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Abstract
Over	the	past	centuries,	humans	have	transformed	large	parts	of	the	biosphere,	and	
there	 is	 a	 growing	 need	 to	 understand	 and	 predict	 the	 distribution	 of	 biodiversity	
	hotspots	influenced	by	the	presence	of	humans.	Our	basic	hypothesis	is	that	human	
influence	in	the	Anthropocene	is	ubiquitous,	and	we	predict	that	biodiversity	hot	spot	
modeling	 can	be	 improved	by	 addressing	 three	 challenges	 raised	by	 the	 increasing	
ecological	influence	of	humans:	(i)	anthropogenically	modified	responses	to	individual	
ecological	factors,	 (ii)	fundamentally	different	processes	and	predictors	 in	 landscape	
types	 shaped	by	different	 land	use	histories	and	 (iii)	 a	multitude	and	complexity	of	
natural	and	anthropogenic	processes	that	may	require	many	predictors	and	even	mul-
tiple	models	in	different	landscape	types.	We	modeled	the	occurrence	of	veteran	oaks	
in	Norway,	and	found,	in	accordance	with	our	basic	hypothesis	and	predictions,	that	
humans	influence	the	distribution	of	veteran	oaks	throughout	its	range,	but	in	differ-
ent	ways	in	forests	and	open	landscapes.	In	forests,	geographical	and	topographic	vari-
ables	related	to	the	oak	niche	are	still	important,	but	the	occurrence	of	veteran	oaks	is	
shifted	 toward	 steeper	 slopes,	 where	 logging	 is	 difficult.	 In	 open	 landscapes,	 land	
cover	variables	are	more	important,	and	veteran	oaks	are	more	common	toward	the	
north	than	expected	from	the	fundamental	oak	niche.	In	both	landscape	types,	multi-
ple	predictor	variables	representing	ecological	and	human-	influenced	processes	were	
needed	 to	 build	 a	 good	model,	 and	 several	models	 performed	 almost	 equally	well.	
Models	accounting	for	the	different	anthropogenic	influences	on	landscape	structure	
and	processes	consistently	performed	better	than	models	based	exclusively	on	natural	
biogeographical	and	ecological	predictors.	Thus,	our	results	for	veteran	oaks	clearly	
illustrate	the	challenges	to	distribution	modeling	raised	by	the	ubiquitous	influence	of	
humans,	even	in	a	moderately	populated	region,	but	also	show	that	predictions	can	be	
improved	by	explicitly	addressing	these	anthropogenic	complexities.
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1  | INTRODUCTION

Global	change	implies	an	urgent	need	to	better	understand	and	as-
sess	the	effects	of	human	land	management	on	biodiversity-	rich	eco-
systems	and	habitats	(Erb	et	al.,	2017;	Souza,	Teixeira,	&	Ostermann,	
2015;	 Titeux	 et	al.,	 2016).	 Concentrations	 of	 biodiversity	 can	 be	
found	 in	many	 parts	 of	 the	World	 (Gaston	 &	David,	 1994;	Medail	
&	 Quezel,	 1997;	 Myers,	 Mittermeier,	 Mittermeier,	 Da	 Fonseca,	 &	
Kent,	2000;	Sverdrup-	Thygeson,	Brandrud,	&	Ødegaard,	2007).	Areas	
with	 a	 large	 number	 of	 species,	 especially	 rare,	 threatened	 or	 en-
demic	 species	 often	 occur	 in	 remote	 and	 relatively	 pristine	 natural	
areas,	like	tropical	rain	forest	interior	(Mittermeier,	Myers,	Thomsen,	
Da	Fonseca,	&	Olivieri,	 1998;	Myers,	 1988)	 and	boreal	 old-	growth	
forests	 (e.g.,	 Gjerde,	 Sætersdal,	 Rolstad,	 Blom,	 &	 Storaunet,	 2004;	
Sverdrup-	Thygeson,	 Søgaard,	 Rusch,	 &	 Barton,	 2014;	 Timonen,	
Gustafsson,	 Kotiaho,	 &	 Mönkkönen,	 2011).	 However,	 areas	 with	
high	biodiversity	are	not	only	confined	to	remote	wilderness.	In	fact,	
there	 is	 often	 a	 high	 coincidence	 between	 people	 and	 biodiversity	
(Araújo,	 2003).	With	 the	 increasing	 presence	 and	 activities	 of	 hu-
mans,	 an	 increasing	 number	 of	 species-	rich	 habitats	 are	 found	 in	
ecosystems	and	biomes	 strongly	 influenced	and	 transformed	by	us	
(“anthromes”;	Ellis,	Klein	Goldewijk,	Siebert,	Lightman,	&	Ramankutty,	
2010;	Ellis	&	Ramankutty,	2008;	Hobbs,	Higgs,	&	Harris,	2009).	From	
a	conservation	perspective,	the	most	important	biodiversity	concen-
trations	to	keep	an	eye	on	are	those	under	pressure,	which	has	 led	
some	 to	 include	 human-	induced	 threats	 in	 the	 definition	 of	 biodi-
versity	hotspots	(Myers	et	al.,	2000).	However,	all	human	actions	do	
not	imply	biodiversity	loss.	In	Europe,	some	of	the	most	species-	rich	
habitats	outside	the	Mediterranean	basin	are	seminatural	grasslands,	
partly	created	and	tended	by	humans	today	 (Cremene	et	al.,	2005).	
Similarly,	veteran	trees	in	Europe	are	often	legacies	from	a	preindus-
trial,	 extensively	managed	agricultural	 landscape,	 and	owe	some	of	
their	qualities	to	previous	human	management,	like	coppicing.	Due	to	
their	rich	microhabitat	structures	(thick	bark,	crevices,	dead	branches,	
hollows	etc.),	 these	veteran	 trees	are	not	only	 important	 landscape	
elements,	but	often	constitute	local	hotspots	for	biodiversity	in	them-
selves	(Sverdrup-	Thygeson,	2009).

Biodiversity	hotspots	can	be	found	at	many	spatial	scales	 from	
global	to	local	(Gaston	&	David,	1994;	Medail	&	Quezel,	1997;	Myers	

et	al.,	 2000;	 Sverdrup-	Thygeson	 et	al.,	 2007).	While	 several	 global	
hotspots	have	been	identified	and	roughly	delineated	geographically	
(e.g.,	Myers	et	al.,	2000),	locating	local	hotspots	is	more	challenging.	
Yet	finding	these	hotspots	is	critical	for	planning	and	management	at	
the	local	level,	where	most	decisions	are	made	and	land	management	
is	in	action	every	day.	Given	that	complete	mapping	is	way	beyond	
the	 resources	 allocated	 to	biodiversity	mapping	 and	monitoring	 in	
most	 countries,	 some	 form	 of	 spatial	 distribution	 modeling	 (e.g.,	
Elith	&	Leathwick,	2009)	is	needed.	This	is	especially	true	in	habitat	
types	with	a	large	suite	of	associated	specialized	species,	where	fo-
cusing	on	occurrence	and	critical	properties	of	the	habitat	can	be	a	
cost-	efficient	way	of	locating	and	protecting	several	species	in	one	
operation	 (Gjerde,	Sætersdal,	&	Blom,	2007;	Lehmann,	Overton,	&	
Austin,	 2002;	 Skarpaas,	Diserud,	 Sverdrup-	Thygeson,	&	Ødegaard,	
2011).	 However,	 the	 mix	 of	 ecological	 and	 anthropogenic	 factors	
affecting	 local	 biodiversity	 hotspots	 poses	 several	 challenges	 to	
ecological	 and	geographical	prediction.	There	are	many	potentially	
important	predictor	variables,	distributed	across	complex	landscapes	
with	gradients	and	thresholds	in	both	ecological	and	anthropogenic	
influences	over	time	(Erb	et	al.,	2017).	Now,	at	the	beginning	of	the	
Anthropocene,	 there	 is	 a	 rapidly	 growing	 need	 to	 address	 these	
complexities.

In	 this	 study,	we	 focus	 on	 large	 and	 hollow	 oaks	 (Quercus	 spp.;	
Figure	1)—an	 important	 biodiversity	 hot	 spot	 habitat	 in	 northern	
Europe—to	 address	 the	 challenge	 of	 interacting	 ecological	 and	 an-
thropogenic	 processes	 in	 generating	 spatial	 patterns	 in	 biodiversity	
hotspots.	Our	goal	is	to	develop	robust	process-	based	predictions	of	
hot	spot	oak	occurrence,	for	use	in	conservation	management	and	re-
search.	We	concentrate	on	oaks	 in	Norway,	where	 large	and	hollow	
oaks	(hereafter	“veteran	oaks”)	were	recently	listed	as	a	priority	habitat	
under	the	Nature	Diversity	Act,	and	where	comprehensive	data	sets	
are	being	collected	as	parts	of	national	monitoring	efforts	and	biodi-
versity	studies	(Sverdrup-	Thygeson,	Evju,	&	Skarpaas,	2013).

Oaks	are	long-	lasting	habitats,	with	some	trees	thought	to	be	close	
to	1,000	years	old	(Drobyshev	&	Niklasson,	2010).	As	the	years	go	by,	
the	architectural	diversity	increases,	and	the	oaks	develop	patches	of	
decay,	 broken	 branches	 or	 flaking,	 deeply	 creviced	 bark—and	 after	
about	 200	years	 of	 age,	 sometimes	 earlier,	 internal	 cavities	 start	 to	
develop	 (Ranius,	 Niklasson,	 &	 Berg,	 2009).	 In	 these	 microhabitats,	

F IGURE  1 Veteran	oaks	in	(a)	forest	
(Mandal,	Norway)	and	(b)	open	landscapes	
(Porsgrunn,	Norway).	Photos:	Anne	
Sverdrup-	Thygeson

(a) (b)
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exceptionally	 species-	rich	 communities	 associated	with	wood	decay	
and	wood	mold	flourish.	For	these	reasons,	veteran	oaks	are	a	priority	
conservation	habitat,	and	for	both	conservation	research	and	manage-
ment	of	these	large	old	trees	it	is	important	to	know	where	they	are	
likely	to	be	found	and	how	they	are	influenced	by	ecological	and	an-
thropogenic	processes	(Lindenmayer	&	Laurance,	2016;	Lindenmayer	
et	al.,	2014).

A	critical	question	 for	 the	prediction	of	veteran	oaks	 is	how	the	
distribution	of	these	large	and	hollow	oaks—the	biodiversity	hot	spot	
oaks—differs	from	the	distribution	of	oak	in	general.	We	know	much	
about	the	distribution	and	ecology	of	oaks	from	previous	studies	(e.g.,	
Annighöfer,	 Beckschäfer,	 Vor,	 &	 Ammer,	 2015;	 Dahl,	 1998;	 Jones,	
1959;	Stokland	&	Halvorsen,	2011).	To	what	extent	do	veteran	oaks	
follow	the	oak	niche?	Oaks	grow	old,	large,	and	hollow	when	they	have	
sufficient	 time	 to	 grow,	 age	 and	 decay	without	 major	 disturbances	
(Ranius	et	al.,	2009).	Some	1,000	years	ago,	 in	a	slightly	warmer	cli-
mate	 and	 before	 the	 impact	 of	 humans,	 oak	 forests	 covered	 large	
areas	in	southern	Norway.	In	the	16th	and	17th	century,	there	was	a	
high	demand	for	oak	timber	for	buildings	and	ships,	and	large	amounts	
of	Norwegian	oak	were	exported	 to	Europe	 (Moore,	2010;	Vevstad,	
1998).	Today,	only	remnants	of	the	previous	oak	forests	are	left.	It	is	
unclear,	however,	to	what	extent	large	and	hollow	oaks	in	forests	are	
concentrated	 in	 remote,	 inaccessible	 and/or	 low-	productive	 areas.	
Veteran	oaks	are	also	found	in	open	landscapes,	and	while	certain	as-
pects	may	be	important	in	both	open	landscapes	and	in	forests,	such	
as	the	basic	ecological	requirements	of	oaks,	other	aspects,	like	human	
activities,	may	differ	 between	 landscape	 types.	Moreover,	 the	 com-
plexity	of	effects	may	be	even	higher	in	the	open	landscape,	making	
predictions	more	difficult.	A	recent	synthesis	of	ecological	and	histor-
ical	knowledge	of	oak	forests	in	North	America	suggest	that	humans	
may	have	played	an	important	role	in	shaping	the	distribution	and	pop-
ulation	structure	of	oaks,	in	interaction	with	several	ecological	factors,	
leading	to	the	proposition	of	a	“multiple	ecosystem	drivers	hypothesis”	
of	oak	forest	dynamics	(McEwan,	Dyer,	&	Pederson,	2011).

Given	the	complexity	of	interacting	ecological	and	anthropogenic	
factors,	how,	and	to	what	extent,	can	we	predict	 the	distribution	of	
biodiversity	 hotspots	 in	 the	Anthropocene?	Our	 basic	 hypothesis	 is	
that	even	 in	moderately	populated	parts	of	 the	World,	human	 influ-
ence	is	ubiquitous,	and	we	make	three	predictions	for	Anthropocene	
biodiversity	 hot	 spot	modeling	 that	we	 test	 for	 the	 case	of	veteran	
oaks	 in	 Norway.	We	 expect	 (i)	 human-	modified	 responses	 to	 eco-
logical	 factors,	 (ii)	 fundamentally	 different	 processes	 and	 predictors	
in	 landscape	 types	 shaped	by	different	 land	use	histories,	 and	 (iii)	 a	
multitude	and	complexity	of	natural	and	anthropogenic	processes	that	
require	 many	 predictors	 and	 even	 multiple	 models.	 Specifically,	 for	
veteran	oaks,	we	expect	shifts	in	the	realized	niche	toward	inaccessi-
ble	and	low-	productive	areas,	and	different	responses	to	geographical	
and	 land	cover	variables	 in	 forests	and	open	 landscapes	because	of	
differences	 in	past	and	present	human	 land	use.	Moreover,	because	
of	the	multiple	ecological	and	anthropogenic	drivers,	we	expect	that	
the	distribution	of	veteran	oaks	is	better	predicted	with	multiple	pre-
dictors	and	models,	combined	in	coherence	with	the	structure	of	the	
landscape.

2  | METHODS

2.1 | Study system

Oak	forests	 in	Northern	Europe	are	dominated	by	 two	oak	species,	
sessile	 oak	Quercus petrea	 and	 pedunculate	 oak	Quercus robur. The 
two	species	frequently	hybridize	and	may	be	difficult	to	separate	 in	
the	 field.	 Ecologically	 they	 are	 fairly	 similar,	 and	we	 treat	 them	 to-
gether	 as	 oaks	 (Quercus	 spp.)	 in	 the	 analysis.	 The	 northern	 limit	 of	
oaks	in	Europe	seems	to	be	related	to	climatic	factors	that	vary	with	
latitude.	On	a	coarse	 scale,	Q. petrea	 follows	 the	−4°C	 isotherm	 for	
the	 coldest	month,	whereas	Q. robur,	 which	 reaches	 a	 little	 further	
north	 in	Scandinavia,	 seems	 to	be	more	 limited	by	 respiration	sums	
(i.e.,	temperatures	during	the	growing	season,	weighted	by	their	effect	
on	respiration;	Dahl,	1998).	Elevation	and	local	topography	may	there-
fore	 also	 be	 important	 predictors	 of	 oak	 presence,	 as	 temperature	
generally	declines	with	elevation	and	south-	facing	slopes	may	have	a	
considerably	better	local	climate	than	north-	facing	slopes	at	the	same	
latitude	and	elevation	(Stokland	&	Halvorsen,	2011).	Both	oak	species	
seem	to	tolerate	relatively	dry	habitats	(Elven,	2005;	Jones,	1959),	and	
their	 recruitment	 is	 limited	by	 light	 (Annighöfer	 et	al.,	 2015).	 These	
factors	may	differ	strongly	between	forest	types	and	forestry	regimes.	
Thus	 in	 forests,	oaks	are	related	to	a	combination	of	processes	and	
variables	associated	with	climate,	topography,	and	land	cover.

The	distribution	of	veteran	oaks,	that	is	large	and/or	hollow	oaks,	may	
differ	from	the	distribution	of	oak	in	general,	because	the	development	
of	 large	trees	and	tree	hollows	requires	a	 long	time	without	major	dis-
turbances.	Most	of	the	productive	oak	forests	in	Southern	Norway	have	
been	heavily	exploited	for	timber	production.	Large-	scale	logging	of	oak	
forest	in	Norway	started	already	in	the	1,500s,	peaked	around	1,650—
then	the	oak	forests	closest	to	the	coast	were	heavily	exploited	and	log-
ging	moved	inland—and	continued	on	a	reduced	scale	until	approximately	
1,900	(Moore,	2010;	Vevstad,	1998).	The	past	100	years	or	so,	little	log-
ging	of	large	oaks	has	taken	place,	but	there	has	not	been	enough	time	for	
old-	growth	oak	forests	to	develop.	In	modern	forestry,	many	oak	forests	
have	been	logged	and	replaced	by	faster-	growing	Norway	spruce.	It	is	un-
clear;	however,	to	what	extent	veteran	forest	oaks	are	now	concentrated	
in	remote,	inaccessible,	and/or	low-	productive	forest	areas.

Veteran	oaks	are	also	found	in	open	landscapes.	Oaks	recruit	natu-
rally	from	trees	within	the	open	landscape	or	nearby	forest.	However,	
oaks	are	also	of	significant	cultural	importance	and	have	been	planted	
in	courtyards,	gardens	and	parks,	and	along	roads	and	field	margins.	As	
in	forests,	oaks	may	have	suffered	from	intensification	of	production	
in	the	agricultural	 landscape,	where	edge	habitat	and	other	marginal	
areas	 have	 been	 sacrificed	 in	 the	 creation	 of	 larger,	more	 homoge-
neous	production	areas.	 In	gardens	and	urban	areas,	oaks	and	other	
park	trees	are	subject	to	various	pressures	from	changing	gardening	
trends	and	preferences	related	to	safety.

2.2 | Data

We	used	data	on	veteran	oak	presences	and	absences	from	the	pilot	
study	behind	the	recently	established	national	monitoring	of	veteran	
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oaks	 (Sverdrup-	Thygeson	 et	al.,	 2013).	 The	 data	 were	 collected	 as	
a	 stratified	 random	 sample	 within	 seven	 regions	 of	 approximately	
200	km2	 subjectively	 selected	 to	 represent	 the	 variation	 in	 the	
oak	 region	 in	 south-	eastern	 Norway.	 Each	 region	was	 divided	 into	
3	×	3	km	blocks.	We	 first	 randomly	 selected	 three	blocks,	 and	 then	
20	plots	of	500	×	500	m	within	each	block	 (Figure	2).	Based	on	ex-
isting	 knowledge	on	occurrence	of	hollow	oaks	 (primarily	 the	data-
base	 of	 the	Norwegian	 Environment	Agency;	 http://kart.naturbase.
no/)	we	sorted	the	plots	into	“oak	present”-	plots	and	“oak	presence	
unclear”-	plots.	All	“oak	present”-	plots	and	25%	of	the	“oak	presence	
unclear”-	plots	were	visited	 in	 the	 field,	 and	 the	position	of	 all	 large	
and	hollow	oaks	in	the	plot	was	determined	with	a	hand-	held	GPS.	To	
prepare	for	analysis,	each	plot	was	gridded	to	obtain	information	on	
the	presence	and	absence	of	veteran	oaks	in	10	×	10	m	cells	matching	
the	geographical	resolution	of	the	predictors.

Potential	 predictors	were	 collected	 from	 digital	 maps	 in	 a	 geo-
graphical	 information	 system	 (GRASS	 Development	 Team,	 2015).	
Because	 the	 goal	 was	 prediction	 of	 oak	 presence	 across	 the	 land-
scape,	we	could	only	use	variables	for	which	(more	or	less)	full-	cover	
maps	were	available.	The	variables	considered	were	of	two	main	kinds:	 
(i)	Geographical	variables,	reflecting	large-	scale	geographical	gradients	
(e.g.,	 latitude,	 longitude,	 elevation)	 and	 local	 topography	 (e.g.,	 slope	
and	aspect),	and	 (ii)	 land	cover	variables,	 reflecting	vegetation,	 land-
scape	structure	and	human	land	use	(e.g.,	forest,	open	landscape,	dis-
tance	to	roads).	When	relevant,	we	considered	variables	at	different	
spatial	scales.	Based	on	the	literature	and	initial	screening	of	about	80	
potential	predictor	variables,	we	decided	to	test	a	set	of	13	variables	

(Table	1)	representing	more	or	less	independent	aspects	that	could	po-
tentially	affect	the	occurrence	of	veteran	oaks	(e.g.,	Dahl,	1998;	Elven,	
2005;	Jones,	 1959;	McEwan	 et	al.,	 2011;	Moore,	 2010;	 Stokland	&	
Halvorsen,	2011;	Vevstad,	1998),	and	for	which	data	with	more	or	less	
full	geographical	cover	could	be	obtained	(see	Appendix	S1	for	further	
details	on	the	variable	screening	process).

To	test	the	prediction	of	different	processes	operating	in	different	
landscape	types,	we	subdivided	our	study	area	 into	forest	and	open	
landscape	 types	based	on	 the	predominant	 land	cover.	Forest	 land-
scapes	were	defined	as	all	forest	area	with	a	patch	size	of	>1	ha,	and	
open	landscapes	were	defined	as	all	nonforest	areas	(excluding	water	
and	 traffic	 area)	 plus	 forest	 patches	with	 a	 size	 of	 1	ha	or	 less	 (see	
Appendix	S1	for	further	details	on	the	transition	between	forests	and	
open	landscapes).

2.3 | Analysis

We	developed	prediction	models	for	the	full	data	set	across	all	land-
scape	types	and	for	each	landscape	type	separately	by	means	of	lo-
gistic	regression	(GLMs;	McCullagh	&	Nelder,	1989).	Visual	inspection	
of	the	data	indicated	that	some	of	the	predictors	could	be	nonlinearly	
related	 to	oak	presence.	However,	we	 found	no	 support	 for	 strong	
nonlinearities	in	the	initial	model	testing	(GAM	yielded	essentially	the	
same	linear	models	as	GLM),	except	for	one	predictor	(slope),	where	
the	inclusion	of	a	squared	term	(slope2)	was	necessary	to	account	for	
a	nonlinear	response.

We	 developed	 a	 suite	 of	 models	 to	 elucidate	 key	 patterns	 and	
ensure	 robustness	 of	 the	 results	 with	 respect	 to	 our	 predictions.	
We	analyzed	 a	 few	 single	 regression	models	with	 selected	key	pre-
dictors	 to	 test	 for	 human-	modified	 ecological	 responses	 (prediction	
1)	 and	 different	 effects	 in	 forests	 and	 open	 landscapes	 (prediction	
2).	To	evaluate	 the	 relative	 importance	of	 these	and	other	predictor	
variables	we	developed	multiple	regression	models	with	several	pre-
dictors.	To	evaluate	model	uncertainty	and	assess	the	need	for	multi-
ple	models	 (prediction	3)	we	also	calculated	AICc-	weighted	average	
parameter	estimates	across	multiple	alternative	models	 (Burnham	&	
Anderson,	2002),	and	compared	those	to	the	best	model	(in	terms	of	
AICc).	Because	we	wanted	to	focus	on	the	effects	of	shifting	human	
influence,	we	kept	the	geographical	variables	(number	1–7;	Table	1)	in	
all	models	and	considered	all	possible	combinations	of	the	land	cover	
variables	(number	8–13).	Model	predictions	were	compared	using	re-
ceiving	operator	characteristics	(area	under	the	curve,	AUC).	Statistical	
modeling	was	carried	out	in	R	(R	Core	Team,	2014)	and	geographical	
prediction	in	GRASS	GIS	7.0	(Grass	Development	Team,	2015).

3  | RESULTS

We	found	that	the	distribution	of	veteran	oaks	was	influenced	by	a	
mixture	 of	 ecological	 and	 anthropogenic	 factors,	 and	 that	 different	
processes	dominated	in	forests	and	open	landscapes.

In	 accordance	with	 the	ecology	 and	distribution	of	oaks	 in	 gen-
eral,	the	probability	of	occurrence	of	veteran	oaks	declined	toward	the	

F IGURE  2 Selection	of	500	×	500	m	sample	plots	in	a	
topographically	diverse	area	with	a	mix	of	forest	and	open	landscape	
types	in	Asker,	Norway

http://kart.naturbase.no/
http://kart.naturbase.no/
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north	in	forests	(Figure	3a,	green	line).	However,	in	open	landscapes,	
the	pattern	was	opposite:	 the	occurrence	of	veteran	oaks	 increased	
toward	 the	 north	 (Figure	3a,	 brown	 line).	 Consequently,	 in	 the	 far	
north,	 a	 single-	predictor	model	 based	 on	 data	 from	both	 landscape	
types	 overestimated	 the	 probability	 of	 occurrence	 of	 veteran	 oaks	
in	 forests	 and	 under-	predicted	 the	 occurrence	 in	 open	 landscapes	
(Figure	3a,	dashed	line).

In	addition	to	large-	scale	geographical	gradients,	local	topography	
was	clearly	important	to	the	occurrence	of	veteran	oaks.	The	proba-
bility	of	occurrence	 showed	unimodal	patterns	with	 terrain	 slope	 in	
both	 forests	 and	 open	 landscapes,	 but	 shifted	 toward	 considerably	
steeper	 areas	 in	 forests	 than	 open	 landscapes	 (Figure	3b).	 The	 de-
cline	in	occurrence	toward	very	steep	areas	captured	by	both	of	the	
landscape-	specific	models	was	missed	when	the	data	were	combined:	
the	single-	predictor	model	for	the	combined	data	set	seriously	over-	
predicted	occurrence	in	steep	areas	(Figure	3b,	dashed	line).

Landscape	 structure	 also	 affected	 probability	 of	 occurrence.	 In	
both	 forests	 and	 open	 landscapes,	 the	 occurrence	 of	 veteran	 oaks	

declined	 at	 increasing	 distances	 from	 the	 forest	 edge	 (Figure	3c).	
However,	 in	 the	 open	 landscape,	 the	 probability	 of	 occurrence	was	
much	higher	near	the	forest	edge,	and	the	decline	much	steeper	with	
increasing	distance	to	the	forest	edge.	Consequently,	the	total	model	
strongly	 under-	predicted	 occurrence	 near	 the	 forest	 edge	 in	 the	
open	 landscape	 and	 over-	predicted	 near	 the	 edge	 inside	 the	 forest	
(Figure	3c,	dashed	line).

When	we	broadened	the	perspective	to	look	at	regression	models	
with	multiple	predictors,	we	found	that	several	variables	were	import-
ant.	Although	 no	 single	 combination	 of	 variables	was	 clearly	 better	
than	the	others	for	any	of	the	data	sets	(the	best	models	receive	rela-
tively	weak	support	with	AIC	weights	<0.5,	and	the	confidence	sets	of	
models	consist	of	4–18	models;	Table	2),	there	was	a	good	correspon-
dence	 between	 the	 best	models	 (Table	3)	 and	 coefficient	 estimates	
based	on	AIC-	weighted	model	averaging	across	the	confidence	set	of	
models	(Table	4).

As	 expected,	 the	 probability	 of	 occurrence	 of	 veteran	 oaks	
declined	with	 elevation	 in	 both	 forests	 and	 open	 landscapes.	 In	

No. Variable Definition (units/scale)
Related patterns and 
processes

1 X West–east	coordinate	(m) Oceanic-	continental	
(moisture)	gradient

2 Y South–north	coordinate	(m) Nemoral–boreal	(tempera-
ture)	gradient

3 Z Elevation	above	sea	level	(m) Correlated	with	air	
temperature,	marine	
deposits,	land	use,	etc.

4 S Slope	(degrees) Correlated	with	insolation	
time,	ground	conditions	
and	forestry	activity

5 A Aspect	(northness) Correlated	with	radiation	
sum

6 TWI Terrain	wetness	index Wetness	indicator	based	on	
terrain	and	water	flow	from	
above

7 K Fishers	K	(100	m	radius) Expresses	terrain	rugged-
ness,	i.e.	topographic	
variability

8 FA Area	of	forest	(patches	>20	m	
across)	within	1	km

Negatively	related	to	
intensive	agriculture	and	
urban	areas

9 FD Distance	to	forest	edge	(m) Correlated	with	distance	to	
open	landscape

10 RD Distance	to	road	(m;	water	as	a	
hard	barrier)

Related	to	ease	of	access	for	
logging,	and	for	ornamental	
plantings	(e.g.	avenues)

11 WD Distance	to	water	(m) Related	to	ease	of	access	for	
past	logging

12 T Dominant	tree	class	(T31:	spruce,	
T32:	pine,	T33:	deciduous)

Dominant	tree	species	in	
forests

13 P Productivity	class	(site	index;	
P12_13:	12–13	m,	etc.)

Represents	productivity	as	
reflected	in	height	of	the	
dominant	tree	species

For	statistics	on	the	variables	in	the	different	data	sets,	see	Appendix	S1:	Table	S1.

TABLE  1 Predictor	variables	and	
related	patterns	and	processes
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addition	 to	 the	 elevational	 and	 latitudinal	 gradients	 there	was	 a	
longitudinal	gradient	in	occurrence	in	forests,	with	higher	probabil-
ity	toward	continental	(dry)	areas,	but	this	effect	was	much	weaker	
and	even	opposite	 in	some	models	for	open	 landscapes	(Tables	3	
&	4).

Several	 local	 topographic	aspects	were	also	 important.	The	mul-
tiple	 regression	 models	 suggested	 a	 unimodal	 pattern	 for	 slope	 in	
forest	(as	in	the	single	regression	model;	Figure	3b),	as	well	as	for	all	
landscape	types	combined.	The	probability	of	occurrence	was	higher	
in	dry	parts	of	the	landscape	(negative	effect	of	Terrain	wetness	index	
[TWI])	in	both	forests	and	open	landscapes.	Aspect	(northness)	had	a	
negative	effect,	though	only	consistent	across	models	in	forest.	Local	
topographic	variability	(Fischer’s	K)	seemed	to	play	a	minor	role	in	both	
systems.

Different	aspects	of	land	cover	influenced	the	occurrence	of	vet-
eran	oaks	 in	 forests	and	open	 landscapes.	 In	 forests,	 the	probability	
of	 occurrence	was	 higher	 in	 deciduous	 and	 pine-	dominated	 stands	
than	in	spruce	stands,	and	lower	in	highly	productive	areas.	Other	land	
cover	variables	played	a	minor	role	in	forests.	In	open	landscapes,	on	
the	other	hand,	the	occurrence	of	veteran	oaks	was	negatively	related	
to	the	area	of	forest	nearby	and	to	distance	to	forest	edge	(as	in	the	
single	regression	model;	Figure	3c).

Overall,	 predictions	 were	 better	 for	 landscape	 types	 separately	
than	for	all	data	combined	and	slightly	better	in	forests	than	in	open	
landscapes	(Figure	4).	Although	the	estimated	probabilities	of	veteran	
oaks	were	generally	low,	the	models	clearly	distinguished	parts	of	the	
landscape	with	low	and	high	(relatively	speaking)	probabilities	of	oc-
currence	(Figures	4	and	5).	However,	while	predictions	were	unbiased	
for	models	based	on	the	 landscape	types	separately	 the	predictions	
based	 on	 all	 data	 overestimated	 the	 highest	 probabilities	 of	 occur-
rence	(Figure	4).	Geographical	predictions	were	in	agreement	with	the	
distribution	of	oak	on	a	 large	scale,	but	anthropogenic	 factors	were	
important	for	 local	variation	 in	the	probability	of	veteran	oak	occur-
rence	(Figure	5).

4  | DISCUSSION

A	veteran	oak	is	not	 just	any	forest	tree.	Veteran	oaks	are	essential	
carriers	of	biodiversity,	and	of	rich	cultural	traditions,	like	many	other	
biodiversity	 hotspots	 (Habel	 et	al.,	 2013;	 Lindenmayer	 &	 Laurance,	
2016;	Myers	 et	al.,	 2000;	 Timonen	 et	al.,	 2011).	Moreover,	 like	 an	
increasing	number	of	small	and	local	hotspots,	they	are	far	apart,	dif-
ficult	to	locate,	and	strongly	influenced	by	anthropogenic	processes.	
Developing	models	to	predict	their	occurrence	is,	therefore,	critically	
important	 and	 timely,	 but	 challenging.	 In	 both	 landscape	 types,	 the	
probability	 of	 encountering	 veteran	 oaks	 is	 low—even	 in	 the	 best	
spots.	Our	 forest	model	predicts	probabilities	of	about	0.05	 for	 the	
best	 10%	 of	 10	×	10	m	 cells.	 This	 is	 still	 high	 compared	 to	 the	 ex-
pected	probability	for	an	average	10	×	10	m	cell.	On	the	basis	of	the	
same	data,	we	have	previously	estimated	that	there	are	some	60,000	
veteran	oaks	in	Norway	(Sverdrup-	Thygeson	et	al.,	2011),	distributed	
over	41,000	km2.	This	gives	roughly	1.5	veteran	oaks	per	km2,	or	an	
average	probability	of	encountering	a	veteran	oak	in	a	10	×	10	m	cell	
of	about	0.00015.	Thus,	despite	low	maximal	probability,	our	models	
suggest	 that	 the	odds	are	>300	times	that	of	an	average	cell	 in	 the	
best	spots.	In	other	words,	the	models	clearly	distinguish	hot	and	cold	
parts	of	the	landscape.

Our	 results	 suggest	 that	 prediction	 of	 veteran	 oaks	 is	 possible,	
but	 also	 illustrate	 the	 importance	 of	 considering	 landscape	 struc-
ture	 as	 well	 as	 accounting	 for	 the	 different	 critical	 ecological	 and	
anthropogenic	processes	operating	in	natural	and	human-	dominated	
landscapes.	 Specifically,	 our	 predictions	 and	 results	 highlight	 three	
major	 challenges	 for	 ecological	 and	 geographical	 prediction	 in	 the	
Anthropocene.

First,	biodiversity	hotspots	may	respond	differently	 to	ecological	
factors	 (biotic	and	abiotic)	 in	different	 landscapes	depending	on	the	
kind	and	degree	of	human	influence	(prediction	1).	Examples	include	
differences	in	magnitude	and	steepness	of	linear	responses,	direction	
of	 linear	 responses,	and	position	of	 realized	optima	along	ecological	

F IGURE  3 The	probability	of	occurrence	of	veteran	oaks	as	functions	of	(a)	position	along	the	latitudinal	gradient,	(b)	local	terrain	slope,	
and	(c)	distance	to	forest	edge.	Data	points	on	veteran	oak	occurrence	in	forest	(green)	and	open	landscapes	(yellow)	are	plotted	at	the	top	
(presences)	and	bottom	(absences)	of	each	panel	(slightly	spread	out	for	clarity).	Lines	show	predictions	of	fitted	single	logistic	regression	models	
for	forests	(green)	and	open	landscapes	(yellow),	and	both	landscape	types	combined	(dashed)
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gradients.	This	 is	 clearly	 seen	 in	 the	 different	 responses	 of	 veteran	
oaks	to	forest	edge,	 latitude,	and	slope,	respectively	(Figure	3).	Such	
shifts	may	be	induced	by	varying	human	influences	along	the	gradients	
in	different	landscape	types,	generating	a	greater	difference	between	
the	 realized	 and	 the	 fundamental	 niche	 in	one	 landscape	 type	 than	

in	another.	For	instance,	intensive	agriculture	and	urban	development	
may	have	reduced	the	occurrence	of	veteran	oaks	in	the	south,	while	
oaks	may	have	been	favored	as	exotic	elements	in	the	less	intensively	
driven	cultural	 landscape	 toward	 the	north.	 In	 forests,	 these	human	
factors	play	a	lesser	role,	and	the	occurrence	of	veteran	oaks	declines	
toward	 the	 north,	 in	 concordance	with	 the	 fundamental	 oak	 niche	

TABLE  2 Logistic	regression	models	for	the	presence	of	veteran	oak	for	each	landscape	type

Landscape type
Models in conf. 
set

Model 
rank

Model 
X + Y + Z + A + S + S2 + TWI + K+ k AICc ΔAICc AICc weight

Forest 18 1 T + P	+	FA	+	FD 15 3942.62 0.00 0.22

2 T + P	+	FA 14 3943.10 0.48 0.17

3 T + P	+	FA	+	FD	+	WD 16 3944.49 1.87 0.08

4 T + P	+	FA	+	FD	+	RD 16 3944.62 2.00 0.08

Open 4 1 FA	+	FD 11 1996.39 0.00 0.48

2 FA	+	FD	+	RD 12 1997.77 1.38 0.24

3 FA	+	FD	+	WD 12 1998.33 1.94 0.18

4 FA	+	FD	+	WD	+	RD 13 1999.74 3.35 0.09

All	data 4 1 FA	+	FD	+	WD	+	RD 13 6276.09 0.00 0.46

2 FA	+	FD	+	RD 12 6276.67 0.57 0.35

3 FA	+	FD	+	WD 12 6279.12 3.03 0.10

4 FA	+	FD 11 6279.30 3.20 0.09

The	table	shows	the	four	best	models	(based	on	AICc)	for	each	landscape	type,	the	number	of	parameters	(k,	including	geographical	parameters),	and	AICc	
statistics.	All	models	include	the	eight	geographical	variables	below	the	table	header	“Model”	in	addition	to	the	variables	listed	(see	Table	1	for	variable	
definitions).

TABLE  3 Model	coefficients	of	the	best	logistic	regression	
models	for	each	data	set,	based	on	AICc

Forest Open landscape All data

Intercept 63.800 −28.857 46.805

X 0.927*** −0.163 0.684***

Y −0.763*** 0.305 −0.551***

Z −0.400*** −1.419*** −0.476***

S 1.286*** −0.413* 0.684***

S2 −0.652*** 0.185˄ −0.170*

A −0.645*** −0.059 −0.443***

TWI −0.259** −0.693*** −0.465***

K −0.074 0.022 −0.033

FA −0.163* −0.920*** −0.475***

FD −0.103 −0.801*** −0.412***

RD – 0.000 0.127*

WD – 0.000 −0.077˄

T32 1.928*** – –

T33 1.343*** – –

P12_13 −0.360* – –

P14_15 −0.591** – –

Coefficients	are	standardized	by	SD	of	the	predictors	(Table	1,	Appendix	
S1:	Table	S1).
p-	values	 for	 coefficient	estimates	 (z-	tests):	 ***<.001,	 **<.01,	 *<.05,	 ˄<.1.	
(See	Appendix	S1:	Table	S2,	for	extended	results.)

TABLE  4 Model	coefficients	averaged	across	the	95%	confidence	
set	of	logistic	regression	models	for	each	data	set	and	standardized	
by	the	SD	of	the	predictor	variables	(Table	1,	Appendix	S1:	Table	S1)

Forest Open landscape All data

Intercept 59.978 −30.180 48.810

X 0.902a −0.175 0.687a

Y −0.724a 0.318 −0.573a

Z −0.435a −1.430a −0.458a

S 1.263a −0.410a 0.683a

S2 −0.636a 0.183 −0.168

A −0.648a −0.059 −0.443a

TWI −0.259a −0.697a −0.460a

K −0.072 0.025 −0.036

FA −0.174a −0.919a −0.483a

FD −0.109 −0.801a −0.404a

RD −0.013 0.069 0.125a

WD −0.053 0.020 −0.076

T32 1.949a – –

T33 1.348a – –

P12_13 −0.357a – –

P14_15 −0.587a – –

aCoefficients	 with	 95%	 confidence	 intervals	 not	 including	 zero	 (see	
Appendix	S1:	Table	S3,	for	extended	results).
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(Figure	3a).	However,	in	forests,	harvesting	is	difficult	in	steep	areas,	
where	veteran	oaks	consequently	have	a	strongly	elevated	probabil-
ity	of	occurrence	 compared	 to	 similar	 slopes	 in	 the	open	 landscape	
(Figure	3b).	This	aligns	well	with	the	general	overrepresentation	of	key	
habitats	for	biodiversity	in	steep	terrain	in	forests	(Sætersdal,	Gjerde,	
Heegard,	Schei,	&	Nilsen,	2016)	and	with	our	previous	work	suggest-
ing	that	the	diversity	and	species	composition	in	oak	hot	spot	habitats	
differ	 in	open	 landscapes	and	 forests,	 and	 respond	 to	different	 fac-
tors	in	these	two	systems	(Sverdrup-	Thygeson,	Skarpaas,	&	Ødegaard,	
2010).	When	responses	differ	strongly	between	 landscape	types,	as	
in	the	veteran	oak	examples,	simply	adding	landscape	type	as	another	
covariate	 in	a	 (generalized)	 linear	regression	model	 is	not	enough	to	
resolve	the	problem.	 Interaction	terms	between	 landscape	type	and	
other	predictors	could	help	account	 for	different	 responses	 to	com-
mon	predictors	in	the	different	landscape	types.	However,	this	is	only	
possible	for	predictors	that	are	relevant	in	all	landscape	types	where	
the	biodiversity	hot	spot	occurs.

This	brings	us	to	the	second	general	challenge	for	spatial	predic-
tion	modeling:	 different	 predictors	may	 be	 relevant	 only	 in	 specific	
areas	 (prediction	 2).	 Humans	 frequently	 modify	 ecosystems	 to	 the	
extent	that	original	natural	processes	are	no	longer	the	most	relevant	

and	 important	 processes	 structuring	 ecosystems	 (Ellis	 et	al.,	 2010).	
For	instance,	for	veteran	oaks	(and	other	old	trees;	see	Lindenmayer	
&	Laurance,	2016;	Sætersdal	et	al.,	2016),	dominant	tree	species,	and	
forest	productivity	are	important	variables	in	forests,	but	not	relevant	
in	 the	 open	 landscape	where	 the	 forest	 has	 been	 cleared	 and	 kept	
away,	often	 for	 centuries.	This	 implies	 that	 the	 sets	of	 relevant	 and	
important	predictor	variables	are	different	in	the	two	landscape	types.	
One	solution	to	this	problem	is	to	split	the	ecological	predictions	by	
landscape	type,	as	we	did	here	(see	also	Meineri,	Skarpaas,	&	Vandvik,	
2012):	landscape-	specific	models	can	be	developed	for	different	land-
scape	 types,	 and	predictions	merged	geographically	 (i.e.,	 on	 a	map).	
This	approach	 requires	 that	 landscape	 types	are	clearly	defined	and	
that	information	on	the	spatial	distribution	of	landscape	types	is	read-
ily	available.

Finally,	 the	third	challenge	highlighted	by	our	study	 is	 the	multi-
tude	 and	 complexity	 of	 processes	 and	 factors	 affecting	 biodiversity	
hotspots	 in	 human-	influenced	 landscapes	 (prediction	 3).	 Ecological	
processes	are	complex,	anthropogenic	processes	even	more	so.	This	
challenge	goes	far	beyond	the	time-		and	space-	dependent	relevance	
and	 importance	 of	 single-	predictor	 variables	 discussed	 above.	 It	 is	
clear	from	our	study	of	veteran	oaks	that	no	predictor	can	be	singled	

F IGURE  4 Validation	plots	for	the	best	prediction	models	for	all	data,	forests	and	open	landscapes,	showing	observed	versus	predicted	
probability	of	occurrence	(a,b,c)	and	the	corresponding	receiver-	operator	curves	(ROCs;	d,e,f).	The	upper	panels	show	presences	(top)	and	
absences	(bottom)	of	veteran	oak	and	means	and	confidence	intervals	of	observations	in	red.	The	ROC-	plots	show	false	predictions	plotted	
against	correct	predictions	for	a	range	of	cutoff	values	of	predicted	probabilities	of	occurrence,	giving	the	area	under	the	curve	(AUC)	as	an	
indicator	of	predictive	capacity

(a) (b) (c)

(d) (e) (f)
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out	as	the	one	and	only	or	clearly	most	important	one.	Multiple	pre-
dictors	 are	needed,	 representing	both	ecological	 and	 anthropogenic	
processes.	This	is	in	accordance	with	the	“multiple	ecosystem	drivers	
hypothesis”	 of	 oak	 forest	 dynamics	 (McEwan	et	al.,	 2011),	 although	
the	oak	species	and	drivers	are	different	in	our	European	system	than	
in	North	America	(e.g.,	no	sudden	oak	death	in	Europe)	and	our	study	
concerns	veteran	oaks	 in	particular.	We	know	several	of	 the	 factors	
affecting	the	life	and	death	of	oaks,	and	the	conditions	for	generating	
tree	hollows,	yet	we	are	 far	 from	a	 solid	understanding	of	all	major	
processes	and	their	 interactions,	and	lack	data	on	relevant	variables.	
For	veteran	oaks,	as	for	most	biological	systems,	we	have	to	make	do	
with	relatively	simple	data	and	statistical	modeling	tools.	In	this	situa-
tion,	there	is	potentially	a	high	degree	of	model	uncertainty.	To	address	
model	uncertainty,	we	presented	and	combined	several	models	based	
on	AIC	weights	(Burnham	&	Anderson,	2002;	for	alternative	methods	
for	 averaging	model	 predictions,	 see	 e.g.,	 Romero,	Olivero,	 Brito,	 &	
Real,	2015).	Our	analysis	shows	that	although	a	number	of	alternative	
models	can	predict	the	observed	occurrences	of	veteran	oaks	almost	
equally	well,	the	predictors	and	parameter	estimates	of	the	best	mod-
els	 are	 also	 given	 strong	 support	when	 combining	multiple	models.	
Thus,	while	testing	several	alternative	models	provides	a	broader	basis	
for	inference	(but	see	e.g.,	Cade,	2015	for	pitfalls),	multiple	models	are	
not	necessary	for	parameter	estimation	and	prediction	in	this	case.

Underlying	all	of	the	three	modeling	challenges	above	is	the	quan-
tification	 of	 anthropogenic	 processes.	Development	 of	 relevant	 and	
measurable	predictors	is	critically	important	in	an	increasingly	human-	
dominated	world.	Unfortunately,	there	are	 large	knowledge	gaps	re-
lated	to	land	use	(Erb	et	al.,	2017).	Historical	land	use	and	landscape	
development	 are	 often	 poorly	 documented	 in	 maps,	 especially	 in	

digital	maps,	both	in	open	landscapes	and	in	forests.	In	this	study	we	
therefore,	screened	a	large	number	of	potential	proxies	derived	from	
current	 land	cover	and	structural	 landscape	variables	related	to	past	
and	present	human	activities	of	relevance	to	veteran	oaks.	We	arrived	
at	a	limited	set	of	variables	selected	to	represent	key	processes	(e.g.,	
forest	area,	distance	to	road	and	distance	to	water;	Table	1).	Veteran	
oaks	respond	negatively	to	forest	area	in	the	surroundings,	both	in	for-
ests	and	in	open	landscapes	(Tables	3	&	4).	This	suggests	that	veteran	
oaks	in	open	landscapes	may	be	found	in	urban	parks	and	productive	
agricultural	areas,	whereas	veteran	oaks	in	forests	may	be	associated	
with	marginal	areas	for	both	forestry	and	agriculture.	Many	of	the	large	
oaks	growing	 in	 forest	 today	may	have	been	growing	 in	open	 land-
scapes	in	a	not	too	distant	past.	Even	marginal	areas	in	Norway	were	
heavily	 exploited	 for	 fuelwood,	 grazing	 etc.	 about	 a	 hundred	 years	
ago	 (Framstad	&	 Lid,	 1998),	 but	many	 oaks	may	 have	 been	 spared	
as	ornamental	trees,	especially	toward	higher	elevations	where	oaks	
are	less	common	(see	further	discussions	of	transitional	landscapes	in	
Appendix	S1).	Thus,	the	forest	area	variable	seems	to	capture	anthro-
pogenic	landscape	structures	and	processes	of	importance	to	veteran	
oaks.	Distance	to	road	and	water,	on	the	other	hand,	did	not	have	sig-
nificant	predictive	power	(Tables	3	&	4).	This	result	was	unexpected,	as	
timber	is	largely	transported	by	road	in	present-	day	forestry,	whereas	
log	driving	on	rivers	and	lakes	was	the	main	means	of	moving	timber	
from	the	forest	to	the	sawmills	in	the	past	(Sandmo,	1951).	Steepness	
(and	productivity)	of	 the	 terrain	 seem	to	better	 represent	effects	of	
logging	activities	on	oak	than	distance	to	roads	and	water.	However,	
direct	data	on	past	 logging	activities	would	clearly	have	been	much	
more	informative	than	proxies	based	on	current	landscape	structures.	
This	underscores	the	need	for	keeping	track	of	major	human	land	use	

F IGURE  5 Maps	of	predicted	
probability	of	occurrence	of	veteran	
oaks	(forest	and	open	landscape	models	
combined)	showing	the	entire	study	area	
in	SE	Norway	and	a	selected	in	Asker	(inset	
map;	corresponding	to	Figure	2)
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activities	for	future	studies	of	their	effects,	especially	for	systems	in-
volving	slow	ecological	processes.

Despite	the	challenges	discussed	above,	our	spatial	models	for	vet-
eran	oaks	provide	clear	results	of	relevance	of	biodiversity	management	
and	conservation	as	well	as	further	research.	It	is	evident	from	our	re-
sults	that	veteran	oaks	are	influenced	by	more	than	the	natural	factors	
shaping	the	fundamental	oak	niche.	Our	models	suggest	that	elevation,	
terrain	wetness,	and	landscape	structure	(forest	area)	are	important	pre-
dictors	of	veteran	oak	presence,	 in	accordance	with	 the	 fundamental	
oak	niche	(Dahl,	1998;	Jones,	1959;	Stokland	&	Halvorsen,	2011),	but	
with	differing	responses	and	additional	variables	playing	major	roles	in	
forested	and	open	landscape	types,	as	discussed	above.	We	now	have	a	
workable	set	of	prediction	models	that	can	help	us	design	mapping	and	
monitoring	efforts,	improve	estimates	of	veteran	oak	abundance,	guide	
conservation	management	(Lindenmayer	et	al.,	2014),	and	support	re-
search	addressing	issues	such	as	cost-	effective	probability-	based	sam-
pling	(Yoccoz,	Nichols,	&	Boulinier,	2001),	effects	of	landscape	structure	
and	connectivity	(Evju,	Blumentrath,	Skarpaas,	Stabbetorp,	&	Sverdrup-	
Thygeson,	2015;	Evju	&	Sverdrup-	Thygeson,	2016;	Sverdrup-Thygeson,	
Skarpaas,	Blumentrath,	Birkemoe	&	Evju,	in	press),	predictions	of	spe-
cies	 richness	 (Skarpaas	et	al.,	2011),	and	spatial	community	dynamics	
(Engen,	Sæther,	Sverdrup-	Thygeson,	Grøtan,	&	Ødegaard,	2008).

To	summarize	and	conclude,	we	find	that	veteran	oaks	are	pre-
dictable	 despite	 the	 complexity	 of	 processes	 in	 human-	influenced	
landscapes	and	that	considering	how	different	human-	related	pro-
cesses	 operate	 in	 different	 landscapes	 helps	 both	 understanding	
veteran	 oak	 responses	 to	 environmental	 variables	 and	 prediction	
of	 distribution	 patterns.	We	 expect	 predictions	 to	 be	 further	 im-
proved	with	the		extensive	monitoring	data	set	under	establishment,	
especially	after		repeated	visits.	This	will	document	recruitment	and	
mortality	patterns	 in	veteran	oaks	and	can	be	used	 to	develop	 in-
creasingly	refined	process-	oriented	models.	Regardless	of	the	mod-
eling	 approach,	 finding	 ways	 to	 account	 for	 human	 influence	 on	
ecological	 systems	 and	 address	 the	 challenges	 illustrated	 by	 the	
veteran	oak	case	are	likely	to	become	increasingly	important	in	the	
Anthropocene.
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