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Abstract 

Developing a strategy to specifically kill cancer cells without inducing obvious damage to normal cells may be 
of great clinical significance for cancer treatment. In the present study, we developed a new precise personalized 
strategy named "i-CRISPR" for cancer treatment through adding DNA damage repair inhibitors(i) and inducing cancer 
cell-specific DNA double strand breaks by CRISPR. Through in vitro and in vivo experiments, we confirmed the efficacy 
of this strategy in multiple cancer models and revealed the mechanism of cell death. Our strategy might provide a 
novel concept for precise cancer therapy.
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Main text
Currently, cancer is mainly treated by surgery, chemo-
therapy and radiotherapy but still can not be completely 
cured in a large proportion of patients [1, 2]. Mostly, sur-
geries do not remove all cancer cells, and other strategies, 
such as radiotherapy and chemotherapy, often result in 
severe adverse effects on normal tissues when killing can-
cer cells [3, 4]. Therefore, developing a strategy to specifi-
cally kill cancer cells without inducing obvious damage to 
normal cells may be of great clinical significance for can-
cer treatment.

The basic cell-killing mechanism of radiotherapy is 
to induce irreparable DNA damage, especially exten-
sive DNA double strand breaks (DSBs), through ioniz-
ing radiation [5, 6]. The recent emergence of scissor-like 
CRISPR–Cas9 gene-editing technology makes it pos-
sible to precisely create DSBs at specific sites [7–9]. But 
in higher eukaryotes, DSBs are often repaired through 
nonhomologous end joining (NHEJ) and homologous 
recombination (HR) repair pathways [10, 11], and the 
role of CRISPR–Cas9-induced DSBs in cancer cells kill-
ing is largely unknown. Here, based on mutations in can-
cer cells identified with DNA sequencing, we propose a 
new personalized strategy using a customized CRISPR–
Cas9 scissor system combined with DSB repair inhibi-
tors (DSBRi) targeting NHEJ and HR (Fig. 1A), which we 
hypothesized would efficiently kill cancer cells with spe-
cific mutations without obviously affecting normal cells.
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An “i‑CRISPR” strategy kills cancer cells by inducing DSBs 
in corresponding mutation sites
The designed workflow of our personalized CRISPR-
mediated cancer treatment strategy is shown in Fig. 1A. 
In Step 1, tumor samples from patients are subjected 
to DNA sequencing to scan unique DNA mutations in 
patient cancer cells compared with normal cells. In Step 
2, a group of customized guide RNAs (gRNAs) targeting 
these mutations but not recognizing any normal genome 
site are designed to develop an applicable CRISPR–Cas9 
scissor systems. In Step 3, the scissor systems and DSBRi 
are introduced into cells, which leads to the specific kill-
ing of cancer cells.

To verify our strategy, we firstly analyzed the DNA 
sequences of the human hepatocellular carcinoma (HCC) 
cell line HepG2 through whole-genome sequencing and 
identified 3,985,698 single nucleotide variants (SNV) and 
817,723 insertion-deletion mutations (indels) (Fig. S1). 
It was estimated that more than 1000 sites might have 
the potential to become CRISPR targets suitable for our 
strategy. In current study, we select 8 candidate target 
sites to design corresponding gRNA-Cas9 expressing 
adenoviruses, which were added into HepG2 cells in the 
following combinations: negative control (NC), 4 targets 
set 1 (T4-set1), 4 targets set 2 (T4-set2) and 8 targets 
set (T8-set). The cutting sites were further verified with 
Sanger sequencing in HepG2 cells transfected with the 
T8-sets (Fig. S2). As a classic DSB marker, phosphoryla-
tion of histone 2AX (γH2AX) was detected with immu-
nofluorescence staining to monitor the induced DSBs. As 
expected, more γH2AX was significantly induced in all 
the gRNA-Cas9-expressing adenovirus-infected groups 
compared to the NC group respectively (Fig. S3A, B), 
with the most foci number in the T8-set (Fig. S3A, B). 
Most notably, we also added these gRNA-Cas9-express-
ing adenoviruses to Huh-7 cells without these mutants, 
and few DSB foci were observed (Fig. S3A).

To promote DSBs-induced cell death, we then applied 
chemical inhibitors targeting NHEJ with the DNA-PKcs 
inhibitor NU7441 and targeting HR repair with the ATM 
inhibitor KU55933 [12, 13], and DSBs repair were signifi-
cantly suppressed by these inhibitors (Fig. 1B). Moreover, 
compared to others groups, most unrepaired DSBs were 
observed in ATM and DNA-PKcs both inhibited cells 
using NU7441 + Ku55933 (2i) (Fig. 1B). For cell survival 
analysis, we used two HCC cell lines HepG2 and Hep3B. 
Our data showed that the three gRNA groups inhib-
ited cell viability in HepG2 (Fig.  1C, S3C-F). Moreover, 
when DNA repair was blocked by these DSBRi sets, cell 
viability was significantly suppressed (Fig.  1C, S3C-F), 
especially in cells treated with T8-set gRNAs-Cas9 in 
combination with the 2i (Fig.  1C). The similar strategy 
was also tested in Hep3B cells with another set of specific 
gRNAs, and the cell survival was also significantly sup-
pressed (Fig. 1D). Alternatively, flow cytometry was fur-
ther used to detect cell apoptosis in gene-edited HepG2 
cells. Transfection of either T4-set or T8-set combined 
with one or two DNA repairing inhibitors significantly 
increased the percentage of Annexin V-positive cells as 
well as the number of PI(+)Annexin V (−) cells com-
paring to the control group. And most cell death was 
observed in the T8-set group combined with 2i again 
(Fig. 1E, F, G). Immunofluorescence also showed that the 
T8-set increased the cleavage of Caspase 3 (c-Caspase 3), 
which was further increased when 2i was applied (Fig. 
S4A-C), suggesting a possible role of caspase dependent 
apoptosis.

For more extensive validations of our strategy in other 
types of cancer cells or different forms of administration, 
we additionally employed another CRISPR scissor cell-
killing model using a human prostate cancer (PCa) cell 
line DU145 treated with gRNA expressing lentiviruses 
and wortmannin, another DNA damage repair inhibitor 
both for NHEJ and HR (Fig. S5, 6). After joint analysis 

Fig. 1  "i-CRISPR" strategy kills cancer cells by inducing DSBs in corresponding mutation sites. A Diagram of our proposed personalized 
CRISPR-mediated cancer treatment strategy named "i-CRISPR". The basic mechanism of radiotherapy is to induce DNA damage, especially 
DSBs, through radiation [5, 6]. When accumulated DNA breaks, especially DSBs, cannot be repaired, death signals are often activated. If DSBs are 
generated specifically in cancer cells through personalized CRISPR scissors and the repair of these DSBs is intensively blocked, specific killing 
of cancer cells may be achieved. Although the basic cell-killing mechanisms of our strategy and radiotherapy are similar, our strategy is more 
precise and personalized. Because both DNA damage repair inhibitors (i) and CRISPR are necessary, so we named this strategy "i-CRISPR". B 
Representative images of γH2AX foci in HepG2 cells at 48 h after transfection with three groups of gRNAs together with Cas9. To block the repair of 
DSBs, gene-edited cells were also treated with the ATM inhibitor KU55933 (10 μM), the DNA-PKcs inhibitor NU7441 (10 μM), or the combination of 
KU55933 (10 μM) + NU7441 (10 μM). Y: Quantitative analysis of the γH2AX foci number in the different groups indicated above. *P < 0.05. **P < 0.01. 
C, D At 0, 24, 48, and 72 h after gRNA transfection, HepG2 and Hep3B cells were pretreated with DMSO, KU55933, NU7441 and KU55933 + NU7441, 
and cell viability was determined with a CCK-8 assay at OD 450. E Representative images of cell apoptosis determined by flow cytometry analysis 
in cells transfected with three groups of gRNAs and Cas9 and treated with different inhibitors. F, G Quantitative analysis of cell apoptosis (Annexin 
V positive) and necrosis (PI positive, Annexin V negative) at 48 h after transfection combined with DNA repair inhibitor treatments. H Representative 
images of organoids (HCC-227) transfected with Cas9 and/or gRNAs combined with DNA damage repair inhibitor treatment. And the average 
number of organoids per field were quantified. I Tumor volume were recorded every three days after the injection of gRNA and DSB inhibitor. And 
tumor growth curve was obtained from the indicated two groups. *P < 0.05

(See figure on next page.)
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with public database, we selected 7 sites to design the 
corresponding gRNA-Cas9 lentivirus systems, which 
were verified with Sanger sequencing (Fig. S6A, B & Sup-
plementary Table 1). A CCK-8 assay was also performed 
and the results showed that the simultaneous addition of 
Cas9 with gRNAs and wortmannin significantly inhib-
ited cell viability (Fig. S6C). These combined treatments 
also significantly increased DU145 cell apoptosis (Fig. 
S7A, B). Moreover, more apoptotic cells were observed in 
wortmannin group compared to the 2i group, indicating 
that DNA damage repair was more extensively inhibited 
in wortmannin treated cells (Fig. S7A, B). However, fur-
ther investigations with this group gRNAs did not show 
any inhibitory effect on viability on 293 T cells, a normal 
cell line without designed cutting sites (Fig. S7A-C). To 
investigate whether cancer cells develop resistance to this 
therapeutic strategy, DU145 cells were treated with a first 
round of 4gRNA treatment, and the survived cells further 
treated with the same 4gRNA or a different 3gRNAs for 
the second round. Our data showed that a second round 
of administration with different gRNAs induced more 
cell apoptosis (Fig. S8A, B) and further inhibited cell sur-
vival (Fig. S8C) compared to the 4gRNA single adminis-
tration group.

Moreover, in vivo experiments in tumor-bearing nude 
mice also indicated that the “i-CRISPR” strategy inhibited 
the tumor growth of DU145 cells (Fig. S6C). In patient-
based preclinical models, we established organoids model 
and PDX model to investigate the potential efficacy of 
our strategy. An established HCC organoid (HCC-227) 
with DNA sequencing data was cultured and their cor-
responding gRNAs were designed. Our data showed that 
CRISPR cutting of 3 sites combined with 2i treatment 
significantly inhibited the survival and average number of 
organoids (Fig. 1H). However, the gRNAs targeting muta-
tion sites in HCC-227 showed no influence on another 
organoid, HCC-12 (Fig. S9A, B). In PDX model, the 
tumors were injected intratumorally with Cas9&gRNAs 
lentivirus plus 2i, with Cas9-lentivirus plus 2i as the con-
trol group. We found that tumor growth in the treatment 
group was significantly inhibited, compared with the 
control group (Fig. 1I). In addition, no significant differ-
ence was observed in body weight (Fig. S10A), as well as 
parameters in blood routine test or biochemical analysis 
(Fig. S10B-I). These results suggested that our treatment 
strategy was unlikely to cause serious safety problems on 
mouse models. Consistent with this preliminary conclu-
sion, we did not find a significant increased off-targets in 
DU145 processed by our strategy through GUIDE-seq 
technology (Fig. S11) [14].

All these in  vivo and in  vitro results indicated that 
site-specific gene editing of mutations with DNA repair 
inhibitors dramatically inhibited tumor growth and it 

might have application value in tumor treatment in the 
future. In addition, we also verified the cutting efficacy 
with Sanger sequencing when all the gRNAs and Cas9 
were delivered, and sometimes one or two sites could not 
be edited efficiently, which may be due to the introduc-
tion efficacy or site selection. Thus, cutting sites selection 
and the cutting efficacy of each single mutation sites were 
required to be optimized in future study.

The molecular mechanism of the “i‑CRISPR” strategy on cell 
killing
To explore the cancer cell killing mechanism of our strat-
egy, we conducted quantitative phosphoproteomics using 
tandem mass spectrometry on three groups of HepG2 
cells: (1) NC, negative control; (2) C-Cut, CRISPR-Cut 
with T8-set; and (3) C-Cut-2i, CRISPR-Cut with T8-set 
and 2i. We found that, although there were only few dif-
ferentially phosphorylated proteins among C-Cut group 
and the NC group (Fig. S12A & S13A-C), C-Cut-2i group 
had an unique phosphorylated protein pattern much 
differentially from the other two groups (Fig. S12B-C & 
S13A-C). All the differentially phosphorylated proteins 
were located primarily in the nucleus (Fig. S13D). In par-
ticular, compared to the NC group, most of the altered 
proteins in the C-Cut group showed increased phos-
phorylation rather than decreased phosphorylation (Fig. 
S12A), and they were enriched in chromatin organization 
and DNA damage-related pathways after GO analysis 
(Fig. 2A&C). Nearly all the altered DNA damage-related 
proteins in the C-Cut group showed increased phospho-
rylation levels but could be suppressed by adding the two 
inhibitors (Fig.  2C). Interestingly, differing significantly 
from those in the other two groups, the differentially 
phosphorylated proteins in the C-Cut-2i group were 
greatly enriched in various cell death-related pathways, 
including autophagy, ferroptosis, apoptosis, necrocyto-
sis, and necroptosis, especially autophagy (Fig. 2B&D-G 
& Fig. S12D-E, S14-16). We therefore suggest that the 
activation of autophagy may play critical role in the 
molecular mechanism for the increased cell death in the 
C-CUT-2i group, as described above.

In addition, we also examined the effect of our strat-
egy on DNA methylation related epigenetic regulations 
in DU145 and HepG2 cells by whole genome bisulfite 
sequencing (WGBS). We found that our strategy by 
gRNA-Cas9 and DSBRis did not obviously alter the dis-
tribution of DNA methylation regions in both the two 
cell lines (Fig.  2H). However, there were some differen-
tially methylated regions (DMRs) in DU145 cells treated 
by our strategy comparing to the control cells, especially 
for the methylation on CHH and C (Fig. S17A-B). Inter-
estingly, these DMRs located genes were also enriched 
in cell death, programed cell death and chromosome 



Page 5 of 8Jiang et al. Molecular Cancer          (2022) 21:164 	

organization pathways after GO analysis (Fig. S17C-D). 
Similar results were also presented in HepG2 (Fig. S18). 
The common DMRs located genes both in DU145 and 
HepG2 were also enriched in chromosome organization 
and apoptotic process (Fig. 2I& S19). As two examples of 
DMRs located genes possibly contributing to cell viabil-
ity, we found that the methylation of the JAK2 gene was 
significantly increased, and the methylation of the FAS 
gene was significantly decreased after being treated with 
our strategy (Fig. S20).

Another difficult problem faced by cancer therapy is 
the evolution of cancer cells with continuous mutations. 
In the regard, the therapeutic efficiency of our strat-
egy should be determined by the existence of invariable 
mutations among all the generations of cancer cells. To 
verify this, we performed whole-genome sequencing on a 
DU145 single-cell clone A6, which was cultured alone for 
approximately 60 passages in our laboratory. There were 
3208 new mutations in this single cell clone, but 16,932 
(81.05%) mutations remained unchanged compared with 
ordinary DU145 (Fig.  2J-K). Next, we performed WGS 
on additional two DU145 single-cell clone B12 and B13, 
which were cultured alone for approximately 80 passages 
in our laboratory. By comparing the three clones, it can 
be seen that these single-cell clones are continuously 
evolving, generating new mutations and showing hetero-
geneity (Fig. S21A-B). However, among all the mutations 
in each clone, only a small part is unique to the respec-
tive clone (A6: 17.11%; B12: 32.10%, B13: 38.72%), and 
most of the original mutations are retained (Fig. S21A-
B). Comparing the three clones together with DU145, it 
can still be found that most of the mutations were shared, 
and all the 7gRNAs targeted mutations could be detected 
in all the 4 sample (Fig. S21B-C).

Moreover, we also compared our DU145 data with 
public DU145 mutation data (CCLE, https://​depmap.​org/​

portal/​cell_​line/​ACH-​000979?​tab=​mutat​ion) released 
many years ago and found that more than half of the 
mutations were still retained (Fig.  2L-M). These results 
suggested that if we choose 10 mutation sites as the tar-
gets for our strategy, the possibility that all 10 sites would 
become ineffective in the process of cancer evolution 
would be extremely low.

In addition, we also analyzed whether “i-CRISPR” 
has practical feasibility in patients. As we previously 
reported, the mutation burden was 1.0 per megabase 
(Mb), and the median substitution rate was 1.4 per Mb 
in our cohort of 208 prostate cancer patients [15]. There 
were more than 100 mutation sites suitable to be targets 
of our strategy in each prostate cancer patient through 
rough estimation. Analysis of the data of 2554 European 
prostate cancer patients [15] also suggested that on aver-
age, there are more than 100 DNA mutation sites suitable 
for CRISPR-specific cleavage in each patient.

These results also suggest that our strategy has great 
advantages in solving the cancer evolution problem 
faced by current cancer  therapy treatments. Moreover, 
with the future development of sequencing and bioinfor-
matics technologies such as clonal evolutionary analy-
sis, it will be possible to identify the original mutations 
which is universal in all the cancer cells from one patient. 
Using our strategy to specifically targeting these original 
mutations may also overcome the problems caused by 
cancer heterogeneity.

Conclusion
Our study presented a precise cancer treatment strategy 
through inducing cancer  cell-specific DSBs and subse-
quent cell death by a CRISPR system combined with 
DNA damage repair inhibitors, which provides a novel 
concept for personalized cancer therapy.

(See figure on next page.)
Fig. 2  The molecular mechanism of the "i-CRISPR" strategy on cell killing. A, B Enrichment of GO terms for the proteins with upregulated 
phosphorylation between the C-Cut and NC groups (A), C-Cut-2i and C-Cut groups (B). Differentially phosphorylated proteins were tested by 
quantitative phosphoproteomics analysis using tandem mass spectrometry. NC: negative control, only treated with Cas9; C-Cut: CRISPR-Cut, treated 
with Cas9 and the 8 gRNAs in the T8-set; C-Cut-2i，CRISPR-Cut treated with the T8-set and 2i. C-G Heatmap shows the selected differentially 
phosphorylated proteins related to DNA damage repair (C), autophagy (D), ferroptosis (E), apoptosis (F), and necrocytosis (G) among the 3 groups. 
H Analyses of whole-genome DNA methylation patterns in body regions (body), upstream-2 k (− 2 k) regions and dowstream-2 k (2 k) regions of 
genes in control and treated HepG2 cells and DU145 cells. NC: negative control, only treated with Cas9; C-Cut&2i，CRISPR-Cut with 8gRNAs (for 
HepG2) or 7gRNAs(for DU145) and 2i (NU7441 and KU55933). I Enrichment of GO terms for the genes that have differentially methylated regions 
(DMRs) on C in both DU145 and HepG2(refer to Fig. S8C). J. Venn diagram shows the common and specific mutations in DU145 and A6 discovered 
by whole genome sequencing (WGS). A6 is a single-cell clone derived from DU145 that has been cultured alone for approximately 60 passages 
in our laboratory. K Circos plot showing the distribution of the common and specific mutations in DU145 and A6. Purple: common mutations in 
DU145 and A6; blue: specific mutations found only in A6; green: specific mutations found only in DU145. L Venn diagram shows the common and 
specific mutations in DU145 and DU145 public data. Public DU145 data are public DU145 mutation data (CCLE, https://​depmap.​org/​portal/​cell_​
line/​ACH-​000979?​tab=​mutat​ion). M Circos plot showing the distribution of the common and specific mutations in DU145 and DU145 public data. 
Purple: common mutations in DU145 and DU145 public data; Blue: specific mutations found only in DU145; Green: specific mutations found only in 
DU145 public data

https://depmap.org/portal/cell_line/ACH-000979?tab=mutation
https://depmap.org/portal/cell_line/ACH-000979?tab=mutation
https://depmap.org/portal/cell_line/ACH-000979?tab=mutation
https://depmap.org/portal/cell_line/ACH-000979?tab=mutation
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Fig. 2  (See legend on previous page.)
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