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different candidate genes
involved in hepatocellular
carcinoma induced by HepG2
cells or tumor cells of patients
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Abstract

Objective: Hepatocellular carcinoma (HCC) is a common cancer with a high mortality rate; the

molecular mechanism involved in HCC remain unclear. We aimed to provide insight into HCC

induced with HepG2 cells and identify genes and pathways associated with HCC, as well as

potential therapeutic targets.

Methods: Dataset GSE72581 was downloaded from the Gene Expression Omnibus, including

samples from mice injected in liver parenchyma with HepG2 cells, and from mice injected with

cells from patient tumor explants. Differentially expressed genes (DEGs) between the two groups

of mice were analyzed. Then, gene ontology and Kyoto Encyclopedia of Gene and Genomes

pathway enrichment analyses were performed. The MCODE plug-in in Cytoscape was applied to

create a protein–protein interaction (PPI) network of DEGs.

Results:We identified 1,405 DEGs (479 upregulated and 926 downregulated genes), which were

enriched in complement and coagulation cascades, peroxisome proliferator-activated receptor

signaling pathway, and extracellular matrix–receptor interaction. The top 4 modules and top 20

hub genes were identified from the PPI network, and associations with overall survival were

determined using Kaplan–Meier analysis.

Conclusion: This preclinical study provided data on molecular targets in HCC that could be

useful in the clinical treatment of HCC.

1Medical School, Yan’an University, Yan’an, P. R. China
2Shandong Co-Innovation Center of Classic TCM formula,

Shandong University of Traditional Chinese Medicine,

Jinan, P. R. China

*These authors equally contributed to this work.

Corresponding author:

Ke Ma, Shandong Co-Innovation Center of Classic TCM

formula, Shandong University of Traditional Chinese

Medicine, No. 4655, University Road, Changqing District,

Jinan 250355, P. R. China.

Email: make@sdutcm.edu.cn

Journal of International Medical Research

48(6) 1–12

! The Author(s) 2020

Article reuse guidelines:

sagepub.com/journals-permissions

DOI: 10.1177/0300060520932112

journals.sagepub.com/home/imr

Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative

Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits

non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed

as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

mailto:make@sdutcm.edu.cn
http://uk.sagepub.com/en-gb/journals-permissions
http://dx.doi.org/10.1177/0300060520932112
journals.sagepub.com/home/imr


Keywords

Hepatocellular carcinoma (HCC), differentially expressed gene, gene ontology, Kyoto

Encyclopedia of Genes and Genomes pathway, modules, protein–protein interaction network

Date received: 14 January 2020; accepted: 14 May 2020

Introduction

Hepatocellular carcinoma (HCC) is the fifth
most frequent tumor in men and the ninth
most frequent in women worldwide, with
approximately 500,000 and 200,000 new
cases per year, respectively.1 Because of its
insidious onset, imperceptible symptoms in
early stages, and poor prognosis, HCC is
the second most common cause of cancer-
related death in the world, making its clin-
ical treatment challenging.2 Results from
research using HCC cell lines are often
not useful in clinical studies, and we
hypothesize that this is because of differen-
ces between tumors from preclinical sam-
ples injected with HCC cell lines and those
injected with tumor cells from patient
tumor explants. Thus, further investigations
into the different molecular pathophysiolo-
gy of tumors from preclinical samples
induced with HCC cell lines and patient
tumor explants are necessary to provide
more data for effective treatment.

The latest research has shown that actin
gamma smooth muscle 2 (ACTG2) boosts
the metastatic potential of HCC cells in a
Notch homolog 1 (Notch1)-dependent
manner.3 In HCC, double-stranded RNA-
dependent protein kinase (PKR) act as a
tumor suppressor by inhibiting hepatitis C
virus replication. However, PKR also acts
as a tumor promoter through enhancement
of cancer cell growth by mediating MAPK
or signal transducer and activator of tran-
scription (STAT) pathways in patients with
cirrhosis.4 One study showed, by analyzing
cell lines, genetically modified mice, and

HCC tissues, that Yes-associated protein

(YAP) cooperates with forkhead box pro-

tein M1 (FOXM1) to contribute to chro-

mosome instability; agents that disrupt

this pathway might be developed as treat-

ments for liver cancer.5 These studies dem-

onstrate that a better understanding of the

mechanisms underlying HCC are of great

importance to its clinical treatment.

Further studies are necessary to elucidate

other potential mechanisms and investigate

target genes involved in different forms of

induced HCC in preclinical studies.
In this study, we downloaded array data

of GSE72981 from Gene Expression

Omnibus (GEO) to confirm the similarities

and differences of tumors from mice

injected with HepG2 cells and those

injected with tumor cells from patient

tumor explants. We analyzed the differen-

tially expressed genes (DEGs) using a bio-

logical informatics approach to provide

further insight into HCC induced with

HepG2 cells versus cells from patient

tumor explants.

Materials and methods

Microarray data

The gene expression profile of GSE72981

was downloaded from the GEO database

(http://www.ncbi.nlm.nih.gov/geo/), which

was based on the GPL570 platform ([HG-

U133_Plus_2] Affymetrix Human Genome

U133 Plus 2.0 Array). The GSE72981 data-

set contained 30 samples derived from
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severe combined immunodeficiency (SCID)

mice, including eight mice that were subcu-

taneously (ectopically) injected into the

flank and orthotopically into liver paren-

chyma with HepG2 cell lines, and 22 that

were subcutaneously (ectopically) injected

into the flank and orthotopically into liver

parenchyma with tumor cells from patient

tumor explants.

Identification of DEGs

The limma package6 was applied to analyze

DEGs between SCID mice that were

injected with HepG2 cell lines and SCID

mice that were injected with tumor cells

from patient tumor explants. The P-values

of DEGs were calculated using a t-test in R

(https://www.R-project.org/) with the

limma package. An adjusted P-value

<0.05 and |logFC| >2 (where FC¼ fold

change) were set as the cut-off criteria. In

total, 1,405 DEGs were found, including

479 upregulated genes and 926 downregu-

lated genes; the 20 genes with the highest

degree of connectivity were selected as hub

genes. A volcano plot of DEG expression

was built in R using the ggplot2 package.

GO and KEGG pathway enrichment

analysis of DEGs

Gene ontology analysis (GO) is a common-

ly used method to annotate genes and gene

products and to identify molecular func-

tion, biological process, and cellular com-

ponent attributes for high-throughput

genomic or transcriptomic data.7,8 KEGG

is a collection of databases used for system-

atic analysis of gene functions and for

associating related gene sets with their path-

ways.9 GO annotation (P< 0.01, q< 0.05)

and KEGG pathway (P< 0.05) enrichment

analyses were conducted for DEGs in R

with the clusterProfiler package.10

Integration of PPI network and module

analysis

The online Search Tool for the Retrieval of

Interacting Genes (STRING)11 database
(https://string-db.org/) was used to evaluate

interactive relationships among DEGs

regarding the predicted and experimental
interactions of proteins. Interactions of pro-

tein pairs in the database are presented with

a confidence score. In this study, DEGs were
mapped into PPIs, and a confidence score of

>0.4 and maximum number of inter-

actors¼ 0 were used as the cut-off values.

The top 20 genes with degree of connectivity
>55 were selected as hub genes. Then, PPI

networks were constructed using the

Cytoscape software (https://cytoscape.org/).
The Molecular Complex Detection

(MCODE) plug-in in Cytoscape was used

to detect significant modules in the PPI net-
work. The criteria were as follows: degree

cutoff¼ 2, node score cutoff¼ 0.2,

k-core¼ 2, and maximum depth¼ 100. Top
modules from the PPI network were identi-

fied using the MCODE plug-in as those with

a score of >6.0. Moreover, KEGG pathway
enrichment analysis was performed for

DEGs in the modules by using DAVID

(https://david.ncifcrf.gov/). P< 0.05 and
false discovery rate <0.05 were considered

to indicate significant differences.

Survival analysis of hub genes

Kaplan–Meier plotter (KM plotter, http://

kmplot.com/analysis/) was used to assess
the effect of 54,675 genes on survival

using 10,461 cancer samples, including

5,143 breast, 1,816 ovarian, 2,437 lung,
and 1,065 gastric cancer patients with a

mean follow-up of 69, 40, 49, and

33 months, respectively.12 Relapse-free sur-
vival and OS information was based on

GEO (Affymetrix microarrays only), the

European Genome-Phenome Archive
(EGA; https://ega-archive.org/) and The
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Cancer Genome Atlas (TCGA; https://

www.cancer.gov/about-nci/organization/cc

g/research/structural-genomics/tcga) data-

bases. Hazard ratios with 95% confidence

intervals and log rank P-values were

calculated and displayed in plots.

Ethics

All data in this paper were obtained from

the GEO database (http://www.ncbi.nlm.

nih.gov/geo/). Ethical permission was

deemed unnecessary for this study.

Results

Identification of DEGs

An adjusted P-value< 0.05 and |logFC| >2

were set as cut-off criteria for DEGs.

A total of 1,405 DEGs were identified
after analysis of GSE72581, including 479
upregulated genes and 926 downregulated
genes. The top 20 upregulated and down-
regulated DEGs are shown in the heat map
in Figure 1.

GO term and KEGG pathway enrichment
analysis

To gain a better understanding of the
DEGs, GO terms and KEGG pathway
enrichment of the DEGs were analyzed in
R with the clusterProfiler package. In cellu-
lar components, the DEGs were particu-
larly enriched in endoplasmic reticulum
lumen and blood microparticle (Table 1).
For biological processes, the DEGs were
enriched in lipid homeostasis and regula-
tion of lipid metabolic process (Table 1).

Figure 1. Volcano map of DEGs. Red represents upregulated genes, green represents downregulated
genes, and black indicates genes that were not differentially expressed. The names of the top 20 upregulated
and downregulated DEGs are shown. DEG, differentially expressed gene.
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Table 1. Gene ontology analysis of DEGs.

Category Term Count P-value

GOTERM_CC_FAT GO:0072562�blood microparticle 24 7.11E-10

GOTERM_CC_FAT GO:0005788�endoplasmic reticulum lumen 39 6.69E-08

GOTERM_CC_FAT GO:0031091�platelet alpha granule 19 7.29E-08

GOTERM_CC_FAT GO:0034364�high-density lipoprotein particle 10 1.01E-07

GOTERM_CC_FAT GO:0034358�plasma lipoprotein particle 12 1.23E-07

GOTERM_CC_FAT GO:1990777�lipoprotein particle 12 1.23E-07

GOTERM_CC_FAT GO:0032994�protein-lipid complex 12 2.47E-07

GOTERM_CC_FAT GO:0031093�platelet alpha granule lumen 15 7.25E-07

GOTERM_CC_FAT GO:0042627�chylomicron 7 1.49E-06

GOTERM_CC_FAT GO:0034361�very-low-density lipoprotein

particle

8 2.70E-06

GOTERM_BP_FAT GO:0006869�lipid transport 60 1.55E-17

GOTERM_BP_FAT GO:0010876�lipid localization 62 8.17E-17

GOTERM_BP_FAT GO:0015711�organic anion transport 68 2.80E-16

GOTERM_BP_FAT GO:0015718�monocarboxylic acid transport 34 1.51E-13

GOTERM_BP_FAT GO:0015849�organic acid transport 49 6.96E-13

GOTERM_BP_FAT GO:0046942�carboxylic acid transport 48 1.20E-12

GOTERM_BP_FAT GO:0019216�regulation of lipid metabolic

process

53 2.18E-12

GOTERM_BP_FAT GO:0055088�lipid homeostasis 27 4.01E-12

GOTERM_BP_FAT GO:0044242�cellular lipid catabolic process 36 8.62E-12

GOTERM_BP_FAT GO:0016042�lipid catabolic process 46 1.00E-11

GOTERM_MF_FAT GO:0005319�lipid transporter activity 26 7.31E-09

GOTERM_MF_FAT GO:0003707�steroid hormone receptor activity 15 1.77E-07

GOTERM_MF_FAT GO:0016614�oxidoreductase activity, acting on

CH-OH group of donors

22 1.23E-06

GOTERM_MF_FAT GO:0033293�monocarboxylic acid binding 13 2.21E-06

GOTERM_MF_FAT GO:0004879�nuclear receptor activity 12 4.27E-06

GOTERM_MF_FAT GO:0098531�transcription factor activity, direct

ligand regulated sequence-specific DNA

binding

12 4.27E-06

GOTERM_MF_FAT GO:0005342�organic acid transmembrane

transporter activity

21 7.49E-06

GOTERM_MF_FAT GO:0046943�carboxylic acid transmembrane

transporter activity

20 1.01E-05

GOTERM_MF_FAT GO:0004033�aldo-keto reductase (NADP)

activity

8 1.45E-05

GOTERM_MF_FAT GO:0008201�heparin binding 22 1.69E-05

hsa04610 Complement and coagulation cascades 26 1.41E-10

hsa03320 PPAR signaling pathway 24 5.43E-10

hsa05146 Amoebiasis 24 2.86E-07

hsa00071 Fatty acid degradation 13 2.31E-05

hsa04512 ECM-receptor interaction 18 5.88E-05

hsa01212 Fatty acid metabolism 13 6.38E-05

hsa00410 beta-Alanine metabolism 10 8.98E-05

hsa04979 Cholesterol metabolism 13 0.0001013

(continued)
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For molecular functions, the DEGs were
enriched in steroid hormone receptor
activity, aldo-keto reductase (NADP)
activity, and organic acid transmembrane
transporter activity (Table 1). As shown
in Figure 2, most of the significantly

enriched pathways analyzed by KEGG
included complement and coagulation cas-
cades, peroxisome proliferator-activated
receptor (PPAR) signaling pathway,
and extracellular matrix (ECM)–receptor
interaction.

Table 1. Continued.

Category Term Count P-value

hsa00260 Glycine, serine and threonine metabolism 11 0.0002011

hsa04974 Protein digestion and absorption 18 0.0002085

Term includes the identification number of GO term; count indicates the number of genes enriched in GO terms. DEG,

differentially expressed gene; CC, cell component; BP, biological process; MF, molecular function.

Figure 2. The KEGG pathway of DEGs. KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG,
differentially expressed gene; PPAR, peroxisome proliferator-activated receptor; ECM, extracellular matrix.
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Hub genes and module screening from
PPI network

Based on the information in the STRING
database, PPI networks were made of
DEGs having a combined score >0.4
(Figure 3). The top four modules (modules
1, 2, 3, and 4), with score >6, were detected
by MCODE in Cytoscape (Figure 4).
Pathway analysis of genes in each module
was performed using DAVID (Table 2).
The genes in modules 1 to 4 were mainly
associated with chemokine signaling path-
way, protein digestion and absorption, and
complement and coagulation cascades. The
top 20 genes with degrees of connectivity
>55 were selected as hub genes; these
included ALB, EGF, IL6, F2, FGF2,
CDH1, PLG, AGT, APOB, FN1, HGF,
TF, ALDH1A1, PTGS2, EHHADH, NTS,
APOA1, EDN1, INSR, and AMBP.

KM plotter and expression of hub genes

Prognostic information for the 20 hub
genes was freely available in http://kmplot.

com/analysis/. We found that increased

expression of alpha-1-microglobulin/

bikunin precursor (AMBP) (hazard ratio

0.55, 95% confidence interval: 0.39–0.78;

P¼ 7.3� 10–4) was associated with worse

OS for liver cancer patients (Figure 5).

Discussion

HCC is not only one of the most common

cancers worldwide, but it is also associated

with high mortality due to its limited ther-

apeutic options.13,14 Many research studies

have been conducted on HCC but drugs or

targeted gene therapies found to be success-

ful in HCC cell line studies (i.e., preclinical

studies) are often not useful in clinical

studies.
In the present study, we analyzed dataset

GSE72981 from the GEO database, which

included samples from tumors of mice that

were injected with HepG2 cell lines and of

mice that were injected with tumor cells

from patient tumor explants. We identified

1,405 DEGs, including 479 upregulated

Figure 3. Protein–protein interaction network of differentially expressed genes.
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genes and 926 downregulated genes. GO
analysis showed that these DEGs were

mainly involved in lipid homeostasis and

regulation of lipid metabolic processes,

which is consistent with previous studies
showing that abnormal regulation of lipid

metabolism in the liver leads to HCC.15–18

The KEGG pathways of DEGs included
complement and coagulation cascades,

PPAR signaling pathway, and ECM–recep-

tor interaction. Research has demonstrated

that loss of liver cellular features due to
reduced PPAR signaling in the early

stages of HCC and PPAR-c agonists are

associated with lower risk and improved
prognosis of HCC.19,20

We analyzed the PPI network of DEGs.
Module analysis of the PPI network

revealed that the chemokine signaling path-

way was the most significant pathway in

module 1, and the development of tumors
in mice injected with HepG2 cells was asso-

ciated with neuroactive ligand–receptor

interaction, ECM–receptor interaction,
and the PI3K-AKT signaling pathway.

Our results were consistent with previous

studies.21–23 For instance, Kanglaite, a

Chinese medicine for treating HCC, was
shown to reverse multidrug resistance in

HCC by inducing apoptosis and cell cycle

arrest via the PI3K/AKT pathway, and
NLRX1 acted as a tumor suppressor in

Figure 4. Top four modules from the PPI network. Module 1: MCODE score¼ 20.087; module 2: MCODE
score¼ 11.818; module 3: MCODE score¼ 9.75, and module 4: MCODE score¼ 6.067. PPI, protein–
protein interaction; MCODE, Molecular Complex Detection plug-in.
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HCC by inducing apoptosis, promoting
senescence, and decreasing invasiveness by
repressing the PI3K-AKT signaling path-
way.24–26 We identified 20 hub genes with
a high degree of connectivity in the PPI net-
work: ALB, EGF, IL6, F2, FGF2, CDH1,

PLG, AGT, APOB, FN1, HGF, TF,
ALDH1A1, PTGS2, EHHADH, NTS,
APOA1, EDN1, INSR, and AMBP.
Specifically, a negative correlation was
identified between expression of AMBP
and OS of liver cancer. Evidence has

Table 2. KEGG pathway analysis of DEGs in different modules.

Term P-value FDR Genes

Module 1

hsa04062:Chemokine

signaling pathway

1.41E-08 1.67E-05 CXCL1, CCR6, PLCB4, CXCL5,

ADCY7, CCL20, CXCR4,

GNG11, CXCL6, CCL5, PLCB1,

PIK3R1

hsa04610:Complement and

coagulation cascades

2.08E-07 2.45E-04 FGG, F5, FGA, FGB, C5, SERPINA1,

PLG, F2R

hsa05200:Pathways in cancer 5.52E-07 6.51E-04 ADCY7, GNG11, ZBTB16, HGF,

LPAR1, EDNRB, AGTR1, PLCB4,

CXCR4, EGF, PLCB1, PIK3R1,

FN1, F2R

hsa04611:Platelet activation 1.27E-06 0.00149696 FGG, PLCB4, FGA, ADCY7, FGB,

TBXA2R, PLCB1, PIK3R1, F2R

hsa04080:Neuroactive ligand-

receptor interaction

6.75E-06 0.00795931 F2RL2, EDNRB, AGTR1, KISS1R,

SSTR1, F2RL1, NPFFR2,

TBXA2R, LPAR1, PLG, F2R

Module 3

hsa04974:Protein digestion

and absorption

7.81E-14 7.65E-11 COL4A4, COL18A1, COL4A3,

COL4A2, COL4A1, COL7A1,

COL15A1, COL12A1, CPB2,

COL5A2, COL5A1, COL4A5

hsa04512:ECM-receptor

interaction

3.75E-09 3.67E-06 COL4A4, COL4A3, COL4A2,

COL4A1, TNC, COL5A2,

COL5A1, SPP1, COL4A5

hsa04510:Focal adhesion 3.09E-06 0.00303073 COL4A4, COL4A3, COL4A2,

COL4A1, TNC, COL5A2,

COL5A1, SPP1, COL4A5

hsa05146:Amoebiasis 7.41E-06 0.00725817 COL4A4, COL4A3, COL4A2,

COL4A1, COL5A2, COL5A1,

COL4A5

hsa04151:PI3K-Akt signaling

pathway

1.75E-05 0.01717134 COL4A4, COL4A3, COL4A2,

COL4A1, TNC, FGF13, COL5A2,

COL5A1, SPP1, COL4A5

hsa05222:Small cell lung

cancer

3.88E-05 0.03800114 COL4A4, COL4A3, COL4A2,

COL4A1, PTGS2, COL4A5

Module 4

hsa04610:Complement and

coagulation cascades

3.15E-05 0.03242746 F13B, F3, SERPINA5, F2, PLAUR

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEG, differentially expressed gene; FDR, false discovery rate.
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shown that a high level of serum AMBP is
associated with a poor response to
paclitaxel-capecitabine chemotherapy in
patients with advanced gastric cancer.27

AMBP has also been confirmed to be dif-
ferentially expressed in seven liver cancer
cell lines and 17 HCC tissues.28 AMBP
and the other DEGs may be considered
novel hepatitis B virus-related HCC signa-
ture genes.29 However, little research has
been done on the function and mechanism
of AMBP in HCC.

Conclusion

In this bioinformatics analysis, we identified
that AMBP, as well as the chemokine

signaling pathway and neuroactive ligand–

receptor interactions, may be important in

the development of HCC. However, the

role of these pathways and AMBP in

HCC remains enigmatic. Future preclinical

studies in HCC using the HepG2 cell should

focus on these pathways and AMBP. Our

results provide further insight into HCC

induced with HepG2 cells and highlight

potential key genes and pathways involved

in diagnosis and prognosis of HCC, as well

as potential drug targets.

Declaration of conflicting interest
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Figure 5. Prognostic value of expression level of AMBP. AMBP, alpha-1-microglobulin/bikunin precursor;
HR, hazard ratio.
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