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ABSTRACT  Candida albicans is a polymorphic yeast where the capacity to 

switch between yeast and filamentous growth is critical for pathogenicity. 

Farnesol is a quorum-sensing sesquiterpene alcohol that, via regulation of 

specific signalling and transcription components, inhibits filamentous growth 

in C. albicans. Here we show that farnesol also inhibits translation at the initi-

ation step in both C. albicans and S. cerevisiae. In contrast to fusel alcohols, 

that target the eukaryotic initiation factor 2B (eIF2B), farnesol affects the in-

teraction of the mRNA with the small ribosomal subunit leading to reduced 

levels of the 48S preinitiation ribosomal complex in S. cerevisiae. Therefore, 

farnesol targets a different step in the translation pathway than fusel alcohols 

to elicit a completely opposite physiological outcome by negating filamentous 

growth. 
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INTRODUCTION 

The capacity to detect and respond to environmental 

change is essential for microorganism survival. This is espe-

cially true for opportunist pathogens like Candida albicans; 

where to initiate infection, the organism must adapt and 

persist in spite of host immune responses. Typically, C. 

albicans is a harmless commensal, yet in infected patients 

it causes various different conditions, from mucosal infec-

tions to life-threatening systemic infections [1].  

Cell-cell signalling, particularly quorum sensing (QS), is a 

major focus of microbiological research. Farnesol is an acy-

clic sesquiterpene alcohol that represents the first QS mol-

ecule identified in eukaryotic microorganisms [2] where it 

causes a range of physiological effects [3]. In C. albicans, 

farnesol inhibits the yeast to hyphal switch [2] to prevent 

colonization of different niche environments [4, 5], it has 

antioxidant effects [6, 7] and it inhibits transporters [8]. In 

many species farnesol induces cellular death: for example 

in the fungal species, Saccharomyces cerevisiae [9], Asper-

gillus nidulans [10], Penicillium expansum [11], Botrytis 

cinerea [12] and even C. albicans under certain conditions 

[13]. Equally, farnesol triggers cell death in mammalian 

cells [14] and can have antibacterial properties [15, 16]. In 

fact, farnesol was first discovered as a constituent of plant 

essential oils with antimicrobial activities [17].  

Cellular responses to stimuli act via signal transduction 

pathways to regulate gene expression. In C. albicans, far-

nesol targets pathways like the Ras-PKA pathway that, via 

the transcription factors Efg1p and Czf1p and the repressor 

Tup1p, regulates gene expression [18]. If a stimulus induc-

es cellular stress, a transient inhibition of global protein 

synthesis is often observed, which further modulates the 

programme of gene expression to allow stress responsive 

gene expression programs to be initiated [19, 20]. Control 

of translation in this manner mostly occurs at the initiation 

stage in order to allow rapid and reversible management of 

gene expression.  

Translation initiation is the assembly of an elongation 

competent 80S ribosome with an initiator methionyl-tRNA 

(Met-tRNAi
Met

) base paired via its anticodon loop to an 

mRNA Start codon [21]. Highly conserved controls allow 

eukaryotic cells to globally reduce translation [19, 20]: a 

prominent example involves eIF2α kinases, like Gcn2p in S. 

cerevisiae [22, 23]. Gcn2p activation after amino acid star-

vation causes phosphorylation of the α subunit of eukary-

otic translation initiation factor 2 (eIF2) [24]. eIF2 is an  
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essential GTP-binding protein that interacts with Met-

tRNAi
Met

 to form a ternary complex (TC) that is competent 

for initiating translation [23]. Phosphorylated eIF2 compet-

itively inhibits the eIF2B-mediated guanine nucleotide ex-

change reaction on eIF2, reducing TC levels and translation 

initiation [23]. However, specific mRNAs, such as yeast 

GCN4, continue to be translated under these conditions. 

GCN4 encodes a transcription factor that regulates the 

expression of amino acid biosynthetic genes. This feedback 

regulatory circuit has proved a paradigm for studies on 

translation control [25]. Similarly, C. albicans expresses a 

single eIF2α  kinase, Gcn2p, which phosphorylates eIF2α in 

response to various stresses [26, 27] and translational acti-

vation of CaGCN4 also provides feedback regulation [28, 

29]. 

As well as indirect attenuation of eIF2B activity via 

phosphorylation of eIF2α, cells can also modulate eIF2B 

activity more directly. In mammalian cells, phosphorylation 

of eIF2B has been identified as an important regulatory 

mechanism [30]. In addition, in both yeast and mammalian 

cells volatile anaesthetics appear to inhibit protein synthe-

sis via eIF2B regulation [31, 32]. Moreover, in both S. cere-

visiae and C. albicans, fusel alcohols, which are also charac-

terised as quorum sensing molecules [33], have been 

shown to inhibit translation initiation in a mechanism that 

targets eIF2B but independently of the Gcn2p kinase or 

eIF2α phosphorylation [34-36]. 

Besides control via eIF2B, another regulated step in 

translation initiation is the mRNA selection phase [37]. 

eIF4E and Pab1p select mRNA via interaction with the 5′ 

cap and 3′ poly(A) tail, respecGvely. eIF4G can interact with 

both eIF4E and Pab1p to form a closed loop complex that, 

via interactions with eIF3, eIF5 and eIF1, can recruit the 

small ribosomal subunit to form a 48S preinitiation com-

plex [21]. A variety of stress conditions have been shown to 

target these steps in the initiation pathway leading to tran-

sient reductions in translation to facilitate a switch to a 

new program of gene expression [19, 20]. 

In this study, we show that as well as hampering various 

filamentation pathways, farnesol inhibits protein synthesis. 

This inhibition of translation occurs at the initiation step 

and most likely impacts upon the assembly of the 48S 

preinitiation complex. Intriguingly, this means two differ-

ent quorum sensing agents, farnesol and fusel alcohols 

that have conflicting effects on filamentous growth, both 

inhibit translation initiation but by different mechanisms. 

 

RESULTS 

Farnesol inhibits growth and protein synthesis  

Farnesol, a eukaryotic QS molecule inhibits filamentous 

growth in both S. cerevisiae and C. albicans [2], however, 

the concentration required varies according to the specific 

growth regime [38]. Under the growth conditions used 

here, we found concentrations in excess of 100 µM farne-

sol inhibited the growth of C. albicans and an isogenic 

gcn2∆ mutant (Fig. 1A). To study possible origins of the 

growth inhibition, the impact of farnesol on the rate of 

protein synthesis was monitored. The resulting [
35

S]-

methionine incorporation data show that farnesol  

(300 µM) and butanol (2%) cause a 10-fold inhibition of 

protein synthesis in the CAI4 strain of C. albicans (Fig. 1B). 

Therefore, farnesol inhibits protein synthesis at very early 

stages after addition and this control could contribute to 

the growth inhibition observed.  

To further investigate the stage of protein synthesis that 

is targeted by farnesol, polysome profiling was used, as this 

allows both the level of protein synthesis and the stage of 

regulation to be investigated [34-36]. Analysis of polysome 

distribution for the C. albicans CAI4 strain revealed that 

increasing concentrations of farnesol caused a change in 

the polysome profile (Fig. 2A). The 80S peak increased 

dramatically and the polysome peaks were reduced. This 

change in profile is characteristic of an inhibition of transla-

tion initiation [34] and has been observed for many stress-

es [19]. Similar results in terms of farnesol sensitivity were 

FIGURE 1: Farnesol inhibits growth and protein synthesis. (A)

Growth rates for the CAI4 strain and the gcn2Δ mutant at various 

concentrations of farnesol as indicated.  (B) Rates of radiolabelled 

methionine incorporation were measured for the CAI4 strain and 

the gcn2Δ mutant in untreated conditions (ut) or after 1% butanol 

or 100 µM farnesol treatment. These were used to calculate the 

fold inhibition for three biological replicates (error bars = SEM). 
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obtained for the Ʃ1278b strain of S. cerevisiae, where simi-

lar concentrations elicited the response across the two 

yeast species (Fig. 2C). It has been noted previously that 

the level of free 60S is particularly high for the Ʃ1278b, 

although this does not appear to impact upon its growth or 

its sensitivity to translational stress [39]. The lowest farne-

sol concentration that caused a gross impact on polysome 

distribution for either C. albicans or S. cerevisiae was  

100 µM (Fig. 2). This correlated well with the concentration 

that inhibited growth under the conditions used here (Fig. 

1A) suggesting that the inhibition of translation initiation 

could be intrinsically connected to growth inhibition for 

farnesol. 

The CAI4 strain of C. albicans used here is a commonly 

used lab strain that is auxotrophic in the uracil biosynthetic 

pathway by virtue of a homozygous deletion of the URA3 

gene [40].  This mutation has previously been shown to 

alter a number of aspects of C. albicans physiology includ-

ing adhesion and virulence [41]. Therefore, a prototrophic 

strain of C. albicans, SC5314, was tested. Entirely analo-

gous observations were made on the impact of farnesol on 

the growth (Fig. S1A) and translation (Fig. S1B) of this 

strain in response to similar concentrations of farnesol. 

Previous studies evaluating QS have established that 

trans,trans-farnesol is produced by Candida as a QS mole-

cule to inhibit filamentation [2, 42]. Intriguingly, the 

trans,trans form and mixed stereoisomer preparations 

both impact upon translation initiation equally (Fig. S1).  

Indeed 40 µM of each is sufficient to induce a mild inhibi-

tion of protein synthesis and 100 µM leads to a robust in-

hibition (Fig. 1B). Therefore, in order to explore the mech-

anism by which farnesol inhibits translation initiation, over 

the course of the rest of our studies 100 µM farnesol was 

used as this concentration elicits robust inhibition of both 

growth and translation. However, it should be noted that 

lower concentrations of farnesol (e.g. 40 µM) can lead to 

subtle alterations in the polysome profile (Fig. 2, 3 and S1). 

This level of sensitivity to farnesol correlates well with ear-

lier studies using similar growth conditions [38]. 

 

GCN2 is not involved in the inhibition translation initia-

tion by farnesol 

In terms of the mechanism of translational regulation, like 

S. cerevisiae, C. albicans harbours a single eIF2α kinase 

gene, GCN2, which is involved in the regulation of transla-

tion initiation in response to various stresses [26, 27]. In-

deed in S. cerevisiae, gcn2∆ mutants are incapable of inhib-

iting translation initiation in response to specific stress 

conditions [34], which prevents cells from mounting an 

appropriate stress response. Therefore, the role of Gcn2p 

in the farnesol-dependent inhibition of translation initia-

tion was assessed using a gcn2∆ mutant strain of C. albi-

cans [26]. Previous observations using this strain show that 

translation initiation remains uninhibited early after amino 

acid starvation [29]. In terms of the impact of farnesol on 

growth and translation, the gcn2∆ mutant strain is at least 

as sensitive as the wild type (Fig. 1A and B). In fact rather 

than the gcn2∆ mutant being resistant to farnesol in terms 

of translation, as might be expected if the Gcn2p kinase 

were involved in the control, the farnesol-treated gcn2∆ 

strain is even more inhibited than the wild type. Growth is 

inhibited at lower farnesol concentrations for the gcn2∆ 

mutant and methionine incorporation is inhibited up to 30-

fold (Fig. 1A and B). Equally, a comparison of the polysome 

profiles shows that the gcn2∆ mutant exhibits somewhat 

greater sensitivity than the wild type mirroring the growth 

phenotypes (Fig. 2B). For instance, following treatment 

with 300 µM farnesol, greater polysome run-off is ob-

served for the gcn2∆ mutant compared to the parent strain 

(cf. Fig. 2B with 2A). Overall, these results show that the 

FIGURE 2: Translation initiation is inhibited by farnesol in a Gcn2p-independent manner in C. albicans and S. cerevisiae. Figure shows 

polysome analyses assessing the effect of farnesol on translation initiation in CAI4 (A) and gcn2∆ (B) strains of C. albicans, and the Σ1278b 

strain of S. cerevisiae (C). Strains were grown in YPD and various concentrations of farnesol were added as indicated for 15 min prior to extract 

preparation. Extracts were sedimented on 15-50% sucrose gradients and the absorbance at 254 nm was continuously measured. The position 

of 40S, 60S and 80S peaks are labelled and the direction of sedimentation is noted. 



N.E. Egbe et al. (2016)  Farnesol targets yeast translation 

 
 

OPEN ACCESS | www.microbialcell.com 297 Microbial Cell | SEPTEMBER 2017 | Vol. 4 No. 9 

Gcn2p kinase, that is a requirement for eIF2α phosphoryla-

tion and the subsequent regulation of translation  

initiation   in   response  to   a   variety   of  stresses,  is   not 

required for the inhibition of translation initiation by farne-

sol in C. albicans; in fact the gcn2∆ mutant is more  

sensitive to treatment. 

Fusel alcohols and other conditions that inhibit protein 

synthesis in C. albicans promote filamentous growth [36], 

whereas farnesol inhibits protein synthesis and prevents 

filamentation. An obvious query is whether the filamenta-

tion inducing signal generated by fusel alcohols can be 

overridden by farnesol or vice versa. Induction of filamen-

tous growth is further complicated as different cues induce 

distinct forms of filamentation [43]. For instance, fusel 

alcohols are characterised as inducing pseudohyphal 

growth [44] where elongated, ellipsoid yeast cells remain 

attached to one another via constricted septation sites 

leading to growth of a colony in a branched pattern [45]. In 

contrast, serum addition elicits true hyphal growth [46], 

whereby cells are narrow, long, have parallel sides and no 

obvious constrictions points [45]. In the presence of serum 

alone over 90% hyphal growth was observed and the addi-

tion of 150 µM farnesol blocked the yeast to hyphae switch 

(Fig. 3A and B). In contrast, the fusel alcohol, butanol, in-

duces a much less robust effect whereby roughly 50% of 

cells exhibit pseudohyphal morphology. Here just 70 µM 

farnesol was sufficient to block any filamentous growth. 

These results show that farnesol competes with both se-

rum and butanol, but the concentration of farnesol re-

quired to effect competition varies according to the 

strength of the filamentation signal (Fig. 3A and B). Curi-

ously, even though both fusel alcohols and farnesol target 

protein synthesis, they are in competition with respect to 

their physiological impact on filamentous growth. Thus 

previous observations suggesting that the inhibition of 

protein synthesis favours filamentation [36] cannot be 

generalised across all conditions. 

 

Eukaryotic initiation factor 2B (eIF2B) is not regulated by 

farnesol 

Fusel alcohols inhibit translation initiation in S. cerevisiae 

and C. albicans by targeting the guanine nucleotide ex-

change factor, eIF2B leading to reduced levels of the 

eIF2�GTP�Met-tRNA
i
 ternary complex [34-36]. 

FIGURE 3: Farnesol represses morphological 

transition in C. albicans. (A) Overnight 

exponential cultures of the CAI4 strain were har-

vested, washed in water then incubated for 6 

hours in different prewarmed media: YPD medium 

or YPD containing 150 µM farnesol; YPD containing 

10% serum or YPD 10% serum with 150 µM 

farnesol; YPD containing 0.5% butanol or YPD 0.5% 

butanol with 70 µM farnesol. Cells were visualised 

via microscopy and photographed. (B) Cells from 

the above cultures were counted according to 

morphology using a cell counting chamber where 

pseudohyphae were scored if evidence of a

restriction point between two cells was 

apparent, whereas hyphae were scored where 

elongated cells with no restriction points were 

viewed. Percentages are an average from three 

biological replicates (error bars = SEM). 
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Specific general control response reporters such as the 

GCN4 reporter mRNA provide a sensitive indicator of 

changes in the ternary complex and are widely used to 

study translational regulation [25]. A key observation that 

pointed towards eIF2B as a target for fusel alcohols was 

the demonstration that these reporters of ternary complex 

levels are translationally up-regulated [34, 36]. In order to 

assess this response after farnesol treatment, strains carry-

ing two renilla luciferase reporters were used: the first 

contains five copies of the general control response ele-

ment (GCRE), while the second harbours the GCN4 pro-

moter and leader region upstream [28, 29]. Using the par-

ent and gcn2∆ mutant strains bearing these reporters, the 

previous observation that 1% butanol elicits a non-Gcn2p 

dependent increase in the activity of GCRE-Luc and GCN4-

Luc was confirmed (Fig. 4A and B). In stark contrast, farne-

sol elicits no significant increases of the GCRE-Luc or GCN4-

Luc reporter expression (Fig. 4A and B) suggesting that 

farnesol does not alter ternary complex levels to activate 

the GCN response. 

Previous studies on the localisation of eIF2B in organ-

isms from S. cerevisiae to Drosophila melanogaster have 

defined a large cytoplasmic body called the eIF2B body (2B 

body) [35, 36, 47-49]. Exposure of either S. cerevisiae or C. 

albicans cells to fusel alcohols reduces the dynamics of this 

2B body in a manner that correlates with the sensitivity/ 

resistance of strains to alcohols [35, 36]. In order to ascer-

tain whether farnesol also impacts upon 2B body dynamics, 

a C. albicans strain bearing GFP-tagged eIF2Bγ was used 

[36]. Epiflourescence time-lapse microscopy experiments 

were performed by acquiring images of untreated, butanol 

treated or farnesol treated cells over a 2 min period. 

Movement of the eIF2B body across the images was 

tracked and the total distance (µm) moved was calculated. 

Quantitation of the average displacement shows that 1% 

butanol causes total eIF2B body movement to drop by  

FIGURE 4: Farnesol does not 

induce GCN4 expression or effect 

the dynamics of the eIF2B body.

(A) and (B) CAI4 and gcn2Δ strains 

bearing the GCRE-Luc (A) and 

GCN4-Luc (B) reporters were treat-

ed with 1% (v/v) butanol or 100 µM 

farnesol for 2 h, extracts were pre-

pared, then renilla luciferase activity 

was measured relative to untreated. 

Error bars = ± SEM. (C) Images from 

time-lapse microscopy studies using 

an eIF2Bγ-GFP expressing 

C. albicans strain. The strains were 

incubated in media with 1% buta-

nol, or 100 µM farnesol, or they 

were left untreated (UT) for 15 min 

as  

indicated. Each row contains three 

stills from a series of 25 images over 

a period of 2 min, as well as a 

merged image of all 25 stills, which 

serves to depict the total extent of 

2B body movement. (D) Bar chart 

depicting the mean distance moved 

in μ over a 2-min period from 24 

time-lapse experiments. Error bars, 

±1 SEM. 
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approximately 50%. In contrast, in farnesol treated cells 

the 2B body moves to the same extent as in the untreated 

cells (Fig. 4C and D). This observation again suggests that 

the regulatory mechanism by which farnesol inhibits trans-

lation initiation is distinct from that of fusel alcohols and is 

not dependent upon eIF2B regulation or the alteration of 

ternary complex levels. 

 

Farnesol inhibits translation initiation by targeting 48S 

preinitiation complex formation 

Translation initiation is controlled at other levels besides 

ternary complex formation and eIF2B. For instance, the 

interaction of mRNA with the 43S preinitiation complex, i.e. 

48S preinitiation complex formation, can also be regulated 

[19, 20, 37]. This process relies upon interactions between 

proteins that bind the mRNA and proteins associated with 

the 40S ribosomal subunit complex. One way to assess the 

factors present with the 40S ribosomal subunit is to per-

form immunoblotting on fractions collected from across 

sucrose density polysomal gradients. Formaldehyde cross-

linking prior to cell lysis stabilizes protein factors in such 

complexes during the subsequent sedimentation and frac-

tionation steps [50, 51]. 

A limitation of such studies in C. albicans is that many 

antibodies against translation factors that are available for 

S. cerevisiae do not cross-react with C. albicans proteins 

(data not shown). Therefore, to further investigate the step 

in the translation pathway that is targeted by farnesol, 

investigations were undertaken in S. cerevisiae. The 

Ʃ1278b laboratory strain was selected, as like C. albicans, 

Ʃ1278b is diploid and can undergo morphogenetic switch-

ing to pseudohyphal growth [44]. In order to validate the 

FIGURE 5: Farnesol affects the 

association of specific translation 

factors with the 48S pre-ribosomal 

complex. (A) Formaldehyde 

sucrose density gradient analysis 

on extracts from the MLY61 strain 

either treated with 100 µM farne-

sol for 15 min or untreated. Im-

munoblots on gradient fractions 

are shown below the traces and 

these were probed using antibod-

ies against the indicated proteins. 

(B) Quantitation of the proportion 

of eIF4G and eIF4E present in the 

polysome fraction of the gradients 

before and after farnesol treat-

ment. Quantitation of the propor-

tion of eIF4G and eIF4E present in 

the 40S region of gradients before 

and after farnesol treatment. 

(C) Whole cell extracts and im-

munoprecipitation samples derived 

from the eIF4G1-TAP tagged strain 

treated with 100 μM farnesol or 

untreated were analysed via mass 

spectrometry. The plot shows the 

relative number of unique peptides 

that have been matched to the 

identified protein in the sample 

where the untreated was 

normalised to 1 to facilitate a di-

rect comparison of the different 

translation factors. 



N.E. Egbe et al. (2016)  Farnesol targets yeast translation 

 
 

OPEN ACCESS | www.microbialcell.com 300 Microbial Cell | SEPTEMBER 2017 | Vol. 4 No. 9 

use of this strain, the effects of farnesol on growth and 

translation were cross-compared. Farnesol inhibits growth 

and translation initiation over a similar concentration 

range for the two yeasts and for other lab strains of S. 

cerevisiae, such as BY4741 (Fig. 2C; data not shown), so it 

seems likely that the translational responses to butanol 

and farnesol are mechanistically conserved across these 

species. 

Formaldehyde polysome analysis after farnesol treat-

ment revealed an interesting effect in terms of the region 

of the gradient harbouring the 40S ribosomal subunit. This 

region not only contains free 40S ribosomal subunits but 

also the 48S ribosomal preinitiation complex where the 

40S subunit is associated with mRNA and translation initia-

tion factors i.e. an intermediate in the translation initiation 

process. A marker for this complex is the presence of trans-

lation initiation factors such as eIF4E and eIF4G that are 

specifically targeted to the mRNA rather than the 40S ribo-

somal subunit. The level of both eIF4G1 and eIF4E in the 

40S region decreased dramatically after farnesol treatment 

(Fig. 5A, cf. fraction 3 untreated and fraction 3 treated). 

Quantitation confirmed that levels dropped from ~8-9% of 

total to 2-3% after farnesol treatment (Fig. 5B). Further-

more, both eIF4G and eIF4E are reduced in polysome re-

gions and this likely reflects reduced levels of initiating 

ribosomes on mRNAs that are already being translated: 

although it should be noted that the scale of reduction is 

greater for eIF4E than eIF4G (Fig. 5B). This may relate to 

the fact that eIF4G can interact with RNA, Pab1p and other 

translation factors, whereas eIF4E is targeted to the mRNA 

cap. In sum, these data highlight the possibility that farne-

sol causes an alteration in protein-protein interactions that 

lie upstream of 48S complex formation. 

In order to further investigate how farnesol treatment 

leads to eIF4G/eIF4E depletion from regions of the gradi-

ent, we undertook an immunopurification-mass spectrom-

etry strategy using an eIF4G1-TAP tagged S. cerevisiae 

strain. In terms of the relative number of peptides ob-

served in the immunopurified samples, peptides from 

known mRNA associated factors, such as eIF4G, eIF4E, 

eIF4A and Pab1p, were largely unaffected by farnesol (Fig. 

5B). In contrast, peptides for other components of the 

translation machinery were reduced dramatically; includ-

ing peptides for the ribosomal proteins, as well as subunits 

of eIF3, a translation initiation factor that is associated with 

the 40S ribosomal subunit. Overall, these data support a 

model where farnesol targets the formation of the 48S 

preinitiation complex to inhibit protein synthesis. The fact 

that farnesol targets a different step in translation to fusel 

alcohols, may mean that the impact of these agents and 

the stage targeted contributes to the opposite effects in 

terms of filamentous growth (Fig. 3). This is suggestive that 

translational control plays an important role in the physio-

logical response of C. albicans to QS molecules. 

 

DISCUSSION 

A range of alcohols or their derivatives can act as signalling 

molecules across yeast species [2, 44, 52, 53]. The data 

presented here combined with that in our previous studies 

[36] show that both butanol and farnesol inhibit protein 

synthesis at the translation initiation stage in C. albicans. 

Both are metabolites of C. albicans that act as signalling 

molecules, yet have opposing effects on morphological 

transition [2, 36]. Previously, we have shown in both S. 

cerevisiae and C. albicans that short chain alcohols regulate 

protein synthesis by targeting the guanine nucleotide ex-

change factor eIF2B [34-36]. 

eIF2B regulation plays a critical role in reprograming 

gene expression as part of the response to stress across 

different eukaryotic cells [23]. For instance, eIF2 phosphor-

ylation by eIF2α kinases, like Gcn2p in yeast, inhibits eIF2B 

in response to stresses such as amino acid starvation [24], 

purine starvation [54] and rapamycin treatment [55]. How-

ever, while these stresses target eIF2B in a Gcn2p-

dependent manner, the mechanism by which short chain 

alcohols target eIF2B in both S. cerevisiae and C. albicans is 

Gcn2p-independent [34-36]. The GCN4 reporter experi-

ments and analysis of the eIF2B body in this study suggest 

that the longer chain sesquiterpene alcohol farnesol inhib-

its translation initiation in a mechanism that does not in-

volve eIF2B regulation; either Gcn2p-dependent or inde-

pendent.  

Many studies have reported translational controls tar-

geting steps upstream of 48S preinitiation complex for-

mation. For instance, glucose starvation in S. cerevisiae 

causes a reorganisation of the closed loop mRNP transla-

tion complex, whereby eIF4A dissociates and the cosedi-

mentation of eIF4E, eIF4G and Pab1p with ribosomal com-

plexes is compromised [51]. The small non-coding BC RNAs 

in neuronal cells target the eIF4A helicase to inhibit 48S 

preinitiation complex formation on structured mRNAs [56]. 

Similarly, Burkholderia lethal factor 1, a toxin produced by 

Burkholderia pseudomallei, which causes the disease meli-

oidosis, provokes a translational block via eIF4A [57]. 48S 

complex formation can also serve as the targeted step 

when specific mRNAs are translationally regulated.  For 

instance, miRNAs have recently been shown to inhibit tar-

get mRNA translation by impacting upon eIF4A2 activity 

[58]. Therefore, a common translational regulatory mech-

anism that impacts upon the level of the 48S preinitiation 

complex is to target eIF4A activity.  

In this study, we have investigated how farnesol effects 

different ribosomal complexes in S. cerevisiae using both 

formaldehyde-polysome analysis and immunoprecipitation 

followed by mass spectrometry. Both assays suggest that 

mRNA-associated translation factors (such as eIF4G, eIF4E 

and Pab1p) are associated less well with the ribosome and 

eIF3 following treatment with farnesol. Overall, the ob-

served depletion of eIF4G and eIF4E from the 40S region of 

polysome gradients combined with the mass spectrometric 

analysis of eIF4G containing complexes lend support to a 

model where farnesol targets the formation of the 48S 

preinitiation complex to inhibit protein synthesis. This con-

trasts with the eIF2B dependent mechanism by which 

shorter chain alcohols target translation initiation. 

Shorter chain alcohols and farnesol also differ in terms 

of their effects on morphological transitions in C. albicans. 

Short chain alcohols induce pseudohyphal growth in  
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C. albicans whereas farnesol inhibits this process [2, 44, 53]. 

Indeed we show that farnesol can impede the filamenta-

tion induced by a variety of triggers including short-chain  

alcohols. This is not without precedent, in C. albicans far-

nesol also blocks morphogenesis induced by the aromatic 

alcohol, tyrosol [59]. One intriguing question is how both 

the shorter chain alcohols and farnesol can target a key 

ubiquitous process like protein synthesis, yet elicit distinct 

outcomes in terms of filamentous growth. This question 

drives at the fundamental physiological rationale for trans-

lational regulation in response to changing external condi-

tions.  Does the regulation constitute a knee-jerk reaction 

allowing the preservation of cellular resources by inhibiting 

the expression of the vast majority of mRNAs, or does the 

regulation serve a different purpose allowing specific 

mRNAs to be altered in their translation? In terms of farne-

sol, we show that translation is mildly inhibited at 40 µM 

farnesol and robustly down-regulated at 100 µM farnesol. 

Various    Candida    strains    produce    farnesol    up   to   a  

concentration of ~60 µM [60], which would appear to fa-

vour the option where translation of a specific subset of 

mRNAs is altered. Evidence from a number of systems in-

cluding the induction of GCN4 translation via amino acid 

starvation [25] would also favour this option. Under such a 

scenario, if two stresses impact upon different stages of 

translation initiation, they might alter the translation of 

different subsets of mRNA. We have previously observed 

evidence for such effects in S. cerevisiae, where fusel alco-

hols and amino acid starvation alter translational repro-

graming to allow continued translation of different cohorts 

of mRNAs [61]. With this in mind, we envisage that for 

farnesol and fusel alcohols, mRNAs encoding pro and anti-

filamentation factors might be prominent in a set that are 

differentially regulated at the translational level. Such ef-

fects would also be integrated with well-defined transcrip-

tional controls, especially for farnesol [18], to produce very 

different phenotypic outcomes.   

 

MATERIALS AND METHODS 

Media and growth conditions  

The strains in Table 1 were grown and maintained as  

described previously [36]. Butanol and farnesol were rou-

tinely added for 15 min at the concentrations stated.  

Unless otherwise stated trans,trans-farnesol was used. 

Tolerance was assessed by adding butanol (0.5%, 1% and 

2%) or farnesol (40 µM, 100 µM, 200 µM and 300 µM) to 

strains at OD600 0.1 and then testing growth. 

 

Morphogenesis assays 

Exponential cultures were harvested, washed in water then 

re-inoculated into media with 0.5% butanol, 10% serum, 

0.5% butanol - 70 µM farnesol or 10% serum - 150 µM far-

nesol. Filamentation was assessed microscopically as pre-

viously described [36].  

 

Analysis of polysomes and other translation assays 

Exponential strains were incubated with butanol/ farnesol 

for 15 min then treated with cycloheximide: 1 mg/ml  

(C. albicans) or 0.1 mg/ml (S. cerevisiae). Extracts were 

prepared then polysome analysis and fractionation were 

TABLE 1.  Strains used in this study. 

C. albicans strains 

Strain Genotype Source 

CAI4 ura3::λimm434/ura3::λimm434 A. Brown 

CAI8 ura3::λimm434/ura3::λimm434 ade2::hisG/ade2::hisG A. Brown 

gcn2Δ ura3::λimm434/ura3::λimm434 gcn2::hisG/gcn2::hisG A. Brown 

SC5314 Prototroph C. Grant 

yMK2313 ura3::λimm434/ura3::λimm434 GCD1-GFP::NAT/GCD1 Ashe lab 

CY2383 ura3::λimm434/ura3::λimm434 ADE2::GCRE-rLUC/ade2::hisG C. Grant 

CY2511 ura3::λimm434/ura3::λimm434 ADE2::GCN4-rLUC/ade2::hisG C. Grant 

CY2387 ura3::λimm434/ura3::λimm434 gcn2::hisG/gcn2::hisG ADE2::GCRE-rLUC/ade2::hisG C. Grant 

CY2492 ura3::λimm434/ura3::λimm434 gcn2::hisG/gcn2::hisG ADE2::GCN4-rLUC/ade2::hisG C. Grant 

   

S. cerevisiae strains 

Strain Genotype Source 

MLY61(Σ1278b) MATa/MATα ura3-52/ura3-52 J. Heitman 

yMK2197 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 HIS3 Open biosystems 

yMK2084 MATa his3Δ1 leu2Δ0 met15Δ0 ura3Δ0 TIF4631-TAP::HIS3 Open Biosystems 
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carried out as previous [36]. Formaldehyde polysome anal-

ysis was performed as described previously [50,51]. Im-

munoblots were probed with antibodies to yeast eIF4G, 

eIF4E and Rps3.  

[
35

S]-methionine incorporation assays were conducted 

by adding 60 ng/ml methionine, where 0.5 ng/ml was [
35

S]-

methionine (PerkinElmer), to exponential untreated or 

farnesol/ butanol treated cultures in synthetic complete 

dextrose (SCD) medium lacking methionine. Samples (1 ml) 

were taken at the indicated times and processed as de-

scribed previously [36].  

For the Luciferase reporter assays [29], lysates were 

prepared from exponential untreated or farnesol/ butanol 

treated cultures in RLUC buffer (0.5 M NaCl, 0.1 M K2HPO4,  

1 mM Na2EDTA, 0.6 mM sodium azide, 1 mM phenylme-

thylsulfonyl fluoride, 0.02% bovine serum albumin).  

1.25 μM coelentrazine h (Promega) was added to the ex-

tracts to initiate the reaction, and activity was measured 

using a GloMax 20/20 luminometer (Promega). Luciferase 

activity (RLU) is expressed as relative luminescence per  

10 s/mg protein.  

For studies on the 2B-body [35, 36], real-time 2D decon-

volved projections were generated via continuous z-sweep 

acquisition on a Delta Vision RT microscope (Applied Preci-

sion, Isaaquah, WA) with an Olympus 100× 1.40 NA DIC oil 

PlanApo objective (Melville, NY) and Roper CoolSnap HQ 

camera (Tucson, AZ) with Applied Precision Softworx 1.1 

software for fast visualisation of all planes with minimal 

fluorescent bleaching. Images were acquired every 5 s over 

a 2 min period, and ImageJ (http://rsb.info.nih.gov/ij/; NIH) 

was used to track 2B body movement and calculate the 

mean total distance using at least 24 individual tracking 

experiments per condition. 

 

Affinity Purification and mass spectrometry  

For the eIF4G1-TAP purification, protein extracts were 

bound to IgG columns eluted with a TAP peptide, then 

samples were isolated from SDS PAGE gel slices [62]. Dried 

gel pieces containing the whole protein sample were di-

gested using 100 ng trypsin and analysed by LC-MS/MS 

using an UltiMate® 3000 Rapid Separation liquid chroma-

tography (Dionex Corporation, Sunnyvale, CA) coupled to a 

LTQ Velos Pro mass spectrometer (Thermo Fisher Scientific, 

Waltham, MA). Data were searched using Mascot (Matrix 

Science UK), against the Uniprot database with S. cere-

visiae selected. Data were validated and further processed 

using Scaffold (Proteome Software, Portland, OR). 
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