
Ecology and Evolution. 2017;7:7987–7997.	 ﻿�   |  7987www.ecolevol.org

 

Received: 3 March 2017  |  Revised: 13 June 2017  |  Accepted: 28 June 2017
DOI: 10.1002/ece3.3305

O R I G I N A L  R E S E A R C H

Prediction of biodiversity hotspots in the Anthropocene: The 
case of veteran oaks

Olav Skarpaas1,2  | Stefan Blumentrath1 | Marianne Evju1 | Anne Sverdrup-Thygeson1,3

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
© 2017 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

1Norwegian Institute for Nature Research, 
Oslo, Norway
2Natural History Museum, University of Oslo, 
Oslo, Norway
3Faculty of Environmental Sciences and 
Natural Resource Management, Norwegian 
University of Life Sciences, Ås, Norway

Correspondence
Olav Skarpaas, Natural History Museum, 
University of Oslo, Oslo, Norway.
Email: olav.skarpaas@nhm.uio.no

Funding information
Norges Forskningsråd, Grant/Award Number: 
208434/F40; Norwegian Environment Agency

Abstract
Over the past centuries, humans have transformed large parts of the biosphere, and 
there is a growing need to understand and predict the distribution of biodiversity 
hotspots influenced by the presence of humans. Our basic hypothesis is that human 
influence in the Anthropocene is ubiquitous, and we predict that biodiversity hot spot 
modeling can be improved by addressing three challenges raised by the increasing 
ecological influence of humans: (i) anthropogenically modified responses to individual 
ecological factors, (ii) fundamentally different processes and predictors in landscape 
types shaped by different land use histories and (iii) a multitude and complexity of 
natural and anthropogenic processes that may require many predictors and even mul-
tiple models in different landscape types. We modeled the occurrence of veteran oaks 
in Norway, and found, in accordance with our basic hypothesis and predictions, that 
humans influence the distribution of veteran oaks throughout its range, but in differ-
ent ways in forests and open landscapes. In forests, geographical and topographic vari-
ables related to the oak niche are still important, but the occurrence of veteran oaks is 
shifted toward steeper slopes, where logging is difficult. In open landscapes, land 
cover variables are more important, and veteran oaks are more common toward the 
north than expected from the fundamental oak niche. In both landscape types, multi-
ple predictor variables representing ecological and human-influenced processes were 
needed to build a good model, and several models performed almost equally well. 
Models accounting for the different anthropogenic influences on landscape structure 
and processes consistently performed better than models based exclusively on natural 
biogeographical and ecological predictors. Thus, our results for veteran oaks clearly 
illustrate the challenges to distribution modeling raised by the ubiquitous influence of 
humans, even in a moderately populated region, but also show that predictions can be 
improved by explicitly addressing these anthropogenic complexities.
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1  | INTRODUCTION

Global change implies an urgent need to better understand and as-
sess the effects of human land management on biodiversity-rich eco-
systems and habitats (Erb et al., 2017; Souza, Teixeira, & Ostermann, 
2015; Titeux et al., 2016). Concentrations of biodiversity can be 
found in many parts of the World (Gaston & David, 1994; Medail 
& Quezel, 1997; Myers, Mittermeier, Mittermeier, Da Fonseca, & 
Kent, 2000; Sverdrup-Thygeson, Brandrud, & Ødegaard, 2007). Areas 
with a large number of species, especially rare, threatened or en-
demic species often occur in remote and relatively pristine natural 
areas, like tropical rain forest interior (Mittermeier, Myers, Thomsen, 
Da Fonseca, & Olivieri, 1998; Myers, 1988) and boreal old-growth 
forests (e.g., Gjerde, Sætersdal, Rolstad, Blom, & Storaunet, 2004; 
Sverdrup-Thygeson, Søgaard, Rusch, & Barton, 2014; Timonen, 
Gustafsson, Kotiaho, & Mönkkönen, 2011). However, areas with 
high biodiversity are not only confined to remote wilderness. In fact, 
there is often a high coincidence between people and biodiversity 
(Araújo, 2003). With the increasing presence and activities of hu-
mans, an increasing number of species-rich habitats are found in 
ecosystems and biomes strongly influenced and transformed by us 
(“anthromes”; Ellis, Klein Goldewijk, Siebert, Lightman, & Ramankutty, 
2010; Ellis & Ramankutty, 2008; Hobbs, Higgs, & Harris, 2009). From 
a conservation perspective, the most important biodiversity concen-
trations to keep an eye on are those under pressure, which has led 
some to include human-induced threats in the definition of biodi-
versity hotspots (Myers et al., 2000). However, all human actions do 
not imply biodiversity loss. In Europe, some of the most species-rich 
habitats outside the Mediterranean basin are seminatural grasslands, 
partly created and tended by humans today (Cremene et al., 2005). 
Similarly, veteran trees in Europe are often legacies from a preindus-
trial, extensively managed agricultural landscape, and owe some of 
their qualities to previous human management, like coppicing. Due to 
their rich microhabitat structures (thick bark, crevices, dead branches, 
hollows etc.), these veteran trees are not only important landscape 
elements, but often constitute local hotspots for biodiversity in them-
selves (Sverdrup-Thygeson, 2009).

Biodiversity hotspots can be found at many spatial scales from 
global to local (Gaston & David, 1994; Medail & Quezel, 1997; Myers 

et al., 2000; Sverdrup-Thygeson et al., 2007). While several global 
hotspots have been identified and roughly delineated geographically 
(e.g., Myers et al., 2000), locating local hotspots is more challenging. 
Yet finding these hotspots is critical for planning and management at 
the local level, where most decisions are made and land management 
is in action every day. Given that complete mapping is way beyond 
the resources allocated to biodiversity mapping and monitoring in 
most countries, some form of spatial distribution modeling (e.g., 
Elith & Leathwick, 2009) is needed. This is especially true in habitat 
types with a large suite of associated specialized species, where fo-
cusing on occurrence and critical properties of the habitat can be a 
cost-efficient way of locating and protecting several species in one 
operation (Gjerde, Sætersdal, & Blom, 2007; Lehmann, Overton, & 
Austin, 2002; Skarpaas, Diserud, Sverdrup-Thygeson, & Ødegaard, 
2011). However, the mix of ecological and anthropogenic factors 
affecting local biodiversity hotspots poses several challenges to 
ecological and geographical prediction. There are many potentially 
important predictor variables, distributed across complex landscapes 
with gradients and thresholds in both ecological and anthropogenic 
influences over time (Erb et al., 2017). Now, at the beginning of the 
Anthropocene, there is a rapidly growing need to address these 
complexities.

In this study, we focus on large and hollow oaks (Quercus spp.; 
Figure 1)—an important biodiversity hot spot habitat in northern 
Europe—to address the challenge of interacting ecological and an-
thropogenic processes in generating spatial patterns in biodiversity 
hotspots. Our goal is to develop robust process-based predictions of 
hot spot oak occurrence, for use in conservation management and re-
search. We concentrate on oaks in Norway, where large and hollow 
oaks (hereafter “veteran oaks”) were recently listed as a priority habitat 
under the Nature Diversity Act, and where comprehensive data sets 
are being collected as parts of national monitoring efforts and biodi-
versity studies (Sverdrup-Thygeson, Evju, & Skarpaas, 2013).

Oaks are long-lasting habitats, with some trees thought to be close 
to 1,000 years old (Drobyshev & Niklasson, 2010). As the years go by, 
the architectural diversity increases, and the oaks develop patches of 
decay, broken branches or flaking, deeply creviced bark—and after 
about 200 years of age, sometimes earlier, internal cavities start to 
develop (Ranius, Niklasson, & Berg, 2009). In these microhabitats, 

F IGURE  1 Veteran oaks in (a) forest 
(Mandal, Norway) and (b) open landscapes 
(Porsgrunn, Norway). Photos: Anne 
Sverdrup-Thygeson

(a) (b)
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exceptionally species-rich communities associated with wood decay 
and wood mold flourish. For these reasons, veteran oaks are a priority 
conservation habitat, and for both conservation research and manage-
ment of these large old trees it is important to know where they are 
likely to be found and how they are influenced by ecological and an-
thropogenic processes (Lindenmayer & Laurance, 2016; Lindenmayer 
et al., 2014).

A critical question for the prediction of veteran oaks is how the 
distribution of these large and hollow oaks—the biodiversity hot spot 
oaks—differs from the distribution of oak in general. We know much 
about the distribution and ecology of oaks from previous studies (e.g., 
Annighöfer, Beckschäfer, Vor, & Ammer, 2015; Dahl, 1998; Jones, 
1959; Stokland & Halvorsen, 2011). To what extent do veteran oaks 
follow the oak niche? Oaks grow old, large, and hollow when they have 
sufficient time to grow, age and decay without major disturbances 
(Ranius et al., 2009). Some 1,000 years ago, in a slightly warmer cli-
mate and before the impact of humans, oak forests covered large 
areas in southern Norway. In the 16th and 17th century, there was a 
high demand for oak timber for buildings and ships, and large amounts 
of Norwegian oak were exported to Europe (Moore, 2010; Vevstad, 
1998). Today, only remnants of the previous oak forests are left. It is 
unclear, however, to what extent large and hollow oaks in forests are 
concentrated in remote, inaccessible and/or low-productive areas. 
Veteran oaks are also found in open landscapes, and while certain as-
pects may be important in both open landscapes and in forests, such 
as the basic ecological requirements of oaks, other aspects, like human 
activities, may differ between landscape types. Moreover, the com-
plexity of effects may be even higher in the open landscape, making 
predictions more difficult. A recent synthesis of ecological and histor-
ical knowledge of oak forests in North America suggest that humans 
may have played an important role in shaping the distribution and pop-
ulation structure of oaks, in interaction with several ecological factors, 
leading to the proposition of a “multiple ecosystem drivers hypothesis” 
of oak forest dynamics (McEwan, Dyer, & Pederson, 2011).

Given the complexity of interacting ecological and anthropogenic 
factors, how, and to what extent, can we predict the distribution of 
biodiversity hotspots in the Anthropocene? Our basic hypothesis is 
that even in moderately populated parts of the World, human influ-
ence is ubiquitous, and we make three predictions for Anthropocene 
biodiversity hot spot modeling that we test for the case of veteran 
oaks in Norway. We expect (i) human-modified responses to eco-
logical factors, (ii) fundamentally different processes and predictors 
in landscape types shaped by different land use histories, and (iii) a 
multitude and complexity of natural and anthropogenic processes that 
require many predictors and even multiple models. Specifically, for 
veteran oaks, we expect shifts in the realized niche toward inaccessi-
ble and low-productive areas, and different responses to geographical 
and land cover variables in forests and open landscapes because of 
differences in past and present human land use. Moreover, because 
of the multiple ecological and anthropogenic drivers, we expect that 
the distribution of veteran oaks is better predicted with multiple pre-
dictors and models, combined in coherence with the structure of the 
landscape.

2  | METHODS

2.1 | Study system

Oak forests in Northern Europe are dominated by two oak species, 
sessile oak Quercus petrea and pedunculate oak Quercus robur. The 
two species frequently hybridize and may be difficult to separate in 
the field. Ecologically they are fairly similar, and we treat them to-
gether as oaks (Quercus spp.) in the analysis. The northern limit of 
oaks in Europe seems to be related to climatic factors that vary with 
latitude. On a coarse scale, Q. petrea follows the −4°C isotherm for 
the coldest month, whereas Q. robur, which reaches a little further 
north in Scandinavia, seems to be more limited by respiration sums 
(i.e., temperatures during the growing season, weighted by their effect 
on respiration; Dahl, 1998). Elevation and local topography may there-
fore also be important predictors of oak presence, as temperature 
generally declines with elevation and south-facing slopes may have a 
considerably better local climate than north-facing slopes at the same 
latitude and elevation (Stokland & Halvorsen, 2011). Both oak species 
seem to tolerate relatively dry habitats (Elven, 2005; Jones, 1959), and 
their recruitment is limited by light (Annighöfer et al., 2015). These 
factors may differ strongly between forest types and forestry regimes. 
Thus in forests, oaks are related to a combination of processes and 
variables associated with climate, topography, and land cover.

The distribution of veteran oaks, that is large and/or hollow oaks, may 
differ from the distribution of oak in general, because the development 
of large trees and tree hollows requires a long time without major dis-
turbances. Most of the productive oak forests in Southern Norway have 
been heavily exploited for timber production. Large-scale logging of oak 
forest in Norway started already in the 1,500s, peaked around 1,650—
then the oak forests closest to the coast were heavily exploited and log-
ging moved inland—and continued on a reduced scale until approximately 
1,900 (Moore, 2010; Vevstad, 1998). The past 100 years or so, little log-
ging of large oaks has taken place, but there has not been enough time for 
old-growth oak forests to develop. In modern forestry, many oak forests 
have been logged and replaced by faster-growing Norway spruce. It is un-
clear; however, to what extent veteran forest oaks are now concentrated 
in remote, inaccessible, and/or low-productive forest areas.

Veteran oaks are also found in open landscapes. Oaks recruit natu-
rally from trees within the open landscape or nearby forest. However, 
oaks are also of significant cultural importance and have been planted 
in courtyards, gardens and parks, and along roads and field margins. As 
in forests, oaks may have suffered from intensification of production 
in the agricultural landscape, where edge habitat and other marginal 
areas have been sacrificed in the creation of larger, more homoge-
neous production areas. In gardens and urban areas, oaks and other 
park trees are subject to various pressures from changing gardening 
trends and preferences related to safety.

2.2 | Data

We used data on veteran oak presences and absences from the pilot 
study behind the recently established national monitoring of veteran 
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oaks (Sverdrup-Thygeson et al., 2013). The data were collected as 
a stratified random sample within seven regions of approximately 
200 km2 subjectively selected to represent the variation in the 
oak region in south-eastern Norway. Each region was divided into 
3 × 3 km blocks. We first randomly selected three blocks, and then 
20 plots of 500 × 500 m within each block (Figure 2). Based on ex-
isting knowledge on occurrence of hollow oaks (primarily the data-
base of the Norwegian Environment Agency; http://kart.naturbase.
no/) we sorted the plots into “oak present”-plots and “oak presence 
unclear”-plots. All “oak present”-plots and 25% of the “oak presence 
unclear”-plots were visited in the field, and the position of all large 
and hollow oaks in the plot was determined with a hand-held GPS. To 
prepare for analysis, each plot was gridded to obtain information on 
the presence and absence of veteran oaks in 10 × 10 m cells matching 
the geographical resolution of the predictors.

Potential predictors were collected from digital maps in a geo-
graphical information system (GRASS Development Team, 2015). 
Because the goal was prediction of oak presence across the land-
scape, we could only use variables for which (more or less) full-cover 
maps were available. The variables considered were of two main kinds:  
(i) Geographical variables, reflecting large-scale geographical gradients 
(e.g., latitude, longitude, elevation) and local topography (e.g., slope 
and aspect), and (ii) land cover variables, reflecting vegetation, land-
scape structure and human land use (e.g., forest, open landscape, dis-
tance to roads). When relevant, we considered variables at different 
spatial scales. Based on the literature and initial screening of about 80 
potential predictor variables, we decided to test a set of 13 variables 

(Table 1) representing more or less independent aspects that could po-
tentially affect the occurrence of veteran oaks (e.g., Dahl, 1998; Elven, 
2005; Jones, 1959; McEwan et al., 2011; Moore, 2010; Stokland & 
Halvorsen, 2011; Vevstad, 1998), and for which data with more or less 
full geographical cover could be obtained (see Appendix S1 for further 
details on the variable screening process).

To test the prediction of different processes operating in different 
landscape types, we subdivided our study area into forest and open 
landscape types based on the predominant land cover. Forest land-
scapes were defined as all forest area with a patch size of >1 ha, and 
open landscapes were defined as all nonforest areas (excluding water 
and traffic area) plus forest patches with a size of 1 ha or less (see 
Appendix S1 for further details on the transition between forests and 
open landscapes).

2.3 | Analysis

We developed prediction models for the full data set across all land-
scape types and for each landscape type separately by means of lo-
gistic regression (GLMs; McCullagh & Nelder, 1989). Visual inspection 
of the data indicated that some of the predictors could be nonlinearly 
related to oak presence. However, we found no support for strong 
nonlinearities in the initial model testing (GAM yielded essentially the 
same linear models as GLM), except for one predictor (slope), where 
the inclusion of a squared term (slope2) was necessary to account for 
a nonlinear response.

We developed a suite of models to elucidate key patterns and 
ensure robustness of the results with respect to our predictions. 
We analyzed a few single regression models with selected key pre-
dictors to test for human-modified ecological responses (prediction 
1) and different effects in forests and open landscapes (prediction 
2). To evaluate the relative importance of these and other predictor 
variables we developed multiple regression models with several pre-
dictors. To evaluate model uncertainty and assess the need for multi-
ple models (prediction 3) we also calculated AICc-weighted average 
parameter estimates across multiple alternative models (Burnham & 
Anderson, 2002), and compared those to the best model (in terms of 
AICc). Because we wanted to focus on the effects of shifting human 
influence, we kept the geographical variables (number 1–7; Table 1) in 
all models and considered all possible combinations of the land cover 
variables (number 8–13). Model predictions were compared using re-
ceiving operator characteristics (area under the curve, AUC). Statistical 
modeling was carried out in R (R Core Team, 2014) and geographical 
prediction in GRASS GIS 7.0 (Grass Development Team, 2015).

3  | RESULTS

We found that the distribution of veteran oaks was influenced by a 
mixture of ecological and anthropogenic factors, and that different 
processes dominated in forests and open landscapes.

In accordance with the ecology and distribution of oaks in gen-
eral, the probability of occurrence of veteran oaks declined toward the 

F IGURE  2 Selection of 500 × 500 m sample plots in a 
topographically diverse area with a mix of forest and open landscape 
types in Asker, Norway

http://kart.naturbase.no/
http://kart.naturbase.no/
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north in forests (Figure 3a, green line). However, in open landscapes, 
the pattern was opposite: the occurrence of veteran oaks increased 
toward the north (Figure 3a, brown line). Consequently, in the far 
north, a single-predictor model based on data from both landscape 
types overestimated the probability of occurrence of veteran oaks 
in forests and under-predicted the occurrence in open landscapes 
(Figure 3a, dashed line).

In addition to large-scale geographical gradients, local topography 
was clearly important to the occurrence of veteran oaks. The proba-
bility of occurrence showed unimodal patterns with terrain slope in 
both forests and open landscapes, but shifted toward considerably 
steeper areas in forests than open landscapes (Figure 3b). The de-
cline in occurrence toward very steep areas captured by both of the 
landscape-specific models was missed when the data were combined: 
the single-predictor model for the combined data set seriously over-
predicted occurrence in steep areas (Figure 3b, dashed line).

Landscape structure also affected probability of occurrence. In 
both forests and open landscapes, the occurrence of veteran oaks 

declined at increasing distances from the forest edge (Figure 3c). 
However, in the open landscape, the probability of occurrence was 
much higher near the forest edge, and the decline much steeper with 
increasing distance to the forest edge. Consequently, the total model 
strongly under-predicted occurrence near the forest edge in the 
open landscape and over-predicted near the edge inside the forest 
(Figure 3c, dashed line).

When we broadened the perspective to look at regression models 
with multiple predictors, we found that several variables were import-
ant. Although no single combination of variables was clearly better 
than the others for any of the data sets (the best models receive rela-
tively weak support with AIC weights <0.5, and the confidence sets of 
models consist of 4–18 models; Table 2), there was a good correspon-
dence between the best models (Table 3) and coefficient estimates 
based on AIC-weighted model averaging across the confidence set of 
models (Table 4).

As expected, the probability of occurrence of veteran oaks 
declined with elevation in both forests and open landscapes. In 

No. Variable Definition (units/scale)
Related patterns and 
processes

1 X West–east coordinate (m) Oceanic-continental 
(moisture) gradient

2 Y South–north coordinate (m) Nemoral–boreal (tempera-
ture) gradient

3 Z Elevation above sea level (m) Correlated with air 
temperature, marine 
deposits, land use, etc.

4 S Slope (degrees) Correlated with insolation 
time, ground conditions 
and forestry activity

5 A Aspect (northness) Correlated with radiation 
sum

6 TWI Terrain wetness index Wetness indicator based on 
terrain and water flow from 
above

7 K Fishers K (100 m radius) Expresses terrain rugged-
ness, i.e. topographic 
variability

8 FA Area of forest (patches >20 m 
across) within 1 km

Negatively related to 
intensive agriculture and 
urban areas

9 FD Distance to forest edge (m) Correlated with distance to 
open landscape

10 RD Distance to road (m; water as a 
hard barrier)

Related to ease of access for 
logging, and for ornamental 
plantings (e.g. avenues)

11 WD Distance to water (m) Related to ease of access for 
past logging

12 T Dominant tree class (T31: spruce, 
T32: pine, T33: deciduous)

Dominant tree species in 
forests

13 P Productivity class (site index; 
P12_13: 12–13 m, etc.)

Represents productivity as 
reflected in height of the 
dominant tree species

For statistics on the variables in the different data sets, see Appendix S1: Table S1.

TABLE  1 Predictor variables and 
related patterns and processes
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addition to the elevational and latitudinal gradients there was a 
longitudinal gradient in occurrence in forests, with higher probabil-
ity toward continental (dry) areas, but this effect was much weaker 
and even opposite in some models for open landscapes (Tables 3 
& 4).

Several local topographic aspects were also important. The mul-
tiple regression models suggested a unimodal pattern for slope in 
forest (as in the single regression model; Figure 3b), as well as for all 
landscape types combined. The probability of occurrence was higher 
in dry parts of the landscape (negative effect of Terrain wetness index 
[TWI]) in both forests and open landscapes. Aspect (northness) had a 
negative effect, though only consistent across models in forest. Local 
topographic variability (Fischer’s K) seemed to play a minor role in both 
systems.

Different aspects of land cover influenced the occurrence of vet-
eran oaks in forests and open landscapes. In forests, the probability 
of occurrence was higher in deciduous and pine-dominated stands 
than in spruce stands, and lower in highly productive areas. Other land 
cover variables played a minor role in forests. In open landscapes, on 
the other hand, the occurrence of veteran oaks was negatively related 
to the area of forest nearby and to distance to forest edge (as in the 
single regression model; Figure 3c).

Overall, predictions were better for landscape types separately 
than for all data combined and slightly better in forests than in open 
landscapes (Figure 4). Although the estimated probabilities of veteran 
oaks were generally low, the models clearly distinguished parts of the 
landscape with low and high (relatively speaking) probabilities of oc-
currence (Figures 4 and 5). However, while predictions were unbiased 
for models based on the landscape types separately the predictions 
based on all data overestimated the highest probabilities of occur-
rence (Figure 4). Geographical predictions were in agreement with the 
distribution of oak on a large scale, but anthropogenic factors were 
important for local variation in the probability of veteran oak occur-
rence (Figure 5).

4  | DISCUSSION

A veteran oak is not just any forest tree. Veteran oaks are essential 
carriers of biodiversity, and of rich cultural traditions, like many other 
biodiversity hotspots (Habel et al., 2013; Lindenmayer & Laurance, 
2016; Myers et al., 2000; Timonen et al., 2011). Moreover, like an 
increasing number of small and local hotspots, they are far apart, dif-
ficult to locate, and strongly influenced by anthropogenic processes. 
Developing models to predict their occurrence is, therefore, critically 
important and timely, but challenging. In both landscape types, the 
probability of encountering veteran oaks is low—even in the best 
spots. Our forest model predicts probabilities of about 0.05 for the 
best 10% of 10 × 10 m cells. This is still high compared to the ex-
pected probability for an average 10 × 10 m cell. On the basis of the 
same data, we have previously estimated that there are some 60,000 
veteran oaks in Norway (Sverdrup-Thygeson et al., 2011), distributed 
over 41,000 km2. This gives roughly 1.5 veteran oaks per km2, or an 
average probability of encountering a veteran oak in a 10 × 10 m cell 
of about 0.00015. Thus, despite low maximal probability, our models 
suggest that the odds are >300 times that of an average cell in the 
best spots. In other words, the models clearly distinguish hot and cold 
parts of the landscape.

Our results suggest that prediction of veteran oaks is possible, 
but also illustrate the importance of considering landscape struc-
ture as well as accounting for the different critical ecological and 
anthropogenic processes operating in natural and human-dominated 
landscapes. Specifically, our predictions and results highlight three 
major challenges for ecological and geographical prediction in the 
Anthropocene.

First, biodiversity hotspots may respond differently to ecological 
factors (biotic and abiotic) in different landscapes depending on the 
kind and degree of human influence (prediction 1). Examples include 
differences in magnitude and steepness of linear responses, direction 
of linear responses, and position of realized optima along ecological 

F IGURE  3 The probability of occurrence of veteran oaks as functions of (a) position along the latitudinal gradient, (b) local terrain slope, 
and (c) distance to forest edge. Data points on veteran oak occurrence in forest (green) and open landscapes (yellow) are plotted at the top 
(presences) and bottom (absences) of each panel (slightly spread out for clarity). Lines show predictions of fitted single logistic regression models 
for forests (green) and open landscapes (yellow), and both landscape types combined (dashed)
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gradients. This is clearly seen in the different responses of veteran 
oaks to forest edge, latitude, and slope, respectively (Figure 3). Such 
shifts may be induced by varying human influences along the gradients 
in different landscape types, generating a greater difference between 
the realized and the fundamental niche in one landscape type than 

in another. For instance, intensive agriculture and urban development 
may have reduced the occurrence of veteran oaks in the south, while 
oaks may have been favored as exotic elements in the less intensively 
driven cultural landscape toward the north. In forests, these human 
factors play a lesser role, and the occurrence of veteran oaks declines 
toward the north, in concordance with the fundamental oak niche 

TABLE  2 Logistic regression models for the presence of veteran oak for each landscape type

Landscape type
Models in conf. 
set

Model 
rank

Model 
X + Y + Z + A + S + S2 + TWI + K+ k AICc ΔAICc AICc weight

Forest 18 1 T + P + FA + FD 15 3942.62 0.00 0.22

2 T + P + FA 14 3943.10 0.48 0.17

3 T + P + FA + FD + WD 16 3944.49 1.87 0.08

4 T + P + FA + FD + RD 16 3944.62 2.00 0.08

Open 4 1 FA + FD 11 1996.39 0.00 0.48

2 FA + FD + RD 12 1997.77 1.38 0.24

3 FA + FD + WD 12 1998.33 1.94 0.18

4 FA + FD + WD + RD 13 1999.74 3.35 0.09

All data 4 1 FA + FD + WD + RD 13 6276.09 0.00 0.46

2 FA + FD + RD 12 6276.67 0.57 0.35

3 FA + FD + WD 12 6279.12 3.03 0.10

4 FA + FD 11 6279.30 3.20 0.09

The table shows the four best models (based on AICc) for each landscape type, the number of parameters (k, including geographical parameters), and AICc 
statistics. All models include the eight geographical variables below the table header “Model” in addition to the variables listed (see Table 1 for variable 
definitions).

TABLE  3 Model coefficients of the best logistic regression 
models for each data set, based on AICc

Forest Open landscape All data

Intercept 63.800 −28.857 46.805

X 0.927*** −0.163 0.684***

Y −0.763*** 0.305 −0.551***

Z −0.400*** −1.419*** −0.476***

S 1.286*** −0.413* 0.684***

S2 −0.652*** 0.185˄ −0.170*

A −0.645*** −0.059 −0.443***

TWI −0.259** −0.693*** −0.465***

K −0.074 0.022 −0.033

FA −0.163* −0.920*** −0.475***

FD −0.103 −0.801*** −0.412***

RD – 0.000 0.127*

WD – 0.000 −0.077˄

T32 1.928*** – –

T33 1.343*** – –

P12_13 −0.360* – –

P14_15 −0.591** – –

Coefficients are standardized by SD of the predictors (Table 1, Appendix 
S1: Table S1).
p-values for coefficient estimates (z-tests): ***<.001, **<.01, *<.05, ˄<.1. 
(See Appendix S1: Table S2, for extended results.)

TABLE  4 Model coefficients averaged across the 95% confidence 
set of logistic regression models for each data set and standardized 
by the SD of the predictor variables (Table 1, Appendix S1: Table S1)

Forest Open landscape All data

Intercept 59.978 −30.180 48.810

X 0.902a −0.175 0.687a

Y −0.724a 0.318 −0.573a

Z −0.435a −1.430a −0.458a

S 1.263a −0.410a 0.683a

S2 −0.636a 0.183 −0.168

A −0.648a −0.059 −0.443a

TWI −0.259a −0.697a −0.460a

K −0.072 0.025 −0.036

FA −0.174a −0.919a −0.483a

FD −0.109 −0.801a −0.404a

RD −0.013 0.069 0.125a

WD −0.053 0.020 −0.076

T32 1.949a – –

T33 1.348a – –

P12_13 −0.357a – –

P14_15 −0.587a – –

aCoefficients with 95% confidence intervals not including zero (see 
Appendix S1: Table S3, for extended results).
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(Figure 3a). However, in forests, harvesting is difficult in steep areas, 
where veteran oaks consequently have a strongly elevated probabil-
ity of occurrence compared to similar slopes in the open landscape 
(Figure 3b). This aligns well with the general overrepresentation of key 
habitats for biodiversity in steep terrain in forests (Sætersdal, Gjerde, 
Heegard, Schei, & Nilsen, 2016) and with our previous work suggest-
ing that the diversity and species composition in oak hot spot habitats 
differ in open landscapes and forests, and respond to different fac-
tors in these two systems (Sverdrup-Thygeson, Skarpaas, & Ødegaard, 
2010). When responses differ strongly between landscape types, as 
in the veteran oak examples, simply adding landscape type as another 
covariate in a (generalized) linear regression model is not enough to 
resolve the problem. Interaction terms between landscape type and 
other predictors could help account for different responses to com-
mon predictors in the different landscape types. However, this is only 
possible for predictors that are relevant in all landscape types where 
the biodiversity hot spot occurs.

This brings us to the second general challenge for spatial predic-
tion modeling: different predictors may be relevant only in specific 
areas (prediction 2). Humans frequently modify ecosystems to the 
extent that original natural processes are no longer the most relevant 

and important processes structuring ecosystems (Ellis et al., 2010). 
For instance, for veteran oaks (and other old trees; see Lindenmayer 
& Laurance, 2016; Sætersdal et al., 2016), dominant tree species, and 
forest productivity are important variables in forests, but not relevant 
in the open landscape where the forest has been cleared and kept 
away, often for centuries. This implies that the sets of relevant and 
important predictor variables are different in the two landscape types. 
One solution to this problem is to split the ecological predictions by 
landscape type, as we did here (see also Meineri, Skarpaas, & Vandvik, 
2012): landscape-specific models can be developed for different land-
scape types, and predictions merged geographically (i.e., on a map). 
This approach requires that landscape types are clearly defined and 
that information on the spatial distribution of landscape types is read-
ily available.

Finally, the third challenge highlighted by our study is the multi-
tude and complexity of processes and factors affecting biodiversity 
hotspots in human-influenced landscapes (prediction 3). Ecological 
processes are complex, anthropogenic processes even more so. This 
challenge goes far beyond the time- and space-dependent relevance 
and importance of single-predictor variables discussed above. It is 
clear from our study of veteran oaks that no predictor can be singled 

F IGURE  4 Validation plots for the best prediction models for all data, forests and open landscapes, showing observed versus predicted 
probability of occurrence (a,b,c) and the corresponding receiver-operator curves (ROCs; d,e,f). The upper panels show presences (top) and 
absences (bottom) of veteran oak and means and confidence intervals of observations in red. The ROC-plots show false predictions plotted 
against correct predictions for a range of cutoff values of predicted probabilities of occurrence, giving the area under the curve (AUC) as an 
indicator of predictive capacity

(a) (b) (c)

(d) (e) (f)
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out as the one and only or clearly most important one. Multiple pre-
dictors are needed, representing both ecological and anthropogenic 
processes. This is in accordance with the “multiple ecosystem drivers 
hypothesis” of oak forest dynamics (McEwan et al., 2011), although 
the oak species and drivers are different in our European system than 
in North America (e.g., no sudden oak death in Europe) and our study 
concerns veteran oaks in particular. We know several of the factors 
affecting the life and death of oaks, and the conditions for generating 
tree hollows, yet we are far from a solid understanding of all major 
processes and their interactions, and lack data on relevant variables. 
For veteran oaks, as for most biological systems, we have to make do 
with relatively simple data and statistical modeling tools. In this situa-
tion, there is potentially a high degree of model uncertainty. To address 
model uncertainty, we presented and combined several models based 
on AIC weights (Burnham & Anderson, 2002; for alternative methods 
for averaging model predictions, see e.g., Romero, Olivero, Brito, & 
Real, 2015). Our analysis shows that although a number of alternative 
models can predict the observed occurrences of veteran oaks almost 
equally well, the predictors and parameter estimates of the best mod-
els are also given strong support when combining multiple models. 
Thus, while testing several alternative models provides a broader basis 
for inference (but see e.g., Cade, 2015 for pitfalls), multiple models are 
not necessary for parameter estimation and prediction in this case.

Underlying all of the three modeling challenges above is the quan-
tification of anthropogenic processes. Development of relevant and 
measurable predictors is critically important in an increasingly human-
dominated world. Unfortunately, there are large knowledge gaps re-
lated to land use (Erb et al., 2017). Historical land use and landscape 
development are often poorly documented in maps, especially in 

digital maps, both in open landscapes and in forests. In this study we 
therefore, screened a large number of potential proxies derived from 
current land cover and structural landscape variables related to past 
and present human activities of relevance to veteran oaks. We arrived 
at a limited set of variables selected to represent key processes (e.g., 
forest area, distance to road and distance to water; Table 1). Veteran 
oaks respond negatively to forest area in the surroundings, both in for-
ests and in open landscapes (Tables 3 & 4). This suggests that veteran 
oaks in open landscapes may be found in urban parks and productive 
agricultural areas, whereas veteran oaks in forests may be associated 
with marginal areas for both forestry and agriculture. Many of the large 
oaks growing in forest today may have been growing in open land-
scapes in a not too distant past. Even marginal areas in Norway were 
heavily exploited for fuelwood, grazing etc. about a hundred years 
ago (Framstad & Lid, 1998), but many oaks may have been spared 
as ornamental trees, especially toward higher elevations where oaks 
are less common (see further discussions of transitional landscapes in 
Appendix S1). Thus, the forest area variable seems to capture anthro-
pogenic landscape structures and processes of importance to veteran 
oaks. Distance to road and water, on the other hand, did not have sig-
nificant predictive power (Tables 3 & 4). This result was unexpected, as 
timber is largely transported by road in present-day forestry, whereas 
log driving on rivers and lakes was the main means of moving timber 
from the forest to the sawmills in the past (Sandmo, 1951). Steepness 
(and productivity) of the terrain seem to better represent effects of 
logging activities on oak than distance to roads and water. However, 
direct data on past logging activities would clearly have been much 
more informative than proxies based on current landscape structures. 
This underscores the need for keeping track of major human land use 

F IGURE  5 Maps of predicted 
probability of occurrence of veteran 
oaks (forest and open landscape models 
combined) showing the entire study area 
in SE Norway and a selected in Asker (inset 
map; corresponding to Figure 2)
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activities for future studies of their effects, especially for systems in-
volving slow ecological processes.

Despite the challenges discussed above, our spatial models for vet-
eran oaks provide clear results of relevance of biodiversity management 
and conservation as well as further research. It is evident from our re-
sults that veteran oaks are influenced by more than the natural factors 
shaping the fundamental oak niche. Our models suggest that elevation, 
terrain wetness, and landscape structure (forest area) are important pre-
dictors of veteran oak presence, in accordance with the fundamental 
oak niche (Dahl, 1998; Jones, 1959; Stokland & Halvorsen, 2011), but 
with differing responses and additional variables playing major roles in 
forested and open landscape types, as discussed above. We now have a 
workable set of prediction models that can help us design mapping and 
monitoring efforts, improve estimates of veteran oak abundance, guide 
conservation management (Lindenmayer et al., 2014), and support re-
search addressing issues such as cost-effective probability-based sam-
pling (Yoccoz, Nichols, & Boulinier, 2001), effects of landscape structure 
and connectivity (Evju, Blumentrath, Skarpaas, Stabbetorp, & Sverdrup-
Thygeson, 2015; Evju & Sverdrup-Thygeson, 2016; Sverdrup-Thygeson, 
Skarpaas, Blumentrath, Birkemoe & Evju, in press), predictions of spe-
cies richness (Skarpaas et al., 2011), and spatial community dynamics 
(Engen, Sæther, Sverdrup-Thygeson, Grøtan, & Ødegaard, 2008).

To summarize and conclude, we find that veteran oaks are pre-
dictable despite the complexity of processes in human-influenced 
landscapes and that considering how different human-related pro-
cesses operate in different landscapes helps both understanding 
veteran oak responses to environmental variables and prediction 
of distribution patterns. We expect predictions to be further im-
proved with the extensive monitoring data set under establishment, 
especially after repeated visits. This will document recruitment and 
mortality patterns in veteran oaks and can be used to develop in-
creasingly refined process-oriented models. Regardless of the mod-
eling approach, finding ways to account for human influence on 
ecological systems and address the challenges illustrated by the 
veteran oak case are likely to become increasingly important in the 
Anthropocene.
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