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Abstract: A hollow biconical fiber is proposed and experimentally demonstrated for vibration
sensing. It is fabricated by creating an air micro-cavity in single-mode fiber, followed by tapering
it. Experimental results show that the device is highly sensitive to bending with a sensitivity of
21.30 dB/m−1. When it is exposed to vibration, its transmission loss is modulated periodically, then
based on the measured transmission, the vibration frequency can be demodulated accurately. The
acoustic vibration testing results show that the proposed device can detect and demodulate the
exciting acoustic frequency accurately and distinguish its sound intensity, and the maximum signal
to noise ratio (SNR) achieves up to 59 dB. Moreover, cantilever beam testing proves its performance
reliable. Additionally, the sensing head has the advantages of a lightweight, compact size (with a
total length of less than 250 µm), and insensitivity of temperature. All these features indicate the
proposed sensor has a promising potential in the engineering field.

Keywords: optical fiber sensor; hollow biconical fiber; interferometer; vibration; temperature

1. Introduction

Vibration is a common phenomenon in nature, but it often causes industrial engineer-
ing damage [1]. Compared with mechanical sensors and piezoelectric sensors, optical fiber
vibration sensors are more suitable for vibration measurement owing to their advantages,
such as small size, anti-electromagnetic interference, lightweight, high sensitivity, optical
fiber sensing is widely used in aeronautical [2,3], structural health [2,4–6], environmental
monitoring [7], and even harsh environments [8,9]. Therefore, it is necessary to detect the
vibration accurately and effectively by a sensor.

Optical fiber sensors have been applied to the field of vibration sensing. Many
structures have been used in the field of vibration sensing, such as an optical fiber ring
structure [10,11], Fiber Bragg grating [12,13], in-line interferometer [14–16], and distributed
vibration sensor [17]. Among them, various interferometers with a sandwich structure
formed by combining different types of fibers are extensively adopted owing to the features
of easy fabrication, high sensitivity, and a wide frequency response range. A vibration
sensor formed by splicing a segment of multicore fiber (MCF) to a single-mode fiber (SMF)
is a typical example, and it has a large frequency response range of several hertz to several
kilohertz [18]. However, it has a long length of several tens of millimeters. Some small-
sized structures have been proposed. For example, a Fabry-Perot interferometer fabricated
by hollow-core fiber (HCF), SMF, and coreless silica fiber (CF) have been proposed. Its
sensitivity is up to 20.678 mV/g at a frequency of 500 Hz, and the frequency range of
vibration sensing is as wide as a range from 100 Hz to 3000 Hz. Unfortunately, although
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the size of this structure is small, it uses a lot of materials, high cost, and a complex manu-
facturing process [19]. A butterfly-shaped sensor with a sandwich structure is composed of
a smaller size, and lower cost is proposed. The SMF-HCF-SMF structure is used to measure
low-frequency vibration. Its sensing element is a tapered hollow-core fiber with a length of
595 µm, which measured low-frequency vibration of 10–200 Hz with a poor error rate of
0.27% [20]. A Mach-Zehnder interferometer composed of bending-insensitive fiber (BIF)
solved the problem of complex structure. The BIF-MZI structure measured continuous
vibration frequencies from 1 Hz to 500 kHz, but it still has a larger size with the length of
the taper is 900 µm [21].

In this paper, we proposed another new vibration sensor based on hollow biconical
fiber (HBF). To fabricate it, only commercial communication SMF is required, and the total
length of the sensing head is less than 1 mm. Experimental results showed that the sensing
head has a high bending sensitivity of 21.3 dB/m−1, and owing to this feature, the sensing
head can be used for sensing surrounding vibration frequency and amplitude with high
SNR. A cantilever beam testing further proves the performance of it reliable.

2. Principle and Fabrication

The structure diagram of the proposed device is shown in Figure 1. An air micro-
cavity was embedded in a biconical fiber to form a hollow taper. Launched light from
a broadband light source was coupled into the core of lead-in SMF and then split into
two beams due to the spherical interface of silica core/air, one called as cavity mode
propagates in the cavity and the other called as cladding mode in the cavity wall, then
they combined in the lead-out SMF core. Because of the optical path difference (OPD)
caused by different mediums in two paths, a phase difference is caused between these two
beams; thus interference is generated, and the configuration of the proposed device can be
considered as a Mach-Zehnder interferometer (MZI).
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According to Fermat’s Lemma [22], the OPD can be expressed as OPD = L∆ne f f ,

where L indicates the interference length, ∆ne f f = ncladding
e f f − ncavity

e f f is the difference
between the effective refractive index of cladding and air. The output light intensity can be
expressed as:

I = ICavity + ICladding + 2
√

ICavity ICladding cos
(2πL∆ne f f

λ

)
, (1)

where ICavity and ICladding indicate the intensity of light propagating in the air cavity and
fiber cladding, respectively, and λ is the wavelength of light in free space. When the phase

difference ∆ϕ
(
= cos

( 2πL∆ne f f
λ

))
satisfies the condition of ∆ϕ = (2m + 1)π, the output

light intensity achieves to a minimum value corresponding to a dip in the transmitted
spectrum of the device.

If the biconical fiber is modulated by some external factors, such as temperature,
vibration, or bending, its transmission spectrum may shift accordingly. Calibrating the
functional relationship between them, the proposed device can be used for sensing this
physical parameter.

To fabricate the biconical fiber as described above, several steps were involved. First, a
small pit was drilled in the end-face of a SMF cleaved flat using a focused femtosecond laser,
as shown in Figure 2a, and the inset shows the micrograph of the drilled SMF. The pit had a
diameter of about 6 µm with a depth of 10 µm. Then, the drilled SMF was spliced to another
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SMF with a flat end-face using a fiber splicing machine (FSM-80S, Fujikura, Tokyo, Japan)
in the standard SMF-SMF splice mode. Then, an air micro-cavity was formed in the fiber
with a cavity length of ~70 µm, as shown in Figure 2b. Figure 3a presents the reflection
and transmission spectra of the fiber with an inner air-cavity. It can be seen that there were
obvious fringes in the reflection spectrum, while the interference fringes could hardly be
seen in the transmission spectrum, which can be explained by the Fabry–Perot interference
(FPI) due to the air-cavity acts as an F-P cavity. In further, according to the free spectrum
range (FSR) of 17.34 nm in the reflection spectrum, the cavity length was calculated to
be 69.3 µm, which agreed well with the measured value. Finally, to taper the fiber with
an inner air-cavity by flame heating, as shown in Figure 2c. Heating the air cavity with
oxyhydrogen flame and stretching the fiber longitudinally to both sides, an HBF was then
obtained with features of 225 µm cavity length and 73.6 µm waist diameter, and the thinnest
cavity wall at the taper waist had a thickness of ~15.4 µm. Figure 3b presents the reflection
and transmission spectra of the air-cavity after tapering, and it is worth noting that the
interference fringes having existed in the reflection spectrum disappeared, while there
were obvious fringes in the transmission spectrum, which can be explained by the fact that
FPI was destroyed and MZI was constructed due to the tapering process. According to the
FSR of 22.4 nm in the transmission spectrum, the interference length was calculated to be
~229.1 µm, which was close to the measured value.
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3. Experiments and Discussions
3.1. Bending Response

First, the bending response of the device was tested, and the experimental setup is
shown in Figure 4. The HBF was pasted on the surface of a steel ruler, and the ruler was
mounted between a fixed stage and a high-resolution translation stage with an initial distance
of L0 (=200 mm), and one end of the HBF was connected to an amplified spontaneous
emission (ASE, ALS-CL-17-B-FA, Amonics, Hong Kong, China) covering a wavelength range
of 1520–1580 nm, the other to an optical spectrum analyzer (OSA, AQ6370D, Yokogawa,
Japan) with the highest resolution bandwidth of 0.02 nm. When the translation stage moved
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to the left, the ruler bends with the HBF attached to it obtained a certain curvature. And
the curvature can be evaluated by the formula C = 1/R =

√
24x/L3

0 [23], where R is the
bending radius of the fiber and x denotes the displacement of the moving stage.
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Figure 4. Experimental system for bending sensing.

Figure 5a shows the transmission spectra of the HBF with typical curvatures. It can
be seen that the transmission spectrum exhibited a red shift with the increasing curvature.
For the light with a wavelength of 1545.58 nm near the resonance dip, its transmission was
modulated by the curvature of the fiber, showing a monotonous change with the increase
in curvature. Figure 5b gives the detailed transmissions with error bars under different
curvatures. The least-square linear fitting method was adopted, and it was found that
there was a good linear relationship between them with an R2 of 0.9870. The slope of the fit
function was up to 21.30 dB/m−1, implying the device was highly sensitive to bending.
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3.2. Acoustic Vibration Testing

Based on the high bending sensitivity of the HBF, an acoustic vibration testing setup
was constructed, as shown in Figure 6, and the vibration response of the device was
investigated. The HBF was pasted on a square steel plate with a side length of 100 mm
and 0.6 mm thickness, and one end of the HBF was connected to a tunable laser covering a
wavelength range of 1520 to 1570 nm with a wavelength resolution of 10 pm, the other to an
InGaAs biased photodetector with a wide dynamic range and high sensitivity connecting
to an oscilloscope with data storage function. A loudspeaker was placed below the steel
plate, and the acoustic wave drove the plate with the attached HBF to vibrate, and thus
the HBF periodically bent. In our experiments, the tunable laser was tuned to 1544.57 nm,
which corresponds to a steep resonance region with a large slope.
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Figure 7 presents the testing results for acoustic vibration with typical frequencies. The
loudspeaker was successively driven by sinusoidal voltages with 20 Hz, 50 Hz, 200 Hz, and
400 Hz. The black solid lines in insets give the output voltage signals of the photodetector
in the time-domain when the HBF was exposed to vibration. Obviously, the output voltage
signals vary periodically. Then, fast Fourier transform (FFT) was adopted to the time-
domain signals to demodulate the vibration frequency, and the red lines in Figure 7 denote
the FFT results. It was found that the demodulated frequencies exactly agreed with the
driving acoustic frequencies with a maximum signal to noise ratio (SNR) of 59 dB, which
implies the HBF can be used for demodulating acoustic frequencies accurately.
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Figure 7. Demodulation of the vibration frequency based on the time-domain spectrum of the ouput
voltage signal of the HBF driven by acoustic wave with different frequencies of (a) 20 Hz, (b) 50 Hz,
(c) 200 Hz, and (d) 400 Hz, respectively.

Further, the response of the device to the vibration amplitude was tested. The sinusoidal
voltages driving the loudspeaker was kept at a constant frequency of 200 Hz while its
amplitude was adjusted, and the output signal of the photodetector was recorded in real-
time. Figure 8a presents the measured time-domain spectra of the output voltage, and for
clarity and readability, the signals were shifted slightly on the time axis, but it did not affect
the analysis of the data. Figure 8b gives the detailed half peak–peak amplitudes of the
output voltage with error bars at different driving voltages. Similarly, the least square linear
fitting method was adopted. Obviously, there was a good linear relationship between them
with R2 of 0.9980, and the slope indicates the amplitude sensitivity, which implies the device
based on HBF is capable of distinguishing the vibration amplitude. It should be noted that
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the amplitude sensitivity relates to the dimensions of the HBF, such as the taper length, the
waist diameter, the profile of the ellipsoidal air micro-cavity, which determines the number
and order of cladding modes propagated in the cavity wall. And it is believable that the
fiber taper with a thinner waist is easier to bend, i.e., it is more sensitive to bending, but
inevitably, it is more fragile. Then, there is a tradeoff between sensitivity and mechanical
robustness. To optimize the dimension of the HBF is our future work.
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3.3. Cantilever Beam Testing

Then, the HBF was used for cantilever beam testing. Figure 9a shows the schematic of
the experimental setup. The HBF was pasted on a stainless-steel ruler, and its two ends
were connected to a tunable laser and an oscilloscope through a photodetector, respectively.
The ruler had a rectangular cross-section with a length of 20.0 mm and thickness of 0.6 mm.
One end of the ruler was mounted on the edge of an optical table, and the other end
was suspended to form a cantilever. When the free end of the cantilever was deflected
by a specific displacement from its initial stabilized position and instantly released, the
cantilever beam would experience a damped vibration about its equilibrium position
soon afterward. Further, the damped natural frequency of the cantilever can be evaluated
following the formula: f = c

2π

√
EI

ρAL4 [24], where c is the coefficient of the first vibration

mode, E is Young’s modulus of stainless steel, L, ρ, and A are the length, density, and the
cross-sectional area of the cantilever, respectively, I denotes the moment of inertia, and it can
be expressed as ab3/12 since the cross-section of the cantilever beam was rectangular, where
a and b correspond to the width and thickness of the used ruler, respectively. Figure 9b
shows a typical time-domain spectrum of the output voltage while the HBF was exposed
to damped vibration caused by a cantilever beam with a certain length. It can be seen that
the oscillation amplitude gradually decreased as time increases.
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Figure 10a shows the normalized FFT results of the output voltage in the time domain
for damped vibration under different cantilever beam lengths, in which the peaks corre-
spond to the fundamental frequency for each case. It can be seen that with the increase in
cantilever length, the fundamental frequency decreased. The measured four fundamental
frequency were 41.26 Hz, 33.07 Hz, 28.71 Hz, 24.29 Hz, and 20.71 Hz for cantilever length of
81 mm, 95 mm, 100 mm, 109 mm, and 120 mm, and they were very close to the theoretical
values of 43.94 Hz, 31.95 Hz, 28.84 Hz, 24.28 Hz, and 20.02 Hz, respectively. Furthermore,
the linear fitting results show that there was a very good linear relationship between the
fundamental frequency and 1/L2 with R2 of 0.9993, as shown in Figure 10b, which agreed
well with the theoretical analysis above. The experimental results of the cantilever beam
testing prove the performance reliability of our proposed HBF.
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3.4. Temperature Response

Finally, the effect of temperature on the HBF was tested. The schematic setup is
shown in Figure 11a. The sensor was placed on a platform whose temperature can be
controlled with a resolution of 0.1 ◦C within the range of 40 ◦C to 80 ◦C, and the output
voltage indicating the variation of transmitted light through the sensor was monitored by
an oscilloscope. Figure 11b shows the average output voltage at different temperatures. It
was found that the intensity of transmitted light slightly increased with a small fluctuation
as the temperature of HBF increased. The inset in Figure 11b shows the monitoring results
over a short period, keeping a constant temperature of 50 ◦C. Obviously, the output voltage
was almost kept a constant with a small and irregular fluctuation, which may come from
the uncertainty of temperature control or the instability of the laser source. Generally, if the
surrounding temperature is a slow-moving and aperiodicity variable, it has little effect on
the demodulation of vibration frequency.
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4. Conclusions

An HBF was proposed and experimentally demonstrated for vibration sensing. It
was fabricated by tapering an SMF with an inner micro-cavity, which was obtained by
combining femtosecond laser micro-machining and fiber fusion splicing technology. Due to
the high bending sensitivity of the HBF, it can be used for vibration sensing. Experimental
results showed the sensor is capable of correctly demodulating surrounding vibration
frequency with a high SNR and distinguishing the vibration amplitude. Moreover, the
ambient temperature had little effect on its performance. To fabricate the sensor, no special
fibers were required, but only commercial SMF, and the sensing head had a total length of
less than 250 µm. All these features imply the proposed HBF has a promising potential for
vibration sensing in the engineering fields.
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