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Abstract: The presenilin-associated rhomboid-like (PARL) gene was found to contribute to mitochon-
drial morphology and function and was linked to familial Parkinson’s disease (PD). The PARL gene
product is a mitochondrial intramembrane cleaving protease that acts on a number of mitochondrial
proteins involved in mitochondrial morphology, apoptosis, and mitophagy. To date, functional and
genetic studies of PARL have been mainly performed in mammals. However, little is known about
PARL function and its role in dopaminergic (DA) neuron development in vertebrates. The zebrafish
genome comprises two PARL paralogs: parla and parlb. Here, we established a loss-of-function muta-
tion in parla via CRISPR/Cas9-mediated mutagenesis. We examined DA neuron numbers in the adult
brain and expression of genes associated with DA neuron function in larvae and adults. We show
that loss of parla function results in loss of DA neurons, mainly in the olfactory bulb. Changes in
the levels of tyrosine hydroxylase transcripts supported this neuronal loss. Expression of fis1, a gene
involved in mitochondrial fission, was increased in parla mutants. Finally, we showed that loss of
parla function translates into impaired olfaction and altered locomotion parameters. These results
suggest a role for parla in the development and/or maintenance of DA neuron function in zebrafish.

Keywords: Parkinson’s disease; parla; dopaminergic neurons; mitochondria; gene expression; loco-
motor; zebrafish

1. Introduction

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease,
featuring motor signs that are often preceded by nonmotor symptoms such as anxi-
ety/depression in 90% of PD patients and olfactory dysfunction [1]. Interestingly, recent
data shows that more than 95% of patients with PD manifest significant olfactory loss [2].
Impairment in the sense of smell may precede motor symptoms by years, and thus can be
used for the risk assessment of developing PD in asymptomatic individuals [2]. The main
pathological feature of PD is the progressive and irreversible loss of dopaminergic (DA)
neurons in the substantia nigra pars compacta of the midbrain [3]. Although the detailed
etiology of PD remains unclear, most PD cases were found to be sporadic and can be
associated with environmental factors [4]. Only 5–10% of patients result from familial
PD [5]. With considerable effort in the past two decades, a number of genes associated
with familial PD have been identified such as PINK1, LRRK2, α-SYNUCLEIN, DJ-1, HTRA2,
and ATP13A2 [6–8]. Interestingly, many of these genes are involved in regulating and
maintaining mitochondrial function.

Mitochondria are dynamic organelles that undergo constant fusion and fission events
to generate every cell’s energetic requirements [9,10]. Bioenergetically impaired mitochon-
dria are rescued by fusion with the healthy mitochondrial network, whereas severely dam-
aged mitochondria are segregated through fission and then degraded by mitophagy [11].
Several key proteins such as PINK1 and PARKIN have been found to play a major role
in mitophagy [12] and dysregulation of the PINK1/PARKIN pathway has emerged as a
disease mechanism for neurodegenerative disorders, most notably PD [13].
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The presenilin-associated rhomboid-like protein (PARL), the orthologue of the mito-
chondrial rhomboid protease (rho7) found in Drosophila, regulates the PINK1/PARKIN
mitophagy pathway in both mammals and Drosophila [8,14,15]. With mitochondrial dys-
function being common among PD patients, PARL is an excellent candidate as a gene
associated with familial PD. In fact, researchers found a missense mutation in PARL in two
patients manifesting PD [14]. To date, functional and genetic studies of PARL have been
notably performed in mammals. However, little is known about PARL function and its role
in DA development in vertebrates [16].

Zebrafish (Danio rerio) has emerged as a model for the study of movement disor-
ders and neurodegenerative diseases. The neuronal circuitries involved in movement
in zebrafish are well characterized, with essential molecular mechanisms being highly
conserved and analogous to humans. Moreover, despite the remarkable anatomical dif-
ferences between fish and mammals, it has been shown that more than 70% of all human
disease genes have functional homologs in zebrafish [17]. Zebrafish models of PD have
and continue to contribute to our better understanding of familial PD.

In the adult zebrafish brain, DA neurons have been described in the telencephalon,
diencephalon, olfactory bulb, pretectum, and preoptic area. It has been established that
loss of DA neurons is associated with movement disorders [18], and it has been shown
that DA neurons in the olfactory bulb (OB) carry sensory response to odor [19]. Despite
notable differences, the zebrafish brain organization shows similarities to the human brain.
In zebrafish, DA neurons are first detected at 18 h post-fertilization (hpf) in the ventral
diencephalon (vDC). At 3 days post-fertilization (dpf), the central nervous system is well
developed [20]. It has been previously suggested that clusters of DA neurons in the
posterior tuberculum of the zebrafish brain vDC have ascending projections to the basal
telencephalon of the subpallium and that these neurons are equivalent to the DA system
found in the substantia nigra of the midbrain of mammals that have projections to the
striatum [21]. However, Tay and colleagues [22] have recently identified an endogenous
DA system in the subpallium that provides most of the local DA projections and that also
connects to the vDC. It has been suggested that the observed DA neurons in the subpallium
indicate that a predominant telencephalic dopamine source in zebrafish may be derived
locally [22].

In zebrafish, two parl paralogs have been identified: parla and parlb [23]. Both parl
transcripts were found to be expressed during embryonic development and in adult tissues.
Morpholino-mediated knockdown of parla and/or parlb results in mild neurodegeneration
supported by a decrease in DA cell numbers. In addition, the patterning of DA neurons
is disrupted in the ventral diencephalon [23]. Interestingly, overexpression of zebrafish
pink1 leads to the rescue of larval mortality and DA neurons abnormalities, suggesting that
similarly to mammals and Drosophila, parl is genetically upstream of pink1 [23].

As PARL function remains to be fully characterized in zebrafish, particularly in the
adult brain, we established a parla knockout (KO) line via CRISPR/Cas9 mediated mutage-
nesis. Here, we demonstrated how the loss of parla function results in a mild decrease in
DA neuron cell number in the telencephalon and a severe neuronal loss in the olfactory
bulb. This DA impact was supported through gene expression analysis in which tyrosine
hydroxylase 1 (th1) expression was severely reduced. These effects were shown to translate
into behavior impairing phenotypes.

2. Material and Methods
2.1. Animal Care and Husbandry

All experiments were conducted using protocols approved by the University of Ottawa
Animal Care Committee, and procedures were performed under the Animal Care and
Veterinary Service guidance according to the Canadian Council for Animal Care ethical
code BL-2081 (approved on 11 August 2020) Adult zebrafish were housed in circulating
water systems at 28.5 ◦C under a 14 h light/10 h dark cycle. Embryos were obtained from
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the natural spawning of adult zebrafish. The embryonic stages were expressed in days
post-fertilization (dpf) and adult stages in months post-fertilization (mpf).

2.2. CRISPR Design, sgRNAs Synthesis and Microinjections

A current zebrafish genome annotation (GRCZ11) in Ensembl was used for zebrafish
gene coding and transcript information. For sgRNA design, CHOPCHOP software was
employed [24]. Published protocol from Gagnon et al. (2014) [25] was followed to generate
templates for sgRNA transcription by annealing gene specific oligonucleotides containing
the T7 promoter sequence, the 20 base pairs (bp) target site (Table 1) followed by the PAM
sequence, and a complementary region of 80 bp constant oligonucleotide. We synthesized
three sgRNAs to be injected simultaneously to achieve multi-exon deletion. All sgRNAs
were transcribed using the MAXIscript T7 kit (Life Technologies, Carlsbad, CA, USA),
and the resulting RNA was purified using 5M ammonium acetate and ethanol precipitation.
RNA bands were detected by electrophoresis on a 1% agarose gel and RNA purity and
concentration were measured using NanoDrop 1000 spectrophotometer (ThermoFisher,
Waltham, MA, USA). Zebrafish embryos were microinjected at the 1-cell stage. An injection
solution was prepared as following: 40 ng/µL for each sgRNA, 20 ng/µL Cas9 protein
(New England BioLabs, Ipswich, MA, USA), and 0.1% Phenol Red (Sigma, Burlington, MA,
USA). Dead and deformed fish embryos were removed, and healthy ones were raised to
adult fish as F0 founders.

Table 1. List of target sequences of parla gene for sgRNAs generation.

Region Targeted Target Sequence Orientation

5′ UTR GGCGCGCTGTGAGCCGGAAG 5′-3′

5′ UTR GGAAAGCGCAGTTTTATGCA 5′-3′

Exon 2 GCCAAATGACTTGGTGGGCC 3′-5′

2.3. Description of parla Mutation

Two of the three simultaneously injected sgRNAs resulted in the deletion of 1.4 kilo-
bases (kb) corresponding to the region that spans exon 1 to exon 2 (EX1_2del according
to the Nomenclature for the description of sequence variations [26]) in the genomic DNA
sequence of parla gene (Figure 1A). Based on the Zebrafish Information Network (ZFIN)
nomenclature conventions, we named the resulting mutant line parla ot510. Genomic DNA
was extracted from fins followed by PCR amplification using forward (F) and reverse (Rm)
primers that flank the target sites to amplify the mutant band and another reverse primer
(Rwt) that binds to the region between the target sites to amplify the WT band (primer
sequences are listed in Table 2). PCR products for the mutant and WT were separated
by gel electrophoresis on a 1% agarose gel and sizes of the resulting bands were 500 bp
for wild type and 350 bp for the mutant (Figure 1B). Deletion was further confirmed by
Sanger sequencing and sequencing data showed that deletion junctions resulted from the
precise ligation of the blunt-ended double-strand breaks (DSBs) created by Cas9; each DSB
occurred exactly 3 bp upstream of the PAM sequence (data not shown). Based on cDNA
sequencing data for the parla gene previously performed by Noble and colleagues [23]
and based on Ensembl database, we obtained the cDNA sequence following deletion,
then we determined the potential protein sequence using Expasy database (Swiss Bioin-
formatics Resource Portal). A deletion from the amino acid Methionine 1 to Arginine
71 (M1_R71del [26]) is predicted to have occurred.

2.4. Collection of Zebrafish Brain Tissue

Zebrafish brain tissue was collected from both male and female fish and results were
pooled together as no gross morphological differences were observed between brains of the
two sexes. Adult fish were euthanized on ice at an age from 7 to 12 months post fertilization
(mpf) in system water followed by immediate decapitation. The whole head was fixed
in 4% PFA/PBS overnight at 4 ◦C. After dissection, brains were placed for additional
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20 min in PFA for post-fixation. The tissue was washed with PBS and then immersed in
30% sucrose/PBS overnight at 4 ◦C. Whole brains were incubated in a solution of 1:2 30%
Sucrose: OCT Compound (Tissue-Tek, VWR Canada) for 10 min, placed in cryomolds, and
frozen in liquid nitrogen. Cryosections of 18 µm were obtained with a CM3050S cryostat
(Leica, Concord, ON, Canada) in quadruplicate slides.
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Table 2. List of primers designed for PCR amplification.

Primer Sequence (5′-3′)

F CTCCAACAGGAGCCGCTATG
Rm CTAGGGATTTTGTGCATGCTTAC
Rwt ATTCATTATCCTGACAGGCC

2.5. Histology and Immunohistochemistry (IHC)

Sections were first allowed to rest for 30 min at room temperature, and then an antigen
retrieval protocol was performed. Sections were treated for 20 min at 85 ◦C in 0.01M
sodium citrate/0.05% Tween-20 solution and cooled down to room temperature (RT) for
15 min prior to blocking. Sections were then rehydrated in PBST (PBS with 0.1% Tween-20)
and blocked in 10% fetal bovine serum in PBST for 2 h at RT. Primary antibody (mouse
anti-TH, Temecula, CA, USA; Cat No. AB318) diluted 1:450 was used according to the
manufacturers’ instructions and protocol optimization. The primary antibody incubation
was carried out overnight at 4 ◦C in 1% fetal bovine serum in PBST. Sections were then
washed 3× for 5 min with PBST and incubated in the dark for 2 h at room temperature
with the secondary antibody (goat anti-mouse IgG Alexa 488; Thermo Fisher Scientific,
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Cat No. A-11001) diluted 1:1000. Slides were finally washed in PBST and mounted using
Vectashield mounting media (Vector Labs, Burlington, ON, Canada). Images were acquired
with either an Olympus FV1000 Confocal microscope or a Zeiss AxioPhot Fluorescence
Microscope. Acquired images were processed using Olympus Fluoview Software or ImageJ.
Cell counts were obtained from Z-stacking images acquired from several planes to form a
composite 3-Dimentional (3D) set of data for each tissue sample. The images combined
at different focus distances give a resulting image with a greater depth of field than any
of the individual source images. Four to 5 tissue samples of comparable planes and areas
were counted throughout the olfactory bulb (OB) and telencephalon and were averaged
for each fish. Relative TH+ cell counts were calculated by comparing the summed average
number of TH+ cells with WT. Confocal images show representative single planes.

2.6. RNA Isolation, cDNA Synthesis and qRT-PCR

Total RNA was extracted from the dissected whole brain of each adult fish using
homogenization with TriZol (InVitrogen, ThermoFisher, Waltham, MA, USA) according to
manufacturer’s protocol. A total of three brains were isolated from adult fish. The same
homogenization technique and protocol were used for total RNA extraction from pooled
5 dpf larvae. Total RNA was extracted from three biological replicates, each containing
7-pestle homogenized whole larvae. Concentration and purity of extracted RNA were
obtained using NanoDrop 1000 spectrophotometer (ThermoFisher, Waltham, MA, USA).
Synthesis of cDNA was accomplished using the iScriptTM cDNA Synthesis Kit (Life Sci-
ence Research, Bio-Rad, St Laurent, QC, Canada) following the manufacturer’s protocol.
qRT-PCR reactions were constituted of 5 µL SsoFastTM EvaGreen® Supermix (Bio-Rad),
0.4 µL forward primer, 0.4 µL reverse primer, 0.2 µL nuclease-free water, and 4 µL cDNA.
Reactions were performed in triplicates using the Bio-Rad CFX96 instrument. Normalized
quantification of the number of parla, parlb, th1, dat, opa1, pink1, mfn1, and fis1 transcripts
was achieved through the comparative Cq method using three reference genes: Beta-Actin
(β-Act), ribosomal protein l13a (rpl13a), and elongation factor 1 alpha (ef1a). Oligonucleotide
primers’ sequences are listed in Table 3.

Table 3. List of primers designed for qRT-PCR.

Primer Forward Sequence (5′-3′) Reverse Sequence (5′-3′)

parla GTGTTTTGTTGTTGGCGGGT ATGTAGACAGCAGCATCGG
parlb ATCACGCAGCACATCTTCCT TATTAGTGGCTCGCGCTTCC
th1 GACGGAAGATGATCGGAGACA AGAAATCGGAACATGGCGG
dat AGACATCTGGGAAGGTGGTG ACCTGAGCATCATAGAGGCG

opa1 GCTTGAGCCCTTGGAAAAGGAA TGGCAGGTGATCTTGAGTGTTGT
pink1 GGCAATGAAGATGATGTGGAAC GGTCGGCAGGACATCAGGA
mfn1 CTGGGTCCCGTCAACGCCAA ACTGAACCACCGCTGGGGCT
fis1 CCCTGAACCTTCCAGTGTTT GTCTCTGGAAACGGGTCCTT

β-Act 1 CGAGCTGTCTTCCCATCCA TCACCAACGTAGCTGTCTTTCTG
rpl13a 1 TCTGGAGGACTGTAAGAGGTATGC AGACGCACAATCTTGAGAGCAG

ef1a 1 CTGGAGGCCAGCTCAAACAT ATCAAGAAGAGTAGTACCGCTAGCATTAC
1 Reference: Tang et al. (2007) [27].

2.7. Swimming Activity

The effects of DA neuron loss on motor function were addressed in 7 to 12 mpf adult
zebrafish. Fish were allowed to acclimate by swimming freely for a 2-min period in indi-
vidual static tanks, followed by a 5-min recording period. The parameters analyzed for
behavioral assessment were total distance travelled by the fish, average velocity, and inac-
tivity duration. A sample size of 14 adult zebrafish was chosen and swimming activity was
recorded using the ZebraLab software and the ZebraCube tracking system (ViewPoint Life
Science, Lyon, France). The tracking system consists of LED lights, infrared illumination,
and a mounted camera for swimming recording under dark and light conditions.
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2.8. Olfactory Function

Olfactory function was tested according to Godoy et al. 2020 [19]. Briefly, tanks used
for this experiment were customized and contained a mid-tank division which divided
the tank into a neutral zone, and left and right arms. Seven to 12 mpf adult zebrafish were
used with a sample size of 7 fish. Each animal was allowed to swim freely in the tank for
2 min prior to the addition of the repulsive stimulus cadaverine (Sigma-Aldrich) to the arm
where the fish was located. The time spent in each area was recorded for another 3 min.
This elapsed time was sufficient to allow the stimulus to diffuse throughout one of the
tank’s arms without reaching a different tank area. The ratio of time spent in the stimulus
arm was calculated post-stimulus by dividing the percent of time spent in stimulus by
the total recording time. Cadaverine (80 µL of 1 mM stock solution) was delivered with
a micropipette into the rearmost portion of the arm. Control animals received the same
volume of system water.

2.9. Statistical Analysis

Statistical analysis was performed using the software GraphPad Prism v.7 (San Diego,
CA, USA). DA neuron loss was analyzed using a two-way ANOVA followed by Tukey’s
multiple comparison test. Gene expression data were established using a multiple t-test
comparison followed by Holm-Sidak method to determine significance. The total distance,
average velocity, and inactivity duration were analyzed using a one-way ANOVA followed
by Dunnett’s multiple comparison test. Zebrafish olfactory function statistical power
was assessed using multiple comparison t-test with Holm–Sidak post-hock correction.
Data are shown as the mean ± standard error of the mean (SEM) or as the median with
95% confidence intervals (CI). When the number of data points (n) is lower than 10, only
the data and median are shown. When n > 10, error bars are included [28]. Statistical
significance was determined when p-value < 0.05 and was indicated as * p < 0.05, ** p < 0.01,
*** p < 0.001.

3. Results

Using CRISPR/Cas9-mediated mutagenesis, we generated a multi-exon deletion in
the parla gene. Based on the Ensembl Genome Database, the parla gene comprises a total
of 9 exons (Figure 1A). By injecting 3 sgRNAs simultaneously in zebrafish embryos at the
1-cell stage, we were able to create deletion of the first two exons in the parla gene. Fish
that are homozygous for the parla mutation were obtained through genotyping and found
to be both viable and fertile. Moreover, we did not notice any obvious gross morphological
or behavioral defects in the mutants.

The various measurements shown in our study were performed in homozygous
(parla ot510) and heterozygous (parla +/ot510) fish and compared to WT (parla +) controls.

3.1. Gene Expression Analysis
3.1.1. Adult Brain

To assess the effect of parla KO on gene expression in the adult zebrafish brain, we de-
termined expression of genes such as PTEN-induced kinase 1 (gene: pink1; protein: PINK1)
and optic dominant atrophy (gene: opa1; protein: OPA1), both of which encode for mito-
chondrial proteins known to be PARL substrates [8,29]. Additionally, we investigated
whether tyrosine hydroxylase 1 (gene: th1; protein: TH) and dopamine transporter (gene: dat;
protein: DAT) correlated with the observed decreases in DA neuron cell numbers. Lastly,
we checked whether expression of genes involved in mitochondrial function and dynamics
is affected by analyzing expression of mitochondrial fission 1 (gene: fis1; protein: FIS1) and
mitofusin 1 (gene: mfn1; protein: MFN1).

Loss of the parla gene was confirmed by a 96% decrease in parla expression levels seen
in the homozygous mutants (parla ot510) (Figure 2D). In addition, fish heterozygous for
the mutation (parla +/ot510) showed a 60% reduction in parla transcript levels (Figure 2C).
As for parlb expression, there was a 42% increase in parla ot510 mutants which might indicate
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the existence of a compensatory mechanism for the two paralogous genes parla and parlb
(Figure 2D). Similarly, there was a 12% increase in parlb expression observed in parla +/ot510

mutants (Figure 2C). Interestingly, parla +/ot510 and parla ot510 animals exhibited 30% and 70%
decreases in the expression of th1, respectively (Figure 2C,D). However, there was no change
in the expression of the dat gene. Similarly, opa1 showed no change in expression. A slight
27% and 7% upregulation in pink1 expression was observed in parla ot510 and parla +/ot510

individuals, respectively. A slight 24% and 14% decrease in the expression of mfn1 were
seen in both parla ot510 and parla +/ot510 zebrafish, respectively. Finally, the expression of
fis1 was observed to be increased by 25% and 86% in parla +/ot510 and parla ot510 animals,
respectively (Figure 2C,D). As fis1 encodes for a protein that plays a role in mitochondrial
fission, this change in expression might suggest increased mitochondrial fission events in
parla KO fish.
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3.1.2. Larvae

Knowing that parla is expressed ubiquitously [23], we analyzed gene expression
throughout the entire body of larvae. The most noticeable changes in expression were seen
in parla ot510 larvae for th1, opa1, pink1, and fis1 genes. There were 31% and 41% decreases
in th1 expression in both parla +/ot510 and parla ot510 larvae, respectively (Figure 2A,B).
However, statistical significance was not reached for parla +/ot510 larvae. This decrease
in expression is in line with the decrease in th1 expression observed in the brain of parla
ot510 adults. In addition, there were significant increases of 60% and 31% in opa1 and
pink1 expression, respectively, in parla ot510 larvae (Figure 2B). Similarly, opa1 and pink1
expression was increased by 12% and 10%, respectively, in parla +/ot510 larvae, but this
did not reach statistical significance (Figure 2A). The highest increases in expression were
observed for fis1 in parla ot510 larvae, which reached 2.25 times the levels measured in WT
(parla +) controls (Figure 2B). In parla +/ot510 larvae, fis1 expression showed a 23% increase,
but this did not reach statistical significance (Figure 2A). These increases in fis1 expression
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are in line with those seen in the brain of adult parla ot510 fish. Finally, the expression
levels of parlb, dat, and mfn1 genes did not change significantly compared to WT controls
(Figure 2A,B).

3.2. DA Neuronal Loss in the Telencephalon and Olfactory Bulb

To determine the effect of parla loss-of-function on DA neuron number and patterning,
we performed IHC assays in adults ranging from 7 to 12 mpf in both the telencephalon and
olfactory bulb regions using TH1 antibody which is widely used for the detection of DA
neurons [30]. A reduction in TH positive (TH+) cell number reflects loss of DA neurons.
Numbers of TH+ cells for both parla ot510 and parla +/ot510 mutants were compared to WT
(Figure 3A,D). TH+ cell reductions of 60% and 20% were observed in the olfactory bulbs
(OB) for both parla ot510 and parla +/ot510 animals, respectively (Figure 3B,C,G). Similarly,
a mild reduction of 25% in TH+ cells was seen in the telencephalon for parla ot510 mutants
(Figure 3F,H). These reductions corroborate the previously observed decrease in th1 expres-
sion level. On the other hand, there was no observable decrease in TH+ cell number in the
telencephalon for parla +/ot510 mutants (Figure 3E).
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* (p < 0.05), ** (p < 0.01).

Interestingly, we observed mis-patterning of TH+ cells notably at the level of axonic
projections in the telencephalon of parla ot510 fish (R. Merhi, M. Kalyn, A. Zhu-Pawlowsky
and M. Ekker, University of Ottawa, Ottawa, ON, Canada, 2021, unpublished observa-
tions).). This observation is consistent with previous studies in which patterning of DA
neurons was found to be perturbed in the vDC of parl morphants [18,23].
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3.3. Effects on Olfactory Function

To determine if the loss of DA neurons in the OB of adult mutants has implications on
olfactory function, we performed a repulsive stimulus test. The repulsive stimulus used
in this experiment is cadaverine, which was administered to the arm of an apparatus in
which the fish was acclimatized [19]. The time spent in each section of the tank was then
recorded and the ratio of time spent in stimulus arm was calculated. Interestingly, parla ot510

fish spent on average of more than 3.5 times of the recorded period in the stimulus arm
where cadaverine was added compared to the WT zebrafish (Figure 4A,B,D). On the other
hand, there was a 48% increase in the ratio of time spent in the stimulus arm observed in
parla +/ot510 mutants (Figure 4A,C).
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3.4. Effects on Locomotion

To further investigate whether the decrease seen in DA cell number in the brain of parla
mutants translates into any behavior impairing phenotype, we analyzed locomotor activity
in adult zebrafish. Interestingly, the total distance travelled by the fish and average velocity
were not significantly affected in both parla ot510 and parla +/ot510 fish (Figure 5A,B). However,
there was an 11% decrease in distance travelled and average velocity in parla ot510 mutants.
Interestingly, parla ot510 fish showed a 62% increase in inactivity duration as compared to WT
(Figure 5C). In contrast, no significant impact on inactivity was observed in heterozygous
(parla +/ot510) animals. Furthermore, distance travelled, average velocity, and inactivity
duration were not affected in 5 dpf larvae (R. Merhi, M. Kalyn, A. Zhu-Pawlowsky and M.
Ekker, University of Ottawa, ON, Canada, 2021, unpublished observations).
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4. Discussion

To date, the vast majority of studies addressing PARL function have been performed
in yeast, Drosophila, and mammals [29,31,32]. It is only recently where the PARL paralogues
have been identified in a zebrafish model [23]. This evolutionary conservation of PARL is
evidence of the critical role that this protease plays across the animal kingdom.

In yeast and Drosophila, rhomboid 1 and rhomboid-7 (the PARL orthologues, respectively),
possess critical roles in mitochondrial maintenance via fusion and fission regulation [29,31].
However, the loss-of-function of rhomboid-7 in Drosophila rendered complete lethality within
a population by 3 dpf [29]. In mammals, targeted PARL null mice show progressive muscle
and immune organ atrophy with death occurring before the age of three months [16].
Moreover, severe apoptosis accompanied with mitochondrial morphological changes at
the level of the cristae occurred in the fibroblasts and liver of PARL KO mice suggesting
that PARL plays an anti-apoptotic role by regulating cristae morphology [16]. Similarly, in
a recent study, morphological abnormalities in mitochondria were detected in the brain,
indicating that the accumulation of these mitochondrial structural and functional defects
was correlated to the significant neurodegeneration observed in Parl −/− mice [32].

In zebrafish, the transcripts of the two parl paralogues identified were shown to be
expressed during embryonic development and in adult tissues. Morpholino-mediated
knockdown of both parla and parlb genes resulted in embryonic lethality, increased cell
death, and mild neurodegeneration of DA neurons [23]. Interestingly, the Parla protein
showed a 67% amino acid identity to human PARL, higher than for Parlb (55%). Moreover,
it was suggested that in zebrafish, proper DA neuron development depends particularly
on parla rather than parlb function [23]. These results were observed in 1 to 3 dpf zebrafish
larvae following a morpholino-mediated knockdown of parl genes. However, given the
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transient nature of gene-knockdown phenotypes, additional loss-of-function studies in
larvae and adult zebrafish needed to be performed.

In our study, we generated a permanent multi-exon deletion in the parla gene via
CRISPR/Cas9-mediated mutagenesis, and we found that, similarly to what was shown
in the morpholino study in larvae [23], loss-of-function of the parla gene leads to severe
DA neuron loss and mis-patterning in the adult zebrafish brain. This was shown by the
reduced number of TH+ cells in both the telencephalon and olfactory bulbs. We also
observed disorganized axonal tracts of DA neurons in the olfactory bulbs (R. Merhi, M.
Kalyn, A. Zhu-Pawlowsky and M. Ekker, University of Ottawa, ON, Canada, 2021, unpub-
lished observations). Tyrosine hydroxylase (TH) is the rate-limiting enzyme in dopamine
biosynthesis and an important marker of catecholaminergic neurons. It is commonly used
in studies to label DA neurons [30]. Two genes, th1 and th2, encode the TH enzyme in
zebrafish, and both Th1 and Th2 proteins are highly similar to the mammalian TH [33].
Immunohistochemical analysis of Th1 was performed as it is widely expressed in all brain
regions, whereas Th2 is localized to hypothalamic, posterior tubercular, and preoptic re-
gions of the zebrafish brain [34]. In two of the sensory and behavioral epicenters of the
brain, the telencephalon and olfactory bulbs, we observed considerable reductions in Th1
at both the mRNA and protein level in parla ot510 adult zebrafish. Intriguingly, there was no
change in the dopamine transporter (dat) transcript levels in both mutant adult brains and in
mutant larvae. This could be explained by a possible upregulation of dat in the DA neurons
that survive. Loss of parla function might be affecting dopamine biosynthesis, although
DA neurons that survive are still expressing dat for dopamine re-uptake.

Interestingly, the severe DA neuron loss seen in the olfactory bulbs translates into an
olfactory impairment observed in the repulsive stimulus test. However, the locomotor
assessment showed that there were no remarkable effects on the adult fish’s ability to
perform locomotor functions such as total distance travelled and velocity. This could
possibly be explained by the considerable number of TH+ cells that remain residing within
the telencephalon of the parla mutant fish. The telencephalic region has been previously
characterized with DA clusters and projections claimed to be analogous to the nigrostriatal
pathway in humans involved in movement modulation [35]. Therefore, it is unlikely that
the inability of fish to swim away of the repulsive stimulus in the olfactory test could be
due to locomotor impairments, but are rather due to the inability to detect or respond
to the stimulus. It is possible that impaired olfaction precedes impaired locomotion in
zebrafish as seen in human PD patients that manifest locomotor dysfunction after losing
the ability to smell [2,36]. Intriguingly, mutant fish showed high levels of inactivity periods.
We hypothesize that the inactivity episodes noted are not due to muscle dysfunction,
as distance travelled and average velocity of the fish were not affected, but are rather due
to the mild DA neuron reduction observed in the telencephalic region.

Striking mitochondrial functional and morphological abnormalities such as frag-
mentation and aggregation have been observed in yeast, Drosophila, and mice with a
loss-of-function mutation in the PARL gene [16,29,31,32]. Moreover, it has been suggested
that mitochondrial damage, likely due to an increase in reactive oxygen species, results
in depolarization of the inner mitochondrial membrane and loss of membrane potential
which induces mitochondrial fragmentation [36]. In our study, we analyzed expression
of the fis1 gene involved in mitochondrial fission. We observed a significant increase in
fis1 mRNA expression in both mutant adult brains and in mutant larvae. We hypothesize
that mitochondria of adult fish brains and larvae with a loss-of-function in parla gene un-
dergo increased mitochondrial fission turnover due to mitochondrial dysfunction. A more
concrete observation such as live mitochondrial imaging is still needed to confirm this
hypothesis.

Robust evidence from previous studies indicates that PINK1, a mitochondrial kinase
with a key role in regulating mitophagy, is a substrate of PARL in mammals and other
organisms [8,23,37,38]. This kinase was also found to play a critical role in the regulation
of complex I activity in mitochondria [39] and to be implicated in the pathogenesis of PD.
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The absence of PINK1 cleavage by PARL results in the accumulation of PINK1 on the outer
mitochondrial membrane followed by induction of the ubiquitination event that promotes
the clearance of defective mitochondria [37]. Similarly to other organisms, the pink1 gene
was found to genetically function downstream of parl as part of a conserved pathway in
vertebrates [23]. Intriguingly, our gene expression analysis shows that pink1 expression was
not significantly affected in adult brain tissue following loss of parla gene function. In fact,
Noble and colleagues have shown that lack of both Parl proteins in larvae can be rescued by
the expression of either zebrafish or human PINK1 and have suggested that compensatory
mechanisms might be involved in Pink1 cleavage in zebrafish, despite the fact that Pink1
is a substrate of Parl [23]. Moreover, using RNA interference, previous findings showed
that three other mitochondrial proteases affected levels of PINK1 in HEK293T cells [40].
In contrast, we found that pink1 expression was significantly increased in parla ot510 larvae.
Similar observations were noted for opa1, whose expression was significantly increased in
parla ot510 larvae, but not in the mutant adult brains. In Drosophila, yeast, and mice, a genetic
interaction between PARL and OPA1 seems to be established, although whether OPA1 is a
substrate of PARL is still debatable. Given the differential pink1 and opa1 gene expression
profiles seen in zebrafish mutant larvae versus adult mutant brains, we speculate that
loss-of-function of parla in zebrafish might have different impacts on pink1 and opa1 gene
expression in a tissue or developmental stage-dependent manner. The lack of significant
effects on the expression of pink1, opa1, or of other genes in parla ot510 adult brains or larvae
might also be explained by possible compensatory mechanisms exerted by the paralogous
parlb gene in zebrafish. In fact, parlb expression was found to increase following the loss-of-
function of parla in both adult brains and larvae. Morpholino-knockdown of parla and parlb
simultaneously was shown to induce larval mortality. In contrast, loss-of-function of one
of the two genes did not result in increased mortality [23]. Similarly, we found that parla
ot510 fish did not present significant larval mortalities and were viable well into adulthood.
In mice, loss of Parl function was found to be lethal [16]. Thus, functional redundancy of
the zebrafish parl paralogs confers some advantages to this model organism [41].

5. Conclusions

Overall, we have shown through targeted CRISPR/Cas9-mediated loss-of-function of
the parla gene, its importance for DA neuron number and patterning in the telencephalon
and olfactory bulb of the adult zebrafish brain. We also suggested that loss of DA neurons
is correlated with the behavioral and olfactory impairments observed in the adult fish.
Given the prevalence of mitochondrial dysfunction in PD pathologies and the role of PARL
in mitochondrial homeostasis, the generation of PARL zebrafish mutant lines is beneficial
in the understanding of the specific function played by PARL on the onset of PD and could
lead to the development of novel therapeutic approaches and strategies.
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