates. For example, when individual
ribosomes translating an RNA hairpin were monitored using opti-
cal tweezers, the length of time that the ribosome paused during
translation was dependent on the stability of the RNA structure
[92]; stable structures are eventually unwound by the mechanical
forces exerted by the ribosome [93].

An extensive body of evidence demonstrating the effect of
mRNA structure on translation comes from studies of the yeast
ASH1 gene. Ash1p is a transcription factor that is localized to newly
formed daughter cells during mitosis and regulates mating-type
switching. During mitosis, four structured elements within the
coding sequence of the ASH1 mRNA function both to localize the
mRNA to newly forming cells and also to translationally silence
the mRNA in the mother cell [94,95]. These two activities are sep-
arable: When the structured RNA elements are moved from the
coding sequence to the 30 UTR, the mRNA is correctly localized,
but localization of the Ash1p protein is impaired [96]. The struc-
tured elements within the ASH1 mRNA appear to function as ribo-
some stop-lights, preventing protein translation until proper
localization of the message. Another example of the effect of mRNA
structure on protein translation comes from analysis of single
nucleotide polymorphisms in the human pain regulator gene cate-
chol-O-methyltransferase (COMT) [97]. Polymorphisms within the
COMT gene are associated with increased pain sensitivity in hu-
mans [98]. The increased pain sensitivity phenotypes are caused
by dramatic increases in COMT protein levels due to changes in
the global structure of the mRNA [97,99]. These differences in
COMT protein expression are attributed, in part, to structural
changes near the start codon that affect translational efficiency of
the mRNA [99].



A

XXXYYYNNYYXXY

P
site

A
site

5´

3´

Normal translocation

XXXYYYNN5´

3´

-1 frameshifting

XXXYYYNN5´

3´

X

D

AAUUUUUUAGGGAAGA
U - G
C - G
U - A
G - C
G - C
C - G
C - G
U - A
U - A
C - G
C - G
C - G

A A
AC

GAAAG

G
C U

A
CAG
GUC

A

A
A

A

G

UG
U
AAA

CC A
C A - U

G - U
G - C
A - U
A - U
G - C

G - C
G - C
U - A

A
G A

G
C

AG
A

G

 C 3´

A
GA
A

U
AA

A A
G
G

5´ A

HIV-1 -1 Frameshift

U - G
C - G
U - A
G - C
G - C
C - G
C - G
U - A
U - A
C - G
C - G
C - G

AUUUUUUAG
UUA

Slippery
sequence

Stem-loop

G - C
G - C
U - A
U - A

U - A
G - C

C - G
G - C
G - C
G - C

5´ GGGAAACUCCCC
G - C
G - C
C - G
C - G
C - G A

A
C

C - G
G - C
C - G
U - A
G - C

U
A
G

G - C
G - C
G - C
G - C

A - U

C - G
C - G

U - A
U - A

A G
A

A
C

G

A

A

U

Mouse Edr -1 Frameshift

G - C
G - C
C - G
C - G
C - G
C - G
G - C
C - G
U - A
G - C

G - C
G - C
G - C
G - C

A - UA

C - G
C - G

U - A
U - A

GGGAAACU

B
3´

Slippery
sequence

Stem-loop

Pseudoknot

5´ UUUAAACGGGUUU
G - U
C - G
G - C
G - C
U - A
G - C
U - A
A - U
A - U
G - C

U
G
C

A - U

U - A
G - C
C - G
C - G

A

C - G
G - C

U
C

GCGGCA
UGCUGU

A

CAG
GUC

A U
G
A
U
CG

C A

SARS CoV -1 Frameshift

G - U
C - G
G - C
G - C
U - A
G - C
U - A
A - UA
A - UA
G - C

A - UA

U - A
G - C
C - G
C - G
C - G
G - C

UUUAAAC

E

3´

Slippery
sequence

Stem-loop

Pseudoknot

U

G
U

C

A

A G
C

A
UCG UGUCGU

A

GAC  ACGGCG  

3´

5´

*
*
*
*
*

*

UGCUCCUGAUGC
C - G

C - G
C - G

U - A
C - G
C - G
C - G
C - G

A C

A - U
C - G
C - G

G

U

A

A

C

A G - C
A - U
U - A

C - G
C - G

C - G

U
A A

C

A

U

A
G

A

 A 3´

5´ C
C - G

C - G
C - G

U - A
C - G
C - G
C - G
C - G
A - UA
C - G
C - G

G - C
A - UA
U - A

C - G
C - G

C - G

AZ1 +1 FrameshiftC

+1 frameshifting

XXXYYYNN5´

3´

X

UGCUCCUGA

Slippery
sequence

Regulatory
element

Stem-loop

Pseudoknot

Fig. 3. Structural diversity within programmed ribosomal frameshifting elements. (A) Schematic diagram of �1 and +1 programmed frameshifting events. A translating
ribosome encounters a slippery sequence upstream of a stable RNA structure. The post-translocation position of the peptide-linked tRNA (blue structure) is shown for normal
translocation (middle) and �1 and +1 frameshifting events. Proposed secondary structures for (B) the �1 frameshift element for the mouse Edr gene [73], (C) the +1
frameshifting region of the human AZ1 gene [76,79] (D) the gag-pol frameshift in HIV-1 [82], and (E) the replicase-transcriptase frameshift of SARS-CoV [84]. In each example,
the ‘‘slippery sequence’’ (purple box) is located upstream of a stable structure (orange and red boxes).

D.M. Mauger et al. / FEBS Letters 587 (2013) 1180–1188 1185
Recent innovations in RNA structure probing technologies have
facilitated systematic analyses of RNA structure on genome-wide
scales and examination of relationships between RNA structure
and the organization of the encoded protein. The RNA probing tech-
nology SHAPE was used to analyze the structure of an HIV-1 geno-
mic RNA [82]. The regions of the genomic RNA that encode
polyprotein linkers and interdomain loops within HIV-1 proteins
are highly structured (Fig. 4A and B). This direct correlation be-
tween the structure of the mRNA and the organization of protein
domains suggests that these structured regions of the mRNA func-
tion as ribosomal pause sites and facilitate the folding of active viral
proteins. The hypothesis that structures within coding regions of
mRNAs play an important role in protein folding is also supported
by analysis of the mRNA transcriptome in yeast [100]. A technology
termed PARS was used to probe the structures of over 3000 yeast
mRNAs. There is a correlation between mRNA structure and the
organization of coding sequences such that both the start and stop
codons generally occur in regions that lack stable structures
(Fig. 4C). The internal coding regions of most mRNAs appear to have
a significantly higher level of structure than the 50 and 30 UTRs.
Taken together, these recent studies suggest that RNA structure
represents a second layer of information, an RNA structurome
[101], that regulates the kinetics of protein production to ensure
proper expression and folding.

Protein coding regions within mRNAs are often depicted as
long rectangles, as if they were translation highways. The under-
lying assumption is that once the ribosome clears the obstacles
imposed by initiation, translation proceeds uninterrupted until
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a stop codon is encountered. Current evidence indicates, how-
ever, that coding regions within mRNAs are complex landscapes
defined by both codon usage and the physical structure of the
mRNA.
6. Conclusions

We have presented an overview of strategies by which RNA
structure controls and modulates the synthesis and function of
proteins. These examples emphasize that structured elements in
RNA function as an additional level of information to govern
protein expression. Conversely, in the absence of structured RNA
regulatory elements, many transcriptional and translational con-
trol functions would be lost. Proteins carry out the vast majority
of cellular catalytic, signaling, regulatory, and replicative functions.
Ultimately, the three-dimensional structure of an mRNA exerts a
great deal of influence over the function of its protein product.
The influence and complexity of RNA structure in governing
protein expression, synthesis and function can appropriately be
considered another level of the genetic code, one that we are likely
to have only glimpsed thus far.
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