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Abstract: The impact on human and horse health of West Nile fever (WNF) recently and 

dramatically increased in Europe and neighboring countries. Involving several mosquito 

and wild bird species, WNF epidemiology is complex. Despite the implementation of 

surveillance systems in several countries of concern, and due to a lack of knowledge, 

outbreak occurrence remains unpredictable. Statistical models may help identifying 

transmission risk factors. When spatialized, they provide tools to identify areas that are 

suitable for West Nile virus transmission. Mathematical models may be used to improve 

our understanding of epidemiological process involved, to evaluate the impact of 

environmental changes or test the efficiency of control measures. We propose a systematic 

literature review of publications aiming at modeling the processes involved in WNF 

transmission in the Mediterranean Basin. The relevance of the corresponding models as 

predictive tools for risk mapping, early warning and for the design of surveillance systems 

in a changing environment is analyzed. 
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1. Introduction 

West Nile fever (WNF) is an arbovirosis caused by the West Nile virus (WNV)  

(Flavivirus, Flaviviridae). The transmission cycle involves wild and domestic birds as main hosts and 

mosquitoes, mainly of the Culex genus, as vectors. Under favorable environmental conditions, this cycle 

may be amplified and lead to human and horse infections. The latter two are considered to be dead-end 

hosts [1]. Most human cases remain asymptomatic. However, around 30% of infected people get sick,  

with symptoms ranging from a flu syndrome to encephalitic diseases, with recent reported case fatality 

rates ranging from 3 to 17% [2,3]. Ten percent of horses infected by WNV present neurological 

disorders [4,5]. Consequently WNF is a veterinary and human public-health issue. 

The phylodynamics [6] of WNV has been analyzed in several studies, according to which WNV 

originates from sub-Saharan Africa where it circulates in an endemic cycle [7] . Introductions of WNV 

from this cradle occurred regularly in Western Europe (via Maghreb) and in Eastern Europe  

(via Middle East). Two major lineages are distinguished: lineage 1 (strains from all over the World) 

and lineage 2 (strains from Africa and Europe) [8]. Lineage 1 further divides into 3 subclades: 

subclade 1a (the main branch of the lineage 1) [9], subclade 1b (Kunjin strains from Australia) and 

subclade 1c (strains from India). 

In 1999 a WNV strain belonging to lineage 1a was introduced into north America and spread 

throughout the continent to reach the western coast 3 years later. Between 1999 and 2010,  

around 1.8 million people were infected, with more than 12,000 encephalitis/meningitis syndromes and 

1,308 deaths [10]. This 10-years WNV circulation period was characterized by a high variability in the 

intensity of local transmission on several spatial scales and between years, and by waves of wild bird 

mortality [11]. 

WNV has been circulating in the Mediterranean Basin at least since the 1960s. Most of human and/or 

equine cases were caused by strains belonging to lineage 1a, characterized by a moderate pathogenicity for 

horses and humans and a limited or no pathogenicity for birds [12]. However, since 2000,  

and in particular since 2010, WNV epidemiological pattern has evolved from a very low level of 

endemicity without any bird mortality to a sudden increase of this mortality and a higher incidence of 

animal and human neurological cases. Furthermore, lineage 2 strains, so far confined to the south of 

the Sahara, have been recently detected in central Europe (Hungary [13], Austria [14], Greece [15], 

Italy [16]). The major WNF epidemic that occurred in 2010 in Central Macedonia, Greece, was caused 

by a lineage 2 strain [17,18]. Recently, human cases were reported from Albania, Hungary, Israel, 

Italy, Macedonia, the Palestinian territory, Romania, the Russian federation, Serbia, Spain, Ukraine, 

Tunisia, Turkey and Greece [12,19–21]. Most of the European countries have implemented 

surveillance networks, either passive of active, that have improved the quality of available 

epidemiological data. However outbreaks appear temporally and spatially unpredictable. 

Statistical and mathematical models may allow predicting WNF occurrence risk and, more generally, 

the risk of WNV transmission between hosts (birds and incidental hosts) and vectors. Three modelling 

approaches are used by epidemiologists to predict the risk of case occurrence for a given disease,  

or the transmission risk of its agent: risk factor analysis, landscape epidemiology, and transmission 

dynamic modelling. Risk factor studies are observational studies performed in the natural environment 

of hosts: disease occurrence figures and data describing potentially linked factors are collected in 
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naturally affected populations, and statistical models are used to explore the link between  

disease occurrence and covariates [22]. These models may be spatial or not, depending on the nature of 

the covariates. A complementary approach, so-called landscape epidemiology, takes into account  

spatial relationships between the components of the epidemiological system. The term of  

“landscape epidemiology”, attributed to the Russian parasitologist Pavlovsky [23], corresponds to the 

analysis of the geographic distribution of diseases as the result of several elements: the co-occurrence, 

at the same place, of animal donors, of vectors, of animal recipients and of the pathogenic agent itself; 

and the influence of local environmental conditions on the transmission of infection. The objective of 

landscape epidemiology studies, also called spatial epidemiology [24,25] is to produce risk maps for 

disease occurrence, or for the transmission of the disease agent. Mathematical models of disease 

transmission explicitly represent the health states of the individuals of the population in which the 

disease agent circulates. Most of the time, the health state—susceptible, infectious, 

removed/recovered, are discrete and are also called “compartments”, hence the name of 

“compartmental models” for most epidemiological models. Transitions between health states, that 

describe the transmission processes and the natural history of the disease, are often represented by 

differential or by difference equations; the parameters used to model these transitions as well as the 

host and vector population dynamics are measured in field or laboratory studies or are obtained from 

experts’ opinion. Mathematical models may incorporate the whole epidemiological system or a 

specific part of it. They may address the circulation of the disease agent in a single population,  

in several interacting populations (meta-population models) that may be spatially defined  

(spatialized models). Whatever the case, these models may be used to test some transmission 

scenarios, to predict the disease incidence in various environmental contexts, or to assess the impact of 

intervention strategies [26]. Here we focus our analysis on the specific case of WNV in Europe.  

A more extensive review of mathematical models of mosquito-borne pathogen transmission can be 

found in [27]. 

In this paper we propose a systematic review and analysis of the published studies belonging to 

each of the 3 previously mentioned approaches, applied to countries or areas of the Mediterranean 

basin, and dedicated to the risk of WNF occurrence or of WNV transmission. The relevance of the 

corresponding models as predictive tools for risk mapping, early warning and for the design of 

surveillance systems is analyzed. 

2. Method 

PubMed and ISI Web of Knowledge were searched, from 2000 till September 2013, using the terms 

“West Nile” and, separately “model”, or “spatial”, or “risk factors” or “Europe”, using the  

“all fields” option to allow retrieval of articles in which the search terms appeared in the titles, 

abstracts, or keywords. Abstracts retrieved were read by the two same persons, and inclusion and 

exclusion criteria were applied to identify the final list of publications for full text reading.  

Inclusion criteria were articles using statistical and mathematical modelling approaches to model WNF 

risk in animals or humans. Reviews, statistical analysis and models built in a north American context, 

outbreak notifications, prevalence studies, descriptions of clinical disease, pathogenicity and diagnosis 

in humans or animals, experimental infections in animals, development of vaccines, genome sequencing 



Int. J. Environ. Res. Public Health 2014, 11 70 

 

 

alone, entomological surveys alone were discarded. The relevant papers cited by selected articles,  

but not identified by the above selection procedure were included in the review. Only English written 

articles were included.  

3. Results 

The first request, “WN AND models”, allowed to identify 32 papers, among which 27 were 

theoretical studies, built with US data or studied the risk of introduction of the virus into Europe.  

The second request, “WN AND Europe”, identified 24 papers: 13 were deleted because they were 

theoretical, descriptive or phylogenetic studies. Thirteen papers were identified through the “WN and 

risk factors” request. Eleven were discarded for the same reasons. The last request, “WN and Europe”, 

selected 5 papers from which 3 were deleted. Once duplicates had been deleted, and new relevant 

papers cited by selected articles added, 18 papers were actually examined. Eight were risk factor 

studies performed in France, Italy, Spain, Tunisia, Morocco and Iran (Table 1), 5 landscape 

epidemiology studies performed with French, Italian, Spanish or Israeli data (Table 2) and 5 concerned 

mathematical models, the estimation of their parameters and their use (Table 3). 

3.1. Risk Factor Analyses of WNF Occurrence and/or Transmission 

Although recently changed, the epidemiology of WNV in the Mediterranean Basin is very different 

from that prevailing in north America. Bird mortality and infection rates in mosquitoes are high in 

north America [28], and the WNV infection rate in mosquito vectors is thus commonly used as an 

indicator of WNV transmission intensity [29]. Similarly, the mortality fraction in birds can also be 

used as an indirect indicator of WNV transmission, as in Southern Ontario for the period 2002–2005 or 

in south Carolina in 2003 [29,30]. Oppositely, in the Mediterranean basin, these parameters are 

generally null or very low [31–34], with the recent exception of Hungary where neuroinvasive WNF 

was diagnosed all over the country in dead goshawks and other birds of prey, the estimated infection 

rate in mosquitoes being 5% [35]. Therefore, in most countries of the Mediterranean basin, bird mortality 

or mosquito infection rate cannot be used as a proxy for WNV transmission, and case occurrence data 

(seroprevalence or clinical cases) in incidental hosts (horses or human) are used instead. It was the case 

for the 8 risk factors studies reported here, of which 6 used horse seroprevalence data as a proxy for 

WNV transmission risk, whereas 2 used data about human and/or horse clinical cases (Table 1). Three 

categories of potential explanatory variables were analyzed in these 8 studies: abiotic parameters (such 

as rainfall and temperature), land cover characteristics (such as vegetation type, presence of water 

bodies), and landscape indices (such as landscape fragmentation indices). In several studies, variables 

describing differences in host exposure (such as, for horses, the breed, the age, or the housing 

conditions) were also included to adjust the effect of abiotic, land cover and landscape variables. 
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Table 1. List of articles aiming at identifying the risk factors of WNF occurrence  

and/or transmission, and variables associated with seroprevalence or case occurrence  

in human or horses. Ref. stands for References. 

Infection 

Marker 
Scale 

Explicative Variables 
Validation Prediction Ref.

Abiotic Landcover Landscape Other 

Horse 

seroprevalence 

Local 

(France) 

   Age, 

breed, 

group size 

Yes,  

internal 
No [36]

Horse cases and 

seroprevalence 

Local 

(France) 

 Wet sansouire, 

open water,  

rice fields, 

dry bushes 

  

No No [37]

Horse 

seroprevalence 

Local 

(France) 

 Density of 

hetero-geneous 

agricultural 

areas 

Insterspersion 

and 

juxtaposition 

index 

 

Yes,  

internal 
Yes [38]

Horse 

seroprevalence 

Local  

(Iran) 

Elevation   Age 
No No [39]

Horse 

seroprevalence 

Local  

(Spain) 

   Number of 

horses 

within the 

holding, 

transport 

within the 

last 6 

months, 

presence of 

mosquitoes

No No [40]

Horse 

seroprevalence 

Country 

(Tunisia) 

 Night-time land 

surface 

temperature, 

biannual phase 

of NDVI 

 Distance to 

the nearest 

RAMSAR 

site 

Yes,  

external 
Yes [41]

Horse cases Local 

(Morocco) 

 NDVI,  

rainfall 

  
No No [42]

Human and 

horse cases 

Continental 

(Russia, 

Greece, 

Israel, 

Romania, 

Turkey, 

Hungary, 

Italy, Spain) 

Temperature, 

Relative 

Humidity 

   

No No [43]
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Table 2. List of articles aiming at producing risk maps for the transmission of WNV or 

WNF disease. Ref. stands for References. 

Scale 
Wild Birds Mosquitoes 

Risk Indices/Model Ref.
Species Abundance Model Species Abundance Model 

Local 
(France) 

60 species  Qualitative 
probability of 
presence according 
to land cover  
(6 classes) 

Cx. pipiens 
Cx. modestus 

Qualitative density 
level (5 classes), 
data: bird-baited 
trapping 

Vector and host 
occurrence 
probability indexes, 
host richness and 
abundance indexes 

[44]

Country 
(Israel) 

  Cx. pipiens  Spearman and 
Pearson correlation 
with temperature 
and precipitation 

 [45]

Local 
(Italy) 

  Oc Caspius 
Cx. pipiens 
Cx. modestus 

Bayesian 
Generalized Linear 
Mixed Model 
(GLMM) of  
CO2-baited trapping 
data according to 
elevation, rainfall, 
temperature,  
NDVI, season 

 [46]

Local 
(Italy) 

  Cx. pipiens GLMM  [47] 

Local 
(Spain) 

32 migratory 
species, present 
in large 
numbers, 
associated with 
aquatic habitat 

Presence/absence: 
only abundant 
species  
(>2,000 pairs)  
are addressed 

Cx. pipiens Weighted Linear 
Combination (WLC) 
of temperature, 
rainfall rate, 
distance to the 
nearest humid area 

WLC of wild bird 
presence,  
Cx. pipiens 
abundance and 
equid density  

[48]

Table 3. List of articles addressing the respective roles of vector species and of wild bird 

species in WNV transmission, and WNV transmission dynamics. Ref. stands for References. 

Study Type 
Method 

Ref.
Species/Genus Explanatory/Calibrated Variables Method 

Respective roles of wild 

bird species 

25 Bird species Migrating status t-test [49]

72 Bird species 
Migrating status 

Body weight 
GLMM [50]

Respective roles of 

mosquito species 

Duck, Horse 

Cx. pipiens,  

Cx. modestus, 

Ae Caspius,  

Ae. vexans 

Host abundance and biomass 
Multi-host model of host 

choice by vectors 
[51]

WNV transmission 

dynamics 

Passerines 

Cx. pipiens/ 

Cx univittatus 

Horses 

Chicken 

Vector-host ratio in each population 

Nestling-adult bite relative risk 

Passerine-incidental host bite relative 

risk  

Meta-population model 

(3 vector populations,  

5 host populations) 

[52]

Use of a meta-population 

model 
[53]
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The influence of abiotic parameters was analyzed in 4 surveys, of which 1 was conducted at the 

continental scale [43], and 3 covered specific countries: Morocco [42], Tunisia [41] and Iran [39]: Paz et 

al. analysed a dataset of laboratory-confirmed human and equine cases from Russia, Greece, Israel, 

Romania, Turkey, Hungary, Italy and Spain reported during summer 2010, with regards to spring and 

summer temperatures, relative humidity and rainfall. Data were analyzed using Pearson and lag 

correlation as well as multinomial logistic regressions. A positive correlation was observed between 

WNF cases and temperature. Northern countries displayed strong correlations with a lag of up to 4 

weeks whereas cases occurred immediately after temperature anomalies in southern countries.  

The association between WNF cases and relative humidity (RH) was weak. Rainfall seemed to have 

had no impact on human WNF occurrence. According to the existing surveillance systems, WNF cases 

appeared 3 weeks later in horses than in humans, without any association with temperature or RH [43]. 

Temperature conditions prevailing in a given area may be measured using an index such as the  

night-time Land Surface Temperature (LST), computed from remote sensing imagery. This index was 

used in the Moroccan and Tunisian studies because the main activity period of mosquitoes ranges from 

sunset to dawn. In Morocco, night-time LST did not seem to have an influence on WNV transmission 

to horses, whereas the role of rainfall was unclear [42]. In Tunisia, the night time LST was positively 

associated with a higher prevalence rate in horses [41]. In Iran, the elevation (which is linked to 

temperature) was negatively associated with the seroprevalence in horses [39].  

Temperature is known to influence mosquito population dynamics, increasing the reproduction rate, 

the number of blood meals, and the duration of the breeding season. Higher temperatures are also 

known to increase vector competence, thus the transmission intensity, by reducing the extrinsic 

incubation period [54–60]. As confirmed by the examined studies, the influence of rainfall on 

mosquito population dynamic (thus on WNV transmission) is more controversial and depends,  

among others, on the mosquito species considered. Surface water is necessary to the mosquito larval 

development. Heavy rainfall increase the surface of standing water, thus favour mosquitoes that uses 

permanent water sources such as Cx. hortensis. On the other hand, heavy rainfall may also dilute the 

nutrient for larvae thus decrease the development rate [61]. From an epidemiological point of view, 

drought was shown to favour the WNV transmission in the US, as standing water becomes richer in 

nutrients. On the other hand the reduction of standing water surfaces increase the bird concentration 

around these water holes, thus increase the contact between hosts and vectors [57,62,63]. 

The transmission of West Nile virus (WNV) depends on the co-occurrence in space and time of 

both susceptible avian reservoir hosts and competent mosquito vectors. Besides abiotic factors,  

both are influenced by geographic variables such as land use/land cover. Land cover may be 

characterized by indexes such as the normalized difference vegetation index (NDVI) that quantify the 

local photosynthetic activity, and can be computed from remote sensing images. In Morocco NDVI 

values were significantly higher in a 10 km radius around horse cases for 2003 and 2010, the years of 

WNF occurrence [42]. In Tunisia, higher values of the biannual phase of NDVI were associated with 

higher values of seroprevalence rate in horses, meaning that humid late spring and fall were more 

favourable to WNV transmission than drier occurrence of these seasons [41]. Both effects are related 

to vector population dynamics: high NDVI values indicate a higher photosynthetic activity, hence the 

presence of breeding and resting sites for mosquitoes; seasonal differences of NDVI values are known 

as predictive factors for mosquito abundance [64]. Besides indices such as NDVI, satellite imagery 
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may be used to classify land cover into types, such as wetlands or agricultural areas, and the surface 

covered by each type may be measured. In Camargue (France) in 2004 the relationships between 

seroprevalence in horses and the surface locally covered by land cover types were analyzed using a 

generalized linear model. Rice fields and dry bushes, wet ‘sansouire’ and open water were shown to be 

the major components of the landscapes associated with high seroprevalence [37]. It is well known that 

potential mosquito vectors oviposit in specific habitats. For instance, Aedes larval habitats are constituted 

by brackish temporary ponds and low “sansouire” in Camargue whereas Cx. modestus species prefer 

quiet permanent wet areas such as rice fields, reeds or ponds containing low level salt. On the other hand, 

many wild bird species are attracted by wetlands that constitute adapted breeding sites [37].  

Landscape metrics describe and quantify the spatial configuration of landscape elements.  

Many landscape metrics have been defined to characterize the composition (nature and area covered 

by the various land cover classes) and the complexity (number, area and spatial interweaving of 

patches) of landscapes [65]. In France, and using a logistic model, the link between horse 

seroprevalence and landscape metrics was studied in 2 areas where horse cases had been detected 

(Camargue and the Var). Environmental data were derived from the CORINE Land Cover 2000 

(CLC2000) database, provided by the European Environment Agency (EEA, 2007). A positive association 

between seroprevalence in horses and landscape complexity was observed [38]. After evaluation and 

internal validation, the model was used to build a prediction map for the areas at risk of endemic 

circulation of WNV along the Mediterranean coast. Other studies have shown that landscape metrics 

provide a useful quantification of variations in biodiversity or species richness. In particular, bird species 

richness was shown to be linked to landscape heterogeneity [66]. Similarly, landscape metrics have 

been linked to the abundance of Bluetongue vectors (Culicoides imicola) [67] and to the risk of 

Bluetongue clinical cases or seroprevalence [68,69]. 

Variables describing differences in host exposure were used in 4 studies dedicated to 

seroprevalence in horses. Beside spatial heterogeneity observed in the 4 studies, the location of the 

stable was taken into account in Tunisia: the distance to the closest Ramsar site (Ramsar International 

Convention on Wetlands of International Importance) was the most important explanatory variable [41]. 

The proximity to wetlands (favourable sites for mosquitoes) that present a higher abundance and 

diversity of birds thus increases the risk of WNV transmission [70]. A similar effect has been observed 

in France, 2003 [71]. The role of herd size was highlighted in France [36], and Spain [40],  

horses living in small herds being more at risk than those living in larger ones. Two main elements can 

explain this result: (i) horses living in larger herds benefit from better management practices and are 

thus less exposed to mosquito bites than small one, (ii) because of the low infection rate in mosquitoes, the 

individual probability of being bitten decreases when the herd size increases. Finally, age was statistically 

associated with seroprevalence in Iran [39], suggesting an intense and regular viral circulation, the risk of 

having experienced at least one infective mosquito bite increasing then with the age of the animals. 

3.2. Landscape Epidemiology Studies 

The development of Geographic Information System (GIS) software has greatly facilitated the 

representation and the treatment of spatial data with the superposition and the combination of layers, 

each dedicated to a specific element of the infection transmission process. For WNV, landscape 
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epidemiology studies consider that the geographic variations of WNV transmission result from the 

variations of abundance in competent birds and vectors. The geographic distribution of the disease also 

depends on human and horse spatial density. Three types of layers are thus considered in WNV 

landscape epidemiology studies: the mosquito abundance, the wild bird abundance and the abundance 

of incidental hosts. Once separately mapped, these layers are superimposed and combined to compute 

and map risk indices. 

In the published studies, the mosquito species considered in the vector abundance layer always 

included Cx. pipiens, the other mosquito species taken into account being Cx. modestus, Oc caspius 

and Coquillettidia richiardii (Table 2). Several approaches have been used to produce a map of the 

geographic variations of vector abundance. Tran et al. [44] based vector abundance maps on the 

classification of remotely sensed images into land cover classes. For each mosquito species  

(Cx. pipiens and Cx. modestus) and activity (breeding and host-seeking), a probability of occurrence  

(5 levels, from “never or accidentally collected” to “very high density”) was associated with each of 

the land cover classes, based on bird-baited trapping data and on expert knowledge. Spatial statistical 

tools were used to model the trapping data according to the local values of covariates [45,46,72]. 

Increasing elevation had a negative effect on vector abundance [46] whereas temperature (weekly 

mean [46,72] or positive anomalies [45]) and NDVI [46] were positively linked to vector abundance. 

Bisanzio et al. [46] also report a significant effect of the season (modelled as a sinusoidal curve having 

a 1 year period and peaking in the 1st week of August), suggesting that the other covariates they used 

did not capture the effect of season on abundance. Rainfall was positively linked to vector abundance 

in [46] (10 days cumulative rainfall), but negatively in [72] (4 weeks cumulative rainfall),  

no association being reported in [58]. In [46], these statistical associations did vary according to the 

vector species. Finally, other authors applied the landscape epidemiology approach to the abundance of 

vectors. Three layers were thus considered by Rodriguez-Prieto et al. [48], according to literature: 

distance to the nearest humid area, temperature and rainfall. They derived the vector abundance layer 

by computing a weighted sum of these layers (after having applied to each a normalization process), 

weights being based upon experts’ opinion. 

The abundance of birds was taken into account in 2 studies. The number of considered bird species 

varied between 15 and 60 according to the study. Each of the studies used a specific approach for 

mapping bird abundance. Rodriguez-Prieto et al. [48] used maps from the Spanish national 

biodiversity inventory database to generate presence/absence maps for competent birds. As for vector 

abundance, Tran et al. [44] based bird abundance maps on the classification of remotely sensed images 

into land cover classes. For each bird species (n = 60), season and activity (feeding, roosting or 

breeding), a probability of occurrence (six levels, from “absent” to “very abundant”) was associated to 

each of the land cover classes, based on experts’ opinion. Because they address different geographic 

areas (Castille and Leon for the Spanish study, Camargue for the French study) and use different 

methods (data-based maps for the Spanish study, and maps based on ornithologists’ knowledge for the 

French study), both studies are difficult to compare. However, it is worth noting that none did use 

spatial statistical modeling techniques for generating the bird abundance map, a situation that differs 

from the case of vector abundance maps. Indeed, the use of space by wild bird species is certainly less 

directly influenced by climatic or vegetation variables than for mosquito species: this probably hinders 

the definition of statistical models of bird abundance based on environmental covariates [25]. 
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Three of the studies considered in this section were dedicated to the identification of areas with high 

vector productivity, this productivity being considered a proxy for the risk of WNV introduction and 

amplification. Tran et al. [44] integrated the bird and vector layers, but did not propose any risk 

indicator. They rather used a descriptive approach, mapping season-specific vector and host occurrence 

probability indexes, as well as host species richness and abundance indexes. Rodriguez-Prieto et al. [48] 

explicitly took into account the density of horses to compute a WNF risk in horses. Three layers were 

thus considered in their study: wild birds, mosquitoes and horses. They proposed a risk computation 

procedure based on a weighted linear combination of these 3 layers (after normalization of each layer),  

the weights being based on literature and experts’ opinion. The corresponding maps showed high risk 

areas (such as Guadarrama and Cantabric mountains), with increased risk levels in July and August. 

3.3. Integrative Studies  

The foraging behavior of blood sucking arthropods is a major element that shapes the epidemiology 

of arboviruses. The intensity of WNV transmission at a given place and the risk for incidental hosts 

depends on the host preferences of the mosquitoes living there. It also depends on the availability of 

hosts: if the species spectrum of mosquitoes likely to transmit WNV is limited, it is not the case for 

wild birds: field studies allowed detecting anti-WNV antibodies in many of the nearly 1,000 bird 

species that live in Europe during all or part of the year. The intensity of WNV transmission at a given 

place thus depends on the local biodiversity of mosquitoes and of wild birds. Furthermore,  

it depends on the calendar date as the population dynamics of mosquitoes and wild birds is strongly 

seasonal in Europe. If no study has yet addressed these 3 elements simultaneously (biodiversity of 

vectors, biodiversity of hosts, population and transmission dynamics), some have been dedicated to 

each of them. In this section we review the studies that have addressed the respective roles of mosquito 

species in WNV transmission, the respective roles of wild bird species in WNV transmission, and the 

mathematical models of transmission dynamics (Table 3). 

3.3.1. The Respective Roles of Mosquito Species in WNV Transmission 

Several methods allow studying the foraging behavior of blood sucking arthropods, such as direct 

observation, baited traps or analysis of blood content in mosquito gut. Analysis of blood meal data in 

mosquito communities suggests that the mosquito foraging behavior primarily relies on the availability 

of hosts in a given landscape [73,74]. However, this does not preclude the existence of innate host 

preferences for specific mosquito species. Host feeding pattern may be defined as the distribution of 

meals taken on different vertebrate hosts. It depends on 3 factors: the innate tendency of mosquitoes to 

be attracted by specific host species (host preference), the local presence of individuals that may be 

bitten (host availability), and the defensive behavior of these. Balenghien et al. [51] have proposed a 

theoretical framework for representing mosquito host-feeding patterns and for analyzing data obtained 

using host-baited traps and blood meal analysis. This framework separates host preference from host 

abundance. It thus allows computing host feeding patterns for various host populations (host species 

assembly and relative abundance of host species). This framework has been applied to bird-baited 

trapping data obtained in Southern France (Camargue) for several competent WNV mosquito species 

or groups of species: Cx. pipiens, Cx. modestus, Ae. caspius and Ae. vexans. The model was used to 
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analyze the relative importance of these mosquito species in the enzootic circulation of WNV 

(quantified by the probability for a mosquito to feed twice on a bird) and in the infection of incidental 

hosts (quantified by the probability for a mosquito to feed on a bird and on an incidental host).  

Results show that the relative importance of each vector species varies according to the composition of 

the host population and on the ratio of the bird biomass to that of incidental hosts: if the enzootic 

circulation is always carried by Culex species, the role of bridge vectors (between birds and incidental 

hosts) would also be carried by Culex species when bird biomass is low in comparison with that of 

incidental hosts, whereas it would rather be carried by Aedes species in the opposite situation. 

Interestingly, intermediate values of the biomass ratio induce a lower ability of each mosquito species 

to endorse the role of bridge species. Bird abundance shows large variations during a year, with complex 

patterns induced by nesting periods (of which the start and end dates vary according to the species), 

dispersion and migratory behaviors (that also vary according to the species). Moreover, local bird 

abundance may also be influenced by human behaviors (agricultural practices, hunting). These abundance 

variations should thus induce variations throughout the year of the identity of bridge vector species and 

of the infection risk for incidental hosts. 

3.3.2. The Respective Roles of Wild Bird Species in WNV Transmission 

Reservoir competence, the ability of a species’ to act as reservoir for pathogens and transmit them 

before or without dying, is a function of several parameters: the host susceptibility (probability of a 

host becoming infected by infected vectors), the host infectivity (probability of a vector becoming 

infected when feeding on an infected host), the duration of infectiousness (number of days a host 

remains infectious), and the level of viraemia which allows or not the biting mosquito to get the virus 

from the host [75]. Ecologists and epidemiologists have recently begun to consider reservoir 

competence as resulting from the life history characteristics of species [75]. Life history theory 

suggests the existence of tradeoffs between self-maintenance such as immune defenses and other 

activities such as reproduction and growth: “fast-lived” species would invest minimally in adaptive 

immunity, contrary to “slow-lived” species. As a consequence, the potential to transmit a given 

pathogen would be higher for “fast-lived” species than for “slow-lived” ones [75]. Serological studies 

conducted in wild birds provide information on their exposure to infectious bites, either in Africa  

(for migrating birds) or in Europe (for resident species). A study performed in Spain during the 2004 

pre-nuptial migration period showed that trans-Saharan migrants were more frequently seropositive 

than resident birds [49]. In a second study [50], carried out in Spain between January 2003 and 

February 2005, the statistical association between seropositivity and life history traits was analyzed. 

The association between migratory behavior was confirmed and refined, with a lower prevalence in 

winter migrants (birds coming from central and northern Europe) than in resident birds, and, oppositely,  

a higher prevalence in summer migrants (birds wintering in Africa) than in resident birds. Seroprevalence 

was also associated with bird weight. This could be explained by both a greater longevity of larger birds 

and by a stronger attractivity of vectors by larger birds, due to a higher CO2 production. Interestingly,  

no association between seroprevalence and taxonomic level was observed, suggesting that differences 

between species are more attributable to life history traits than to genetic factors.  
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Besides species-level life history characteristics, individual traits may also play a role in WNV 

transmission. For example, nestling may play a specific role in WNV circulation, because of a greater 

exposure to mosquito bites (absence of feathers, immobility), or because their immature 

immunological system may favor a prolonged viraemia, or thanks to a direct transmission between 

nestlings and their parents. Studies based on bird seroprevalence data, conducted in Africa and in north 

America, have suggested such a particular role of nestling [76,77]. However, field studies based on 

mosquito trapping did not show a greater attractiveness of vectors by nestling [78,79], even if recently 

developed trapping devices (nest mosquito traps [80]) may lead to different results [81].  

3.3.3. Mathematical Models of Transmission Dynamics 

From an epidemiological perspective, the successful transmission of an arbovirus at a given 

location mainly depends on the spatio-temporal co-occurrence of vectors and hosts. Some dynamical 

processes may however induce important variations of risk: the vector-host co-occurrence depends on 

the mobility of hosts (including migratory behaviors of wild birds), on the behavior of incidental hosts 

that determines their exposure to infectious bites, and on the vector and host population dynamics. 

Mechanistic dynamic models allow representing such dynamical phenomena and their impact on 

WNV circulation. A metapopulation model has been proposed by Durand et al. [52] for the circulation 

of WNV between Western Africa and Western Europe. Three geographic locations were considered: 

an African wet area, an African dry area and a European area. Each had its own pattern of vector 

abundance (only Culex species were considered) with a yearlong presence of vectors in the African 

wet area peaking during the rainy season), this presence being seasonal in the African dry area  

(rainy season) and in the European area (March-October). Five populations of passerines were 

considered: 3 resident populations (one per geographic area) and 2 migratory populations,  

which linked the 3 areas together (between the African wet area and the European area,  

and between the 2 African areas). Bird population dynamics was explicitly represented in the model 

(with population-specific nesting periods) as well as WNV transmission dynamics between birds  

(with different probabilities of being bitten in nestling and adults) and between birds and horses.  

The model was calibrated using field data collected in Africa and in Europe (bird seroprevalence data), 

and validated using independent data (bird seroprevalence data, infection rates in vectors, 

seroprevalence and incidence data in horses). 

The limit cycle (i.e., the yearly dynamic once the equilibrium has been reached) was analyzed to 

compare WNV surveillance systems in the European context [53]. Optimal sample sizes of equivalent 

surveillance designs were computed. Comparison of the corresponding yearly costs showed that, 

where possible, the passive surveillance of horses by specialized veterinarians was the most  

cost-effective system in the European context. 

4. Discussion/Perspectives 

Even if the health impact of WNF is reduced in the Mediterranean Basin compared to what is 

observed in North America, the disease pattern changed during these past 20 years, with the first 

detection of the lineage 2, a sudden increase of the number of outbreaks and of neurological cases, 

either in human or horses, and an unexpected mortality in wild birds, in particular in Hungary.  
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These changes raised concerns about the understanding and the prediction of outbreaks in order to 

implement adapted and cost-effective surveillance systems. In North America, many modelling studies 

have been conducted for the understanding, prediction and risk assessment of West Nile virus 

transmission and/or emergence. Models are either statistical (time/space) or process-based. Some are 

vector-based and aim at forecasting the dynamic of mosquito populations [82] or to spatially evaluate 

of the risk of acquiring infection from a mosquito bite [83]. Some are population-based and were 

elaborated to link WNF incidence with temperature data [84,85] or to simulate WNV circulation in an 

epidemiological system [86–90]. On the contrary, and probably because of the lower impact of WNV, 

relatively few studies have been performed in the context of the Mediterranean basin. Eighteen papers 

were examined, and classified in 3 groups, which contributions to the understanding of WNV 

transmission are highly complementary (Figure 1).  

The first examined group of studies aimed at investigating the potential association between 

biotic/abiotic factors and human/horses WNF cases or seroprevalence rates, using statistical methods. 

If not directly applicable to infer on geographical variations of the risk of WN transmission, the results 

of such studies help identifying the main factors involved, thus integrate these factors in predictive 

spatial and/or dynamic models. One of the most important results is the influence of temperature on the 

risk of WNF occurrence or of WNV transmission. As a matter of fact, and according to the World 

Meteorological Organization, warming trend in Europe and Eurasia is confirmed [43]. It is thus crucial 

to quantify the link between temperature and transmission risk, in order to build predictive models 

based on predicted meteorological data. The relevance of these results depends on the scale they were 

performed: if useful at the continental level [43], or at the national level [41,42], the relevance of this 

parameter at a local scale remains to be investigated. 

Furthermore, the way the temperature variable is computed (mean weekly or monthly value,  

mean daily minimal or maximal) is important and the precise effect of each kind of index on vector 

biology needs to be further explored. Similarly to North America, the role of rainfall on WNV 

transmission in the Mediterranean Basin remains controversial. It is likely that rainfall influence 

depends, at least, on 3 factors: (i) the mosquito species considered since each mosquito species needs a 

specific biotope for larval development, and the soil composition which determine (ii) in what extent 

the water percolate or not thus lead to permanent water or not, and (iii) the organic composition of 

water. The study of Paz et al. is currently going on in the frame of Mobod project (Mosquito-Borne 

Diseases Determinants), granted by the European Centre for Disease Prevention and Control (ECDC). 

Once the link between climatic variables and outbreaks occurrence modeled, further step was to add in 

this model additional environmental variables. Besides the effects of temperature and rainfall,  

the results of the studies examining the impact of abiotic factors on WNV transmission were consistent 

with current knowledge on mosquito and wild bird ecology: the transmission intensity seems to be 

higher when located close to Ramsar sites (where bird biodiversity is higher), in biotopes favourable 

either to mosquito or wild bird presence (rice fields for instance or fragmented habitats), and where the 

value of NDVI index is increased. 
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Figure 1. The complementary contributions of risk factor analysis, landscape 

epidemiology and disease transmission modeling to the biological and ecological 

knowledge of epidemiologic systems, and the mutual input of modeling and biology. 

 
Notes: Papers of concern are listed in the corresponding tables: Table 1 for Risk factor analysis, 
Table 2 for Landscape epidemiology and Table 3 for Disease transmission models. 

From a public or animal health point of view, either human or horse cases occurrence or 

seroprevalence rates are the most exact surrogates of the risk of infection of horse and human 

populations. Results can be used for surveillance and control action provided that confusion variables 

are taken into account, such as host sensibility and exposure level. Horse vaccination is allowed in 

Europe since 2009. Vaccination coverage is unknown, but the use of vaccine largely varies across 

countries. Serological results obtained in horses after 2009 should thus be interpreted cautiously, 

taking into account previous vaccinations. Horse exposure mostly depends on their close environment 

and on the management practices. Regarding to humans, behaviour may strongly determine the 

exposure level, but many other features may modify the bite intensity, such as feeding behaviour of 

mosquitoes involved and animal environment that may “protect” humans from being bitten as pointed 

out by Komar [91]. Other biases may modify the results of risk factors studies: horse cases are often 

detected by surveillance networks: results should be interpreted in the light of these network 

sensitivities. Moreover, horses living in endemic areas rarely show clinical cases: clinical cases 

reporting may not be representative of the WNV circulation, thus of the risk for humans to be infected. 

Indeed, from an epidemiological point of view, the incidental host infection pattern is a biased 
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representation of the transmission cycle between wild birds and mosquitoes. Considering that host 

infection is the result of the interaction between a triptych “host-vector-virus” and its environment,  

a complete model, including all these parameters could explain the way transmission occur and help 

identifying the key factors that determine the spatio-temporal dynamic of transmission. 

The second group of papers was based on the assumption that the geographic variations of WNV 

transmission risk result from those of abundance of competent birds and vectors. The geographic 

distribution of the disease also depends on human and horse spatial density. Modelling vector/bird 

abundance and human and horse spatial density, the final goal is to combine these geographical layers 

to compute an indicator for the local WNV transmission and WN disease risk. Regarding to mosquito 

abundance modelling, the above mentioned parameters linked to mosquito abundance (temperature, 

rainfall, NDVI), expert opinion and bird-baited trapping data were used to derive maps of the 

variations of mosquito abundance. Because of the strong link existing between mosquito biology and 

climate as well as the limited capacities of active flight of the European competent mosquito species, 

these models are accurate enough to correctly predict in time and space the geographic variations of 

mosquito abundance. Oppositely, no statistical model of the geographic variations of wild bird 

abundance was found, probably because (i) the collection of wild bird trapping data is very expensive, 

(ii) bird flight span is much more larger than for mosquito and (iii) individually speaking, habitat is 

varying with the bird life cycle. Furthermore, within a given species, the proportion of birds that 

migrate may vary according to the population, as well as the locations of the breeding sites.  

In several of the examined studies, maps of vector/bird abundance and of human/horse densities were 

combined to derived risk maps of WNV transmission or of WNF occurrence. The risk computation 

procedures were either based on a descriptive approach and expert opinion [44], or on a weighted 

linear combination of these [48]. An alternative methodology has recently been proposed allowing the 

mathematical combination of data and expert opinion to produce unbiased information for decision 

making. Multi Criteria Evaluation (MCE) or Multi Criteria Decision Analysis (MCDA) could be 

applied to WNF in the Mediterranean context [92,93]. Indeed this methodology allows creating maps 

in data-poor environments by incorporating all what is already known about disease transmission [93]. 

MCDA has successfully been used for the computation of risk maps for both directly transmitted and 

vector borne diseases, namely Avian Influenza in Southeast Asia [94] and Rift Valley fever in Italy [95]. 

The above landscape epidemiology studies compute risk indices based on the combination of bird 

and mosquito abundance indices. These risk indices are assumed proportional to the actual infection 

risk. However, if these studies investigate how the infection risk is shaped by the spatial co-occurrence 

of vectors and hosts, they do not explicitly take into account the temporal aspects of pathogen transmission 

(besides the computation of season-specific risk maps for example). Indeed, WNV transmission results 

from the interaction of the three main components of the epidemiological cycle, i.e., virus, host and 

vectors. These components and their intrinsic characteristics (immune system, competence, virulence, 

feeding behavior…) are included in an environment (climatic, animal and human), that influence them. 

This environment also influences the intensity of the interactions between components, thus the 

transmission pattern. Beside the identification of the vectors and hosts, an accurate quantification of 

the contribution of different host species to viral amplification requires data on mosquito feeding 

patterns and host abundance from the same place and time, combined with information on the duration 

and intensity of host infectiousness [6]. This complexity may not be adequately summarized by a 
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simple linear combination or a ratio. Among the examined papers, the complexity of WNV 

transmission has been addressed in a third group of studies, with 3 distinct approaches:  

studies dedicated to the “bird side”, that investigate the respective roles of wild bird species in WNV 

transmission, studies dedicated to the “vector side”, dedicated to the feeding behavior of mosquitoes, 

and process-based modeling studies that investigate WNV transmission dynamics. 

Culex modestus, pipiens and univittatus are probably the main mosquito species involved in WNV 

transmission in the Mediterranean Basin. However several other species may be implicated [96]. Given 

the diversity of the bio-ecology of mosquitoes, the identification of the main vectors is a key 

component of surveillance and control actions in a given area. To infer on the implication of a given 

mosquito species in WN transmission, one should prove that this mosquito is laboratory competent, 

abundant enough during the transmission period and that its feeding behaviour mainly includes birds, 

human and/or horses. The third requirement is the virus isolation from field collected individuals [97]. 

Field capture surveys are also used to describe the population dynamic but the cost of these surveys 

does not allow replicating them as often as needed for the identification of periods and areas at risk. 

Beside laboratory experiments that may demonstrate the competency of a mosquito species and partially 

help analyzing the feeding behavior, the analysis of the relationship between mosquito abundance and 

environmental-climatic and landscape- covariates as well as the modeling of population dynamics are 

needed to predict in time and space the suitability of a given area for the occurrence a WN outbreak. 

Regarding to the reservoir hosts, the top 15 most infectious hosts for WNV span 12 wild bird 

families in north America [98] and may be implicated in WN cycle. In the Mediterranean context 

however, knowledge is lacking and the identification of the species involved is another critical issue. 

Similarly to mosquitoes, a bird species must meet several requirements to be involved in WN cycle:  

to develop a sufficient viraemia to allow transmission to mosquitoes without dying, to be abundant 

enough, and to show a high mosquito feeding utilization index [99]. Estimates of reservoir competence 

may be obtained thanks to laboratory experimental infection assays for the most common wild bird 

species (e.g., in [100]). Such experiments have been conducted on few European species [101–104]. 

However, the cost of these experimental studies makes their generalization unrealistic, and modeling 

approaches are needed to estimate the reservoir competence of bird species from species-level 

covariates. The statistical analysis of species-level seroprevalence data according to species life history 

traits is a promising approach that could eventually lead to fully take into account the impact of bird 

species assembly on WNV circulation risk at a given place. However, the link between anti-WNV 

seroprevalence in a given bird species and reservoir competence of that species is not straightforward 

and laboratory studies are needed to quantify key parameters (such as the viraemia duration and 

intensity) in the most common European wild bird species  

Process-based models are the appropriate tools that could allow integrating the impacts of bird and 

vector biodiversity on WNV transmission dynamics and on the variations in time and space of the risk 

of WNV transmission in human and horse. Furthermore, 2 lineages are now incriminated,  

the interactions of which could alter WNV transmission dynamics. To date, the use of process-based 

models for the study of WNV transmission dynamics is quite limited in Europe, with a single,  

non-spatialized model, in which the representation of bird and vector biodiversity is strongly 

simplified [52]. Contrary to statistical models of which predictions are only reliable for conditions that 

fall within the observed ranges of parameters, process-based model are not linked to specific 



Int. J. Environ. Res. Public Health 2014, 11 83 

 

 

conditions and can thus be used for prediction. Further process-based modelling studies are thus 

needed to compute realistic predictions of the time and space variations of WNF risk. Besides 

compartmental models, other formalisms such as agent-based models [105] could be useful to fully 

integrate birds and mosquito biodiversity, as well as the behaviour of incidental hosts that determines 

their exposure. 

5. Conclusions 

WNF is an ecology-dependant disease. The way these above-mentioned factors combine and trigger 

outbreaks remain partially unknown. Building predictive models that link environmental variables and 

WNF risk is however essential to the understanding of how environmental changes, human-induced or 

not, will affect the dynamics of its transmission. Although land cover change has often been tied to 

spatial variation in disease occurrence, the underlying factors driving the correlations are complex, 

limiting the generalization of these results for disease prevention and control. Furthermore, temporal 

and dynamic aspects should be considered, since the success of the transmission process depends on 

the contact between host and vectors, thus, among other, on their population mobility and dynamic. A 

lot has been done, and landing is not so far away. However several elements of biological and 

ecological knowledge are still missing and experimental studies are needed to quantify key parameters. 

In this respect, it is important to emphasize the mutual input of biological/ecological knowledge and 

modeling approaches (Figure 1): modeling studies lead to the identification of key points and 

knowledge gaps that should be investigated through observational or experimental studies. In turn, 

biology provides the necessary pieces to build and validate models [106].  

In conclusion, to properly reproduce WNV transmission dynamic at a given location and implement 

adapted surveillance systems or test the efficiency of control scenario such as insecticide spraying, 

there is a need to combine both spatial and dynamic approaches, integrating into a location-specific 

epidemiological cycle the available ecological knowledge of the WNV transmission processes: the 

dynamics of infection in mosquitoes and birds, the bird and vector population dynamics, and the time 

variations of exposure in incidental hosts. 
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